Sclerostin and chronic kidney disease

REVIEW ARTICLE

Sclerostin and chronic kidney disease

Emilia Mierzwińska 1 , Tomasz Hryszko 1 , Emilia Szablak-Uliszewska 1 , Beata Naumnik 1

1. I Klinika Nefrologii i Transplantologii z Ośrodkiem Dializ, Uniwersytet Medyczny w Białymstoku,

Published: 2017-12-28
DOI: 10.5604/01.3001.0010.7605
GICID: 01.3001.0010.7605
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 1098-1106

 

Abstract

Chronic kidney disease (CKD) leads to the development of mineral and skeletal disturbances. They increase the risk of fractures, cardiovascular complications and, in consequence, decrease patients’ lifespan. Wnt/β-catenin pathway plays an important role in the development and homeostasis of the skeleton. The system is tightly regulated by group of inhibitors, such as sclerostin. Sclerostin inhibits bone formation and increases its resorption. There is mounting evidence that sclerostin may take part in the progress of bone and cardiovascular complications among patients with CKD. This review presents the current state of knowledge on the role of sclerostin in bone and cardiovascular disturbances in CKD patients.

References

  • 1. Ai M., Heeger S., Bartels C.F., Schelling D.K., Osteoporosis-Pseudoglioma Collaborative Group: Clinical and molecular findings in osteoporosis-pseudoglioma syndrome. Am. J. Hum. Genet., 2005; 77: 741-753
    Google Scholar
  • 2. Alem A.M., Sherrard D.J., Gillen D.L., Weiss N.S., Beresford S.A., Heckbert S.R., Wong C., Stehman-Breen C.: Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int., 2000; 58: 396-399
    Google Scholar
  • 3. Balcı M., Kırkpantur A., Turkvatan A., Mandıroglu S., Ozturk E., Afsar B.: Sclerostin as new key player in arteriovenous fistula calcification. Herz, 2015; 40: 289-297
    Google Scholar
  • 4. Balemans W., Ebeling M., Patel N., Van Hul E., Olson P., Dioszegi M., Lacza C., Wuyts W., Van Den Ende J., Willems P., Paes-Alves A.F., Hill S., Bueno M., Ramos F.J., Tacconi P. wsp.: Increased bone density in sclerosteosis is due to the deficiency of novel secreted protein (SOST). Hum. Mol. Genet., 2001; 10: 537-543
    Google Scholar
  • 5. Baron R., Kneissel M.: WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med., 2013; 19: 179-192
    Google Scholar
  • 6. Bellido T., Ali A.A., Gubrij I., Plotkin L.I., Fu Q., O’Brien C.A., Manolagas S.C., Jilka R.L.: Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: novel mechanism for hormonal control of osteoblastogenesis. Endocrinology, 2005; 146: 4577-4583
    Google Scholar
  • 7. Bonani M., Rodriguez D., Fehr T., Mohebbi N., Brockmann J., Blum M., Graf N., Frey D., Wüthrich R.P.: Sclerostin blood levels before and after kidney transplantation. Kidney Blood Press. Res., 2014; 39: 230-239
    Google Scholar
  • 8. Brandenburg V.M., Kramann R., Koos R., Krüger T., Schurgers L., Mühlenbruch G., Hübner S., Gladziwa U., Drechsler C., Ketteler M.: Relationship between sclerostin and cardiovascular calcification in hemodialysis patients: cross-sectional study. BMC Nephrol., 2013; 14: 219
    Google Scholar
  • 9. Brunkow M.E., Gardner J.C., Van Ness J., Paeper B.W., Kovacevich B.R., Proll S., Skonier J.E., Zhao L., Sabo P.J., Fu Y., Alisch R.S., Gillett L., Colbert T., Tacconi P., Galas D. wsp.: Bone dysplasia sclerosteosis results from loss of the SOST gene product, novel cystine knot-containing protein. Am. J. Hum. Genet., 2001; 68: 577-589
    Google Scholar
  • 10. Cejka D., Herberth J., Branscum A.J., Fardo D.W., Monier-Faugere M.C., Diarra D., Haas M., Malluche H.H.: Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin. J. Am. Soc. Nephrol., 2011; 6: 877-882
    Google Scholar
  • 11. Cejka D., Jäger-Lansky A., Kieweg H., Weber M., Bieglmayer C., Haider D.G., Diarra D., Patsch J.M.,Sclerostin serum levels correlate positively with bone mineral density and microarchitecture in haemodialysis patients. Nephrol. Dial. Transplant., 2012; 27: 226-230 Kainberger F., Bohle B., Haas M.:
    Google Scholar
  • 12. Cejka D., Marculescu R., Kozakowski N., Plischke M., Reiter T., Gessl A., Haas M.: Renal elimination of sclerostin increases with declining kidney function. J. Clin. Endocrinol. Metab., 2014; 99: 248-255
    Google Scholar
  • 13. Cejka D., Parada-Rodriguez D., Pichler S., Marculescu R., Kramer I., Kneissel M., Gross T., Reisinger A., Pahr D., Monier-Faugere M.C., Haas M., Malluche H.H.: Only minor differences in renal osteodystrophy features between wild-type and sclerostin knockout mice with chronic kidney disease. Kidney Int., 2016; 90: 828-834
    Google Scholar
  • 14. Claes K.J., Viaene L., Heye S., Meijers B., d’Haese P., Evenepoel P.: Sclerostin: another vascular calcification inhibitor? J. Clin. Endocrinol. Metab., 2013; 98: 3221-3228
    Google Scholar
  • 15. Coco M., Rush H.: Increased incidence of hip fractures in dialysis patients with low serum parathyroid hormone. Am. J. Kidney Dis., 2000; 36: 1115-1121
    Google Scholar
  • 16. Cohen-Kfir E., Artsi H., Levin A., Abramowitz E., Bajayo A., Gurt I., Zhong L., D’Urso A., Toiber D., Mostoslavsky R., Dresner-Pollak R.: Sirt1 is regulator of bone mass and repressor of Sost encoding for sclerostin, bone formation inhibitor. Endocrinology, 2011; 152: 4514-4524
    Google Scholar
  • 17. Cruciat C.M., Niehrs C.: Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb. Perspect. Biol., 2013; 5: a015081
    Google Scholar
  • 18. de Oliveira R.B., Graciolli F.G., dos Reis L.M., Cancela A.L., Cuppari L., Canziani M.E., Carvalho A.B., Jorgetti V., Moysés R.M.: Disturbances of Wnt/β-catenin pathway and energy metabolism in early CKD: effect of phosphate binders. Nephrol. Dial. Transplant., 2013; 28: 2510-2517
    Google Scholar
  • 19. Delanaye P., Krzesinski J.M., Warling X., Moonen M., Smelten N., Médart L., Bruyère O., Reginster J.Y., Pottel H., Cavalier E.: Clinical and biological determinants of sclerostin plasma concentration in hemodialysis patients. Nephron Clin. Pract., 2014; 128: 127-134
    Google Scholar
  • 20. Desjardins L., Liabeuf S., Oliveira R.B., Louvet L., Kamel S., Lemke H.D., Vanholder R., Choukroun G., Massy Z.A., European Uremic Toxin (EUTox) Work Group: Uremic toxicity and sclerostin in chronic kidney disease patients. Nephrol. Ther., 2014; 10: 463-470
    Google Scholar
  • 21. Drake M.T., Farr J.N.: Inhibitors of sclerostin: emerging concepts. Curr. Opin. Rheumatol., 2014; 26: 447-452
    Google Scholar
  • 22. Drechsler C., Evenepoel P., Vervloet M.G., Wanner C., Ketteler M., Marx N., Floege J., Dekker F.W., Brandenburg V.M., NECOSAD Study Group: High levels of circulating sclerostin are associated with better cardiovascular survival in incident dialysis patients: results from the NECOSAD study. Nephrol. Dial. Transplant., 2015; 30: 288-293
    Google Scholar
  • 23. Evenepoel P., Claes K., Viaene L., Bammens B., Meijers B., Naesens M., Sprangers B., Kuypers D.: Decreased circulating sclerostin levels in renal transplant recipients with persistent hyperparathyroidism. Transplantation, 2016; 100: 2188-2193
    Google Scholar
  • 24. Evenepoel P., Goffin E., Meijers B., Kanaan N., Bammens B., Coche E., Claes K., Jadoul M.: Sclerostin serum levels and vascular calcification progression in prevalent renal transplant recipients. J. Clin. Endocrinol. Metab., 2015; 100: 4669-4676
    Google Scholar
  • 25. Fang Y., Ginsberg C., Seifert M., Agapova O., Sugatani T., Register T.C., Freedman B.I., Monier-Faugere M.C., Malluche H., Hruska K.A.: CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J. Am. Soc. Nephrol., 2014; 25: 1760-1773
    Google Scholar
  • 26. Fang Y., Ginsberg C., Sugatani T., Monier-Faugere M.C., Malluche H., Hruska K.A.: Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int., 2014; 85: 142-150
    Google Scholar
  • 27. Ferreira J.C., Ferrari G.O., Neves K.R., Cavallari R.T., Dominguez W.V., Dos Reis L.M., Graciolli F.G., Oliveira E.C., Liu S., Sabbagh Y., Jorgetti V., Schiavi S., Moysés R.M.: Effects of dietary phosphate on adynamic bone disease in rats with chronic kidney disease – role of sclerostin? PLoS One, 2013; 8: e79721
    Google Scholar
  • 28. Galea G.L., Sunters A., Meakin L.B., Zaman G., Sugiyama T., Lanyon L.E., Price J.S.: Sost down-regulation by mechanical strain in human osteoblastic cells involves PGE2 signaling via EP4. FEBS Lett., 2011; 585: 2450-2454
    Google Scholar
  • 29. Genetos D.C., Toupadakis C.A., Raheja L.F., Wong A., Papanicolaou S.E., Fyhrie D.P., Loots G.G., Yellowley C.E.: Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts. J. Cell. Biochem., 2010; 110: 457-467
    Google Scholar
  • 30. Gonçalves F.L., Elias R.M., dos Reis L.M., Graciolli F.G., Zampieri F.G., Oliveira R.B., Jorgetti V., Moysés R.M.: Serum sclerostin is an independent predictor of mortality in hemodialysis patients. BMC Nephrol., 2014; 15: 190
    Google Scholar
  • 31. Gooi J.H., Pompolo S., Karsdal M.A., Kulkarni N.H., Kalajzic I., McAhren S.H., Han B., Onyia J.E., Ho P.W., Gillespie M.T., Walsh N.C., Chia L.Y., Quinn J.M., Martin T.J., Sims N.A.: Calcitonin impairs the anabolic effect of PTH in young rats and stimulates expression of sclerostin by osteocytes. Bone, 2010; 46: 1486-1497
    Google Scholar
  • 32. Ishimura E., Okuno S., Ichii M., Norimine K., Yamakawa T., Shoji S., Nishizawa Y., Inaba M.: Relationship between serum sclerostin, bone metabolism markers, and bone mineral density in maintenance hemodialysis patients. J. Clin. Endocrinol. Metab., 2014; 99: 4315-4320
    Google Scholar
  • 33. Jean G., Chazot C., Bresson E., Zaoui E., Cavalier E.: High serum sclerostin levels are associated with better outcome in haemodialysis patients. Nephron, 2016; 132: 181-190
