Vaccinomics and adversomics as new trends in vaccinology
Anna Lutyńska 1 , Aleksandra Gołoś 1 , Ewa Augustynowicz 2 , Beata Orzechowska 3Abstract
Currently used vaccines have been developed based on experimental pre-clinical and clinical trials. Although the widespread availability of vaccines is one of the greatest achievements in public health, the selection of antigens capable of inducing an effective immune response has not been successful for some pathogens to date. Searching for and detecting a relationship between genes or whole genome sequences and the level of immunization response has opened the second “golden age” of vaccinology and led to the development of two new branches: vaccinomics and adversomics. Vaccinomics is a combination of pharmacogenetics, which defines the correlation between single gene polymorphism and immunization response and pharmacogenomics, which characterizes the correlation between genome sequence polymorphism, immunogenicity induced by the vaccine. Adversomics is aimed at developing a strategy for reducing the risk of adverse events by diagnosing potentially high-risk individuals and using modified vaccines. The assumptions and achievements of vaccinomics, initiated by Georg Poland, have influenced the development of a new vaccine antigen selection strategy. This strategy consists of selecting the optimal antigen after characterizing the genetic and epigenetic determinants of the immune system components of all candidate vaccine antigens. Taking into account the role of variability, not only in the pathogen but also in the host in antigen, selection strategies may significantly improve the efficiency of the newly developed vaccines and vaccines currently in use after their respective modifications.
References
- 1. Andre F.E., Booy R., Bock H.L., Clemens J., Datta S.K., John T.J., Lