Current perspectives on the use of miRNA as a biomarker for EGFR-targeted therapy for non-small cell lung cancer

REVIEW ARTICLE

Current perspectives on the use of miRNA as a biomarker for EGFR-targeted therapy for non-small cell lung cancer

Mateusz Florczuk 1 , Adam Szpechciński 1 , Joanna Chorostowska-Wynimko 1

1. Instytut Gruźlicy i Chorób Płuc, Zakład Genetyki i Immunologii Klinicznej w Warszawie,

Published:
DOI: 10.5604/01.3001.0010.7613
GICID: 01.3001.0010.7613
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 1107-1118

 

Abstract

Non-small cell lung cancer (NSCLC) is the leading cause of death from cancer in the world. Currently, a large number of research studies are conducted to develop and implement new treatment strategies. Intensive efforts are also made to improve the robustness of modern molecular diagnostics to identify more precisely the specific genetic and epigenetic cancer features (predictive biomarkers) and to adjust the most effective treatment options for individual patients (personalized therapy). The so-called targeted therapy based on using epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is nowadays the most widely chosen form of personalized treatment in advanced NSCLC. Favorable response to treatment with EGFR TKIs depends on the presence of somatic mutations in EGFR gene, detectable in lung cancer tissue. The resistance to EGFR TKIs acquired by most patients during the treatment is the main obstacle in overcome in targeted therapy of NSCLC. At present, epi-/genome of lung cancer is intensively screened using high-throughput techniques (e.g. microarrays, Next-Generation Sequencing) to select novel epi-/genetic biomarkers that could be used as predictors of the targeted treatment outcome, apart from single gene alterations. A better understanding of epigenetic mechanisms regulating either the sensitivity or the resistance of NSCLC cells to EGFR TKIs, through activity of small, non-coding miRNA (microRNA) molecules, may become a breakthrough in targeted therapy of lung cancer. During carcinogenesis, miRNAs exhibit their dual regulatory function: they promote cancer development as oncogenes or act as tumor suppressors. From a clinical point of view, such a dual regulatory function of microRNAs might significantly impact the further development of targeted therapies. Moreover, stable forms of tumor-related miRNA are detected not only in tumor tissue, but also in body fluids of NSCLC patients, particularly in their peripheral blood. This finding provides new options of minimally invasive cancer diagnosis and monitoring of treatment effectiveness over time.