    Google Scholar
  • 34. Johnson M.L., Gong G., Kimberling W., Reckér S.M., Kimmel D.B., Recker R.B.: Linkage of gene causing high bone mass to human chromosome 11 (11q12-13). Am. J. Hum. Genet., 1997; 60: 1326-1332
    Google Scholar
  • 35. Kakareko K., Rydzewska-Rosolowska A., Brzosko S., Gozdzikiewicz-Lapinska J., Koc-Zorawska E., Samocik P., Kozlowski R., Mysliwiec M., Naumnik B., Hryszko T.: Renal handling of sclerostin in response to acute glomerular filtration decline. Horm. Metab. Res., 2016; 48: 457-461
    Google Scholar
  • 36. Kanbay M., Siriopol D., Saglam M., Kurt Y.G., Gok M., Cetinkaya H., Karaman M., Unal H.U., Oguz Y., Sari S., Eyileten T., Goldsmith D., Vural A., Veisa G., Covic A. wsp.: Serum sclerostin and adverse outcomes in nondialyzed chronic kidney disease patients. J. Clin. Endocrinol. Metab., 2014; 99: E1854-E1861
    Google Scholar
  • 37. Kanbay M., Solak Y., Siriopol D., Aslan G., Afsar B., Yazici D., Covic A.: Sclerostin, cardiovascular disease and mortality: systematic review and meta-analysis. Int. Urol. Nephrol., 2016; 48: 2029-2042
    Google Scholar
  • 38. Kirkpantur A., Balci M., Turkvatan A., Afsar B.: Serum sclerostin levels, arteriovenous fistula calcification and 2-years all-cause mortality in prevalent hemodialysis patients. Nefrologia, 2016; 36: 24-32
    Google Scholar
  • 39. Kramann R., Brandenburg V.M., Schurgers L.J., Ketteler M., Westphal S., Leisten I., Bovi M., Jahnen-Dechent W., Knüchel R., Floege J., Schneider R.K.: Novel insights into osteogenesis and matrix remodelling associated with calcific uraemic arteriolopathy. Nephrol. Dial. Transplant., 2013; 28: 856-868
    Google Scholar
  • 40. Kramer I., Loots G.G., Studer A., Keller H., Kneissel M.: Parathyroid hormone (PTH)-induced bone gain is blunted in SOST overexpressing and deficient mice. J. Bone Miner. Res., 2010; 25: 178-189
    Google Scholar
  • 41. Kuźniewski M., Fedak D., Dumnicka P., Stępień E., Kuśnierz-Cabala B., Cwynar M., Sułowicz W.: Osteoprotegerin and osteoprotegerin/TRAIL ratio are associated with cardiovascular dysfunction and mortality among patients with renal failure. Adv. Med. Sci., 2016; 61: 269-275
    Google Scholar
  • 42. Lee Y.T., Ng H.Y., Chiu T.T., Li L.C., Pei S.N., Kuo W.H., Lee C.T.: Association of bone-derived biomarkers with vascular calcification in chronic hemodialysis patients. Clin. Chim. Acta, 2016; 452: 38-43
    Google Scholar
  • 43. Levin A., Bakris G.L., Molitch M., Smulders M., Tian J., Williams L.A., Andress D.L.: Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int., 2007; 71: 31-38
    Google Scholar
  • 44. Little R.D., Carulli J.P., Del Mastro R.G., Dupuis J., Osborne M., Folz C., Manning S.P., Swain P.M., Zhao S.C., Eustace B., Lappe M.M., Spitzer L., Zweier S., Braunschweiger K., Benchekroun Y. wsp.: mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet., 2002; 70: 11-19
    Google Scholar
  • 45. Loots G.G., Keller H., Leupin O., Murugesh D., Collette N.M., Genetos D.C.: TGF-β regulates sclerostin expression via the ECR5 enhancer. Bone, 2012; 50: 663-669
    Google Scholar
  • 46. Lv W., Guan L., Zhang Y., Yu S., Cao B., Ji Y.: Sclerostin as new key factor in vascular calcification in chronic kidney disease stages 3 and 4. Int. Urol. Nephrol., 2016; 48: 2043-2050
    Google Scholar
  • 47. MacDonald B.T., Tamai K., He X.: Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell, 2009; 17: 9-26
    Google Scholar
  • 48. Malluche H.H., Davenport D.L., Cantor T., Monier-Faugere M.C.: Bone mineral density and serum biochemical predictors of bone loss in patients with CKD on dialysis. Clin. J. Am. Soc. Nephrol., 2014; 9: 1254-1262
    Google Scholar
  • 49. Martínez-Moreno J.M., Muñoz-Castañeda J.R., Herencia C., Oca A.M. Estepa J.C., Canalejo R., Rodríguez-Ortiz M.E., Perez-Martinez P., Aguilera-Tejero E., Canalejo A., Rodríguez M., Almadén Y.: In vascular smooth muscle cells paricalcitol prevents phosphate-induced Wnt/β-catenin activation. Am. J. Physiol. Renal Physiol., 2012; 303: F1136-F1144
    Google Scholar
  • 50. Moe S., Drüeke T., Cunningham J., Goodman W., Martin K., Olgaard K., Ott S., Sprague S., Lameire N., Eknoyan G., Kidney Disease: Improving Global Outcomes (KDIGO): Definition, evaluation, and classification of renal osteodystrophy: position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int., 2006; 69: 1945-1953
    Google Scholar
  • 51. Moe S.M., Chen N.X., Newman C.L., Organ J.M., Kneissel M., Kramer I., Gattone V.H., Allen M.R.: Anti-sclerostin antibody treatment in rat model of progressive renal osteodystrophy. J. Bone Miner. Res., 2015; 30: 499-509
    Google Scholar
  • 52. Moldovan D., Rusu C., Kacso I.M., Potra A., Patiu I.M., Gherman-Caprioara M.: Mineral and bone disorders, morbidity and mortality in end-stage renal failure patients on chronic dialysis. Clujul Med., 2016; 89: 94-103
    Google Scholar
  • 53. Morena M., Jaussent I., Dupuy A.M., Bargnoux A.S., Kuster N., Chenine L., Leray-Moragues H., Klouche K., Vernhet H., Canaud B., Cristol J.P.: Osteoprotegerin and sclerostin in chronic kidney disease prior to dialysis: potential partners in vascular calcifications. Nephrol. Dial. Transplant., 2015; 30: 1345-1356
    Google Scholar
  • 54. Nowak A., Artunc F., Serra A.L., Pollock E., Krayenbühl P.A., Müller C., Friedrich B.: Sclerostin quo vadis? – is this useful longterm mortality parameter in prevalent hemodialysis patients? Kidney Blood Press. Res., 2015; 40: 266-276
    Google Scholar
  • 55. Pelletier S., Confavreux C.B., Haesebaert J., Guebre-Egziabher F., Bacchetta J., Carlier M.C., Chardon L., Laville M., Chapurlat R., London G.M., Lafage-Proust M.H., Fouque D.: Serum sclerostin: the missing link in the bone-vessel cross-talk in hemodialysis patients? Osteoporos. Int., 2015; 26: 2165-2174
    Google Scholar
  • 56. Pelletier S., Dubourg L., Carlier M.C., Hadj-Aissa A., Fouque D.: The relation between renal function and serum sclerostin in adult patients with CKD. Clin. J. Am. Soc. Nephrol., 2013; 8: 819-823
    Google Scholar
  • 57. Pereira R.C., Jüppner H., Gales B., Salusky I.B., Wesseling-Perry K.: Osteocytic protein expression response to doxercalciferol therapy in pediatric dialysis patients. PLoS One, 2015; 10: e0120856
    Google Scholar
  • 58. Piec I., Washbourne C., Tang J., Fisher E., Greeves J., Jackson S., Fraser W.D.: How accurate is your sclerostin measurement? Comparison between three commercially available sclerostin ELISA kits. Calcif. Tissue Int., 2016; 98: 546-555