References

  • 1. Ardekani A.M., Naeini M.M.: The role of microRNAs in human diseases. Avicenna J. Med. Biotechnol., 2010; 2: 161-179
    Google Scholar
  • 2. Baek D., Villén J., Shin C., Camargo F.D., Gygi S.P., Bartel D.P.: The impact of microRNAs on protein output. Nature, 2008; 455: 64-71
    Google Scholar
  • 3. Barrett L.W., Fletcher S., Wilton S.D.: Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol. Life Sci., 2012; 69: 3613-3634
    Google Scholar
  • 4. Bartel D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004; 116: 281-297
    Google Scholar
  • 5. Bartel D.P.: MicroRNAs: target recognition and regulatory functions. Cell, 2009; 136: 215-233
    Google Scholar
  • 6. Basyuk E., Suavet F., Doglio A., Bordonné R., Bertrand E.: Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res., 2003; 31: 6593-6597
    Google Scholar
  • 7. Berezikov E., Guryev V., van de Belt J., Wienholds E., Plasterk R.H., Cuppen E.: Phylogenetic shadowing and computational identification of human microRNA genes. Cell, 2005; 120: 21-24
    Google Scholar
  • 8. Bohnsack M.T., Czaplinski K., Gorlich D.: Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA, 2004; 10: 185-191
    Google Scholar
  • 9. Bryant J.L., Britson J., Balko J.M., Willian M., Timmons R., Frolov A., Black E.P.: A microRNA gene expression signature predicts response to erlotinib in epithelial cancer cell lines and targets EMT. Br. J. Cancer, 2012; 106: 148-156
    Google Scholar
  • 10. Cai X., Hagedorn C.H., Cullen B.R.: Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 2004; 10: 1957-1966
    Google Scholar
  • 11. Chang S., Johnston R.J., Jr., Frokjaer-Jensen C., Lockery S., Hobert O.: MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature, 2004; 430: 785-789
    Google Scholar
  • 12. hen X., Ba Y., Ma L., Cai X., Yin Y., Wang K., Guo J., Zhang Y., Chen J., Guo X., Li Q., Li X., Wang W., Zhang Y., Wang J. i wsp.: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res., 2008; 18: 997-1006
    Google Scholar
  • 13. Chorostowska-Wynimko J., Skroński M., Szpechcinski A.: Molekularne markery prognostyczne i predykcyjne w diagnostyce niedrobnokomórkowego raka płuca. Onkol. Info., 2011; 8: 160-167
    Google Scholar
  • 14. Chorostowska-Wynimko J., Skroński M., Szpechciński A.: Markery molekularne we wczesnej diagnostyce raka płuca – fakty i nadzieje. Onkol. Info., 2011; 8: 152-159
    Google Scholar
  • 15. Chorostowska-Wynimko J., Szpechcinski A.: The impact of genetic markers on the diagnosis of lung cancer: a current perspective. J. Thorac. Oncol., 2007; 2: 1044-1051
    Google Scholar
  • 16. Chou C.H., Chang N.W., Shrestha S., Hsu S.D., Lin Y.L., Lee W.H., Yang C.D., Hong H.C., Wei T.Y., Tu S.J., Tsai T.R., Ho S.Y., Jian T.Y., Wu H.Y., Chen P.R. i wsp.: miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res., 2016; 44: D239-D247
    Google Scholar
  • 17. Chu G., Zhang J., Chen X.: Serum level of microRNA-147 as diagnostic biomarker in human non-small cell lung cancer. J. Drug Target, 2016; 24: 613-617
    Google Scholar
  • 18. Cogswell J.P., Ward J., Taylor I.A., Waters M., Shi Y., Cannon B., Kelnar K., Kemppainen J., Brown D., Chen C., Prinjha R.K., Richardson J.C., Saunders A.M., Roses A.D., Richards C.A.: Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J. Alzheimers Dis., 2008; 14: 27-41
    Google Scholar
  • 19. Croce C.M.: Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet., 2009; 10: 704-714
    Google Scholar
  • 20. Cullen B.R.: Transcription and processing of human microRNA precursors. Mol Cell. 2004; 16: 861-865
    Google Scholar