    Google Scholar
  • 59. Poole K.E., van Bezooijen R.L., Loveridge N., Hamersma H., Papapoulos S.E., Löwik C.W., Reeve J.: Sclerostin is delayed secreted product of osteocytes that inhibits bone formation. FASEB J., 2005; 19: 1842-1844
    Google Scholar
  • 60. Qureshi A.R., Olauson H., Witasp A., Haarhaus M., Brandenburg V., Wernerson A., Lindholm B., Söderberg M., Wennberg L., Nordfors L., Ripsweden J., Barany P., Stenvinkel P.: Increased circulating sclerostin levels in end-stage renal disease predict biopsy-verified vascular medial calcification and coronary artery calcification. Kidney Int., 2015; 88: 1356-1364
    Google Scholar
  • 61. Register T.C., Hruska K.A., Divers J., Bowden D.W., Palmer N.D., Carr J.J., Wagenknecht L.E., Hightower R.C., Xu J., Smith S.C., Dietzen D.J., Langefeld C.D., Freedman B.I.: Sclerostin is positively associated with bone mineral density in men and women and negatively associated with carotid calcified atherosclerotic plaque in men from the African American-Diabetes Heart Study. J. Clin. Endocrinol. Metab., 2014; 99: 315-321
    Google Scholar
  • 62. Robling A.G., Niziolek P.J., Baldridge L.A., Condon K.W., Allen M.R., Alam I., Mantila S.M., Gluhak-Heinrich J., Bellido T.M., Harris S.E., Turner C.H.: Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J. Biol. Chem., 2008; 283: 5866-5875
    Google Scholar
  • 63. Roforth M.M., Fujita K., McGregor U.I., Kirmani S., McCready L.K., Peterson J.M., Drake M.T., Monroe D.G., Khosla S.: Effects of age on bone mRNA levels of sclerostin and other genes relevant to bone metabolism in humans. Bone, 2014; 59: 1-6
    Google Scholar
  • 64. Rong S., Zhao X., Jin X., Zhang Z., Chen L., Zhu Y., Yuan W.: Vascular calcification in chronic kidney disease is induced by bone morphogenetic protein-2 via mechanism involving the Wnt/β-catenin pathway. Cell. Physiol. Biochem., 2014; 34: 2049-2060
    Google Scholar
  • 65. Scialla J.J., Xie H., Rahman M., Anderson A.H., Isakova T., Ojo A., Zhang X., Nessel L., Hamano T., Grunwald J.E., Raj D.S., Yang W., He J., Lash J.P., Go A.S. wsp.: Fibroblast growth factor-23 and cardiovascular events in CKD. J. Am. Soc. Nephrol., 2014; 25: 349-360
    Google Scholar
  • 66. Seiler S., Reichart B., Roth D., Seibert E., Fliser D., Heine G.H.: FGF-23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment. Nephrol. Dial. Transplant., 2010; 25: 3983-3989
    Google Scholar
  • 67. Shanahan C.M., Crouthamel M.H., Kapustin A., Giachelli C.M.: Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ. Res., 2011; 109: 697-711
    Google Scholar
  • 68. Sugiyama T., Torio T., Miyajima T., Kim Y.T., Oda H.: Romosozumab and blosozumab: alternative drugs of mechanical strain-related stimulus toward cure for osteoporosis. Front. Endocrinol., 2015; 6: 54
    Google Scholar
  • 69. Sutherland M.K., Geoghegan J.C., Yu C., Winkler D.G., Latham J.A.: Unique regulation of SOST, the sclerosteosis gene, by BMPs and steroid hormones in human osteoblasts. Bone, 2004; 35: 448-454
    Google Scholar
  • 70. Szulc P., Boutroy S., Vilayphiou N., Schoppet M., Rauner M., Chapurlat R., Hamann C., Hofbauer L.C.: Correlates of bone microarchitectural parameters and serum sclerostin levels in men: the STRAMBO study. J. Bone Miner. Res., 2013; 28: 1760-1770
    Google Scholar
  • 71. Thambiah S., Roplekar R., Manghat P., Fogelman I., Fraser W.D., Goldsmith D., Hampson G.: Circulating sclerostin and Dickkopf-1 (DKK1) in predialysis chronic kidney disease (CKD): relationship with bone density and arterial stiffness. Calcif. Tissue Int., 2012; 90: 473-480
    Google Scholar
  • 72. Tian E., Zhan F., Walker R., Rasmussen E., Ma Y., Barlogie B., Shaughnessy J.D.Jr.: The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N. Engl. J. Med., 2003; 349: 2483-2494
    Google Scholar
  • 73. Ureña P., De Vernejoul M.C.: Circulating biochemical markers of bone remodeling in uremic patients. Kidney Int., 1999; 55: 2141-2156
    Google Scholar
  • 74. van Amerongen R., Nusse R.: Towards an integrated view of Wnt signaling in development. Development, 2009; 136: 3205-3214
    Google Scholar
  • 75. Viaene L., Behets G.J., Claes K., Meijers B., Blocki F., Brandenburg V., Evenepoel P., D’Haese P.C.: Sclerostin: another bone-related protein related to all-cause mortality in haemodialysis? Nephrol. Dial. Transplant., 2013; 28: 3024-3030
    Google Scholar
  • 76. Vincent C., Findlay D.M., Welldon K.J., Wijenayaka A.R., Zheng T.S., Haynes D.R., Fazzalari N.L., Evdokiou A., Atkins G.J.: Pro-inflammatory cytokines TNF-related weak inducer of apoptosis (TWEAK) and TNFα induce the mitogen-activated protein kinase (MAPK)-dependent expression of sclerostin in human osteoblasts. J. Bone Miner. Res., 2009; 24: 1434-1449
    Google Scholar
  • 77. Wang X.R., Yuan L., Zhang J.J., Hao L., Wang D.G.: Serum sclerostin values are associated with abdominal aortic calcification and predict cardiovascular events in patients with chronic kidney disease stages 3-5D. Nephrology, 2017; 22: 286-292
    Google Scholar
  • 78. Widelitz R.: Wnt signaling through canonical and non-canonical pathways: recent progress. Growth Factors, 2005; 23: 111-116
    Google Scholar
  • 79. Więcek A., Kuczera P., Adamczak M.: Treatment with cinacalcet increases sclerostin concentration in hemodialysed patients with chronic kidney disease and secondary hyperparathyroidism. J. Am. Soc. Nephrol., 2015; 26: 204A
    Google Scholar
  • 80. Wijenayaka A.R., Yang D., Prideaux M., Ito N., Kogawa M., Anderson P.H., Morris H.A., Solomon L.B., Loots G.G., Findlay D.M., Atkins G.J.: 1α,25-dihydroxyvitamin D3 stimulates human SOST gene expression and sclerostin secretion. Mol. Cell. Endocrinol., 2015; 413: 157-167
    Google Scholar
  • 81. Williams B.O.: Insights into the mechanisms of sclerostin action in regulating bone mass accrual. J. Bone Miner. Res., 2014; 29: 24-28
    Google Scholar
  • 82. Yang C.Y., Chang Z.F., Chau Y.P., Chen A., Yang W.C., Yang A.H., Lee O.K.: Circulating Wnt/β-catenin signalling inhibitors and uraemic vascular calcifications. Nephrol. Dial. Transplant., 2015; 30: 1356-1363
    Google Scholar
  • 83. Zhu D., Mackenzie N.C., Millán J.L., Farquharson C., MacRae V.E.: The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS One, 2011; 6: e19595
    Google Scholar

Full text

Skip to content