  • 21. de la Chapelle A., Jazdzewski K.: MicroRNAs in thyroid cancer. J. Clin. Endocrinol. Metab., 2011; 96: 3326-3336
    Google Scholar
  • 22. Denli A.M., Tops B.B., Plasterk R.H., Ketting R.F., Hannon G.J.: Processing of primary microRNAs by the microprocessor complex. Nature, 2004; 432: 231-235
    Google Scholar
  • 23. Esposito A., Criscitiello C., Locatelli M., Milano M., Curigliano G.: Liquid biopsies for solid tumors: Understanding tumor heterogeneity and real time monitoring of early resistance to targeted therapies. Pharmacol. Ther., 2016; 157: 120-124
    Google Scholar
  • 24. Garofalo M., Romano G., Di Leva G., Nuovo G., Jeon Y.J., Ngankeu A., Sun J., Lovat F., Alder H., Condorelli G., Engelman J.A., Ono M., Rho J.K., Cascione L., Volinia S., Nephew K.P., Croce C.M.: EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat. Med., 2011; 18: 74-82
    Google Scholar
  • 25. Gasparini P., Cascione L., Landi L., Carasi S., Lovat F., Tibaldi C., Ali G., D’Incecco A., Minuti G., Chella A., Fontanini G., Fassan M., Cappuzzo F., Croce C.M.: microRNA classifiers are powerful diagnostic/prognostic tools in ALK-, EGFR-, and KRAS-driven lung cancers. Proc. Natl. Acad. Sci. USA, 2015; 112: 14924-14929
    Google Scholar
  • 26. Gilad S., Meiri E., Yogev Y., Benjamin S., Lebanony D., Yerushalmi N., Benjamin H., Kushnir M., Cholakh H., Melamed N., Bentwich Z., Hod M., Goren Y., Chajut A.: Serum microRNAs are promising novel biomarkers. PLoS One, 2008; 3: e3148
    Google Scholar
  • 27. Giovannetti E., Erozenci A., Smit J., Danesi R., Peters G.J.: Molecular mechanisms underlying the role of microRNAs (miRNAs) in anticancer drug resistance and implications for clinical practice. Crit. Rev. Oncol. Hematol., 2012; 81: 103-122
    Google Scholar
  • 28. Gregory R.I., Yan K.P., Amuthan G., Chendrimada T., Doratotaj B., Cooch N., Shiekhattar R.: The Microprocessor complex mediates the genesis of microRNAs. Nature, 2004; 432: 235-240
    Google Scholar
  • 29. Haaland B., Tan P.S., de Castro G.Jr., Lopes G.: Meta-analysis of first-line therapies in advanced non-small-cell lung cancer harboring EGFR-activating mutations. J. Thorac. Oncol., 2014; 9: 805-811
    Google Scholar
  • 30. Hanke M., Hoefig K., Merz H., Feller A.C., Kausch I., Jocham D., Warnecke J.M., Sczakiel G.: A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol. Oncol., 2010; 28: 655-661
    Google Scholar
  • 31. Hanson E.K., Lubenow H., Ballantyne J.: Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal. Biochem., 2009; 387: 303-314
    Google Scholar
  • 32. Hayes J., Peruzzi P.P., Lawler S.: MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol. Med., 2014; 20: 460-469
    Google Scholar
  • 33. Hu Z., Chen J., Tian T., Zhou X., Gu H., Xu L., Zeng Y., Miao R., Jin G., Ma H., Chen Y., Shen H.: Genetic variants of miRNA sequences and non-small cell lung cancer survival. J. Clin. Invest., 2008; 118: 2600-2608
    Google Scholar
  • 34. Hurd P.J., Nelson C.J.: Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief Funct. Genomic Proteomic, 2009; 8: 174-183
    Google Scholar
  • 35. Hutvágner G., McLachlan J., Pasquinelli A.E., Bálint E., Tuschl T., Zamore P.D.: A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 2001; 293: 834-838
    Google Scholar
  • 36. Isik M., Korswagen H.C., Berezikov E.: Expression patterns of intronic microRNAs in Caenorhabditis elegans. Silence, 2010; 1: 5
    Google Scholar
  • 37. Jänne P.A.: Challenges of detecting EGFR T790M in gefitinib/ erlotinib-resistant tumours. Lung Cancer, 2008; 60: S3-S9
    Google Scholar
  • 38. Ju L., Han M., Zhao C., Li X.: Genome-wide analysis of microRNA signature in lung adenocarcinoma with EGFR exon 19 deletion. BioRxiv 2016 https://www.biorxiv.org/content/early/2016/04/04/032367 (19.11.2017)
    Google Scholar
  • 39. Kawaguchi T., Matsumura A., Fukai S., Tamura A., Saito R., Zell J.A., Maruyama Y., Ziogas A., Kawahara M., Ignatius Ou S.H.: Japanese ethnicity compared with Caucasian ethnicity and never-smoking status are independent favorable prognostic factors for overall survival in non-small cell lung cancer: a collaborative epidemiologic study of the National Hospital Organization Study Group for Lung Cancer (NHSGLC) in Japan and a Southern California Regional Cancer Registry databases. J. Thorac. Oncol., 2010; 5: 1001-1010
    Google Scholar
  • 40. Ketting R.F., Fischer S.E., Bernstein E., Sijen T., Hannon G.J., Plasterk R.H.: Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev., 2001; 15: 2654-2659
    Google Scholar
  • 41. Kosaka N., Izumi H., Sekine K., Ochiya T.: microRNA as a new immune-regulatory agent in breast milk. Silence, 2010; 1: 7
    Google Scholar
  • 42. Lee C.G., McCarthy S., Gruidl M., Timme C., Yeatman T.J.: MicroRNA-147 induces a mesenchymal-to-epithelial transition (MET) and reverses EGFR inhibitor resistance. PLoS One, 2014; 9: e84597
    Google Scholar
  • 43. Lee Y., Ahn C., Han J., Choi H., Kim J., Yim J., Lee J., Provost P., Radmark O., Kim S., Kim V.N.: The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003; 425: 415-419
    Google Scholar
  • 44. Lee Y., Jeon K., Lee J.T., Kim S., Kim V.N.: MicroRNA maturation: stepwise processing and subcellular localization. EMBO J., 2002; 21: 4663-4670
    Google Scholar
  • 45. Lee Y., Kim M., Han J., Yeom K.H., Lee S., Baek S.H., Kim V.N.: MicroRNA genes are transcribed by RNA polymerase II. EMBO J., 2004; 23: 4051-4060
    Google Scholar
  • 46. Lee Y.S., Nakahara K., Pham J.W., Kim K., He Z., Sontheimer E.J., Carthew R.W.: Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell, 2004; 117: 69-81
    Google Scholar
  • 47. Lim L.P., Glasner M.E., Yekta S., Burge C.B., Bartel D.P.: Vertebrate microRNA genes. Science, 2003; 299: 1540
    Google Scholar
  • 48. Lin L., Bivona T.G.: Mechanisms of resistance to epidermal growth factor receptor inhibitors and novel therapeutic strategies to overcome resistance in NSCLC patients. Chemother. Res. Pract., 2012; 2012: 817297
    Google Scholar
  • 49. Liu C., Zhang F., Li T., Lu M., Wang L., Yue W., Zhang D.: MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genomics, 2012; 13: 661
    Google Scholar
  • 50. Lu J., Getz G., Miska E.A., Alvarez-Saavedra E., Lamb J., Peck D., Sweet-Cordero A., Ebert B.L., Mak R.H., Ferrando A.A., Downing J.R., Jacks T., Horvitz H.R., Golub T.R.: MicroRNA expression profiles classify human cancers. Nature, 2005; 435: 834-838
    Google Scholar
  • 51. Lynch T.J., Bell D.W., Sordella R., Gurubhagavatula S., Okimoto R.A., Brannigan B.W., Harris P.L., Haserlat S.M., Supko J.G., Haluska F.G., Louis D.N., Christiani D.C., Settleman J., Haber D.A.: Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2004; 350: 2129-2139
    Google Scholar
  • 52. Mitchell P.S., Parkin R.K., Kroh E.M., Fritz B.R., Wyman S.K., Pogosova-Agadjanyan E.L., Peterson A., Noteboom J., O›Briant K.C., Allen A., Lin D.W., Urban N., Drescher C.W., Knudsen B.S., Stirewalt D.L. i wsp.: Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Nat. Acad. Sci. USA, 2008; 105: 10513-10518
    Google Scholar
  • 53. Moldovan L., Batte K.E., Trgovcich J., Wisler J., Marsh C.B., Piper M.: Methodological challenges in utilizing miRNAs as circulating biomarkers. J. Cell Mol. Med., 2014; 18: 371-390
    Google Scholar
  • 54. Okamura K., Liu N., Lai E.C.: Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Mol. Cell., 2009; 36: 431-444
    Google Scholar
  • 55. Park K., Tan E.H., O›Byrne K., Zhang L., Boyer M., Mok T., Hirsh V., Yang J.C., Lee K.H., Lu S., Shi Y., Kim S.W., Laskin J., Kim D.W., Arvis C.D. i wsp.: Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol., 2016; 17: 577-589
    Google Scholar
  • 56. Park N.J., Zhou H., Elashoff D., Henson B.S., Kastratovic D.A., Abemayor E., Wong D.T.: Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin. Cancer Res., 2009; 15: 5473-5477
    Google Scholar
  • 57. Pfaff J., Meister G.: Argonaute and GW182 proteins: an effective alliance in gene silencing. Biochem. Soc. Trans., 2013; 41: 855-860
    Google Scholar
  • 58. Pichon X., Wilson L.A., Stoneley M., Bastide A., King H.A., Somers J., Willis A.E.: RNA binding protein/RNA element interactions and the control of translation. Curr. Protein Pept. Sci., 2012; 13: 294-304
    Google Scholar
  • 59. Place R.F., Li L.C., Pookot D., Noonan E.J., Dahiya R.: MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc. Natl. Acad. Sci. USA, 2008; 105: 1608-1613
    Google Scholar
  • 60. Rosell R., Moran T., Queralt C., Porta R., Cardenal F., Camps C., Majem M., Lopez-Vivanco G., Isla D., Provencio M., Insa A., Massuti B., Gonzalez-Larriba J.L., Paz-Ares L., Bover I. i wsp.: Screening for epidermal growth factor receptor mutations in lung cancer. N. Engl. J. Med., 2009; 361: 958-967
    Google Scholar
  • 61. Schwarz D.S., Hutvágner G., Du T., Xu Z., Aronin N., Zamore P.D.: Asymmetry in the assembly of the RNAi enzyme complex. Cell, 2003; 115: 199-208
    Google Scholar
  • 62. Schwarzenbach H., Nishida N., Calin G.A., Pantel K.: Clinical relevance of circulating cell-free microRNAs in cancer. Nat. Rev. Clin. Oncol., 2014; 11: 145-156
    Google Scholar
  • 63. Sharma S.V., Bell D.W., Settleman J., Haber D.A.: Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer, 2007; 7: 169-181
    Google Scholar
  • 64. Shen H., Zhu F., Liu J., Xu T., Pei D., Wang R., Qian Y., Li Q., Wang L., Shi Z., Zheng J., Chen Q., Jiang B., Shu Y.: Alteration in Mir-21/ PTEN expression modulates gefitinib resistance in non-small cell lung cancer. PLoS One, 2014; 9: e103305
    Google Scholar
  • 65. Shen Y., Tang D., Yao R., Wang M., Wang Y., Yao Y., Li X., Zhang H.: microRNA expression profiles associated with survival, disease progression, and response to gefitinib in completely resected non-small-cell lung cancer with EGFR mutation. Med. Oncol., 2013; 30: 750
    Google Scholar
  • 66. Shigematsu H., Lin L., Takahashi T., Nomura M., Suzuki M., Wistuba I.I., Fong K.M., Lee H., Toyooka S., Shimizu N., Fujisawa T., Feng Z., Roth J.A., Herz J., Minna J.D., Gazdar A.F.: Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J. Natl. Cancer Inst., 2005; 97: 339-346
    Google Scholar
  • 67. Shomron N., Levy C.: MicroRNA-biogenesis and Pre-mRNA splicing crosstalk. J. Biomed. Biotechnol., 2009; 2009: 594678
    Google Scholar
  • 68. Siegel R., Naishadham D., Jemal A.: Cancer statistics, 2013. CA Cancer J. Clin., 2013; 63: 11-30
    Google Scholar
  • 69. Skronski M., Szpechcinski A., Chorostowska-Wynimko J.: Współ- czesne metody wykrywania mutacji genu EGFR jako czynnika predykcyjnego dla terapii ukierunkowanej molekularnie chorych na niedrobnokomórkowego raka płuca – czy istnieje „złoty standard” diagnostyczny? Pneumonol. Alergol. Pol., 2014; 82: 311-322
    Google Scholar
  • 70. Szaumkessel M., Szyfter K.: mikro RNA w patogenezie płaskonabłonkowych raków głowy i szyi. Biotechnologia, 2010; 3: 64-74
    Google Scholar
  • 71. Tian T., Shu Y., Chen J., Hu Z., Xu L., Jin G., Liang J., Liu P., Zhou X., Miao R., Ma H., Chen Y., Shen H.: A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol. Biomarkers Prev., 2009; 18: 1183-1187
    Google Scholar
  • 72. Tiberio P., Callari M., Angeloni V., Daidone M.G., Appierto V.: Challenges in using circulating miRNAs as cancer biomarkers. BioMed Res. Int., 2015; 2015: 731479
    Google Scholar
  • 73. Turchinovich A., Weiz L., Burwinkel B.: Extracellular miRNAs: the mystery of their origin and function. Trends Biochem. Sci., 2012; 37: 460-465
    Google Scholar
  • 74. Uramoto H., Mitsudomi T.: Which biomarker predicts benefit from EGFR-TKI treatment for patients with lung cancer? Br. J. Cancer, 2007; 96: 857-863
    Google Scholar
  • 75. Wang Y.S., Wang Y.H., Xia H.P., Zhou S.W., Schmid-Bindert G., Zhou C.C.: MicroRNA-214 regulates the acquired resistance to gefitinib via the PTEN/AKT pathway in EGFR-mutant cell lines. Asian Pac. J. Cancer Prev., 2012; 13: 255-260
    Google Scholar
  • 76. Webster R.J., Giles K.M., Price K.J., Zhang P.M., Mattick J.S., Leedman P.J.: Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J. Biol. Chem., 2009; 284: 5731-5741
    Google Scholar
  • 77. Weiss G.J., Bemis L.T., Nakajima E., Sugita M., Birks D.K., Robinson W.A., Varella-Garcia M., Bunn P.A.Jr., Haney J., Helfrich B.A., Kato H., Hirsch F.R., Franklin W.A.: EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann. Oncol., 2008; 19: 1053-1059
    Google Scholar
  • 78. Wojciechowska U., Didkowska J.: Zachorowania i zgony na nowotwory złośliwe w Polsce. Krajowy Rejestr Nowotworów, 2013
    Google Scholar
  • 79. Yi R., Qin Y., Macara I.G., Cullen B.R.: Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev., 2003; 17: 3011-3016
    Google Scholar
  • 80. Yuan Z., Zeng X., Yang D., Wang W., Liu Z.: Effects of common polymorphism rs11614913 in Hsa-miR-196a2 on lung cancer risk. PLoS One, 2013; 8: e61047
    Google Scholar
  • 81. Zandberga E., Kozirovskis V., Abols A., Andrejeva D., Purkalne G., Line A.: Cell-free microRNAs as diagnostic, prognostic, and predictive biomarkers for lung cancer. Genes Chromosomes Cancer, 2013; 52: 356-369
    Google Scholar
  • 82. Zeng Y., Cullen B.R.: Sequence requirements for micro RNA processing and function in human cells. RNA, 2003; 9: 112-23
    Google Scholar
  • 83. Zhang H., Su Y., Xu F., Kong J., Yu H., Qian B.: Circulating microRNAs in relation to EGFR status and survival of lung adenocarcinoma in female non-smokers. PLoS One, 2013; 8: e81408
    Google Scholar
  • 84. Zhang J., Ma L.: MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev., 2012; 31: 653-662
    Google Scholar
  • 85. Zhao Q., Cao J., Wu Y.C., Liu X., Han J., Huang X.C., Jiang L.H., Hou X.X., Mao W.M., Ling Z.Q.: Circulating miRNAs is a potential marker for gefitinib sensitivity and correlation with EGFR mutational status in human lung cancers. Am. J. Cancer Res., 2015; 5: 1692-1705
    Google Scholar
  • 86. Zhong M., Ma X., Sun C., Chen L.: MicroRNAs reduce tumor growth and contribute to enhance cytotoxicity induced by gefitinib in non-small cell lung cancer. Chem. Biol. Interact., 2010; 184: 431-438
    Google Scholar
  • 87. Zhou Y.M., Liu J., Sun W.: MiR-130a overcomes gefitinib resistance by targeting met in non-small cell lung cancer cell lines. Asian Pac. J. Cancer Prev., 2014; 15: 1391-1396
    Google Scholar

Full text

Skip to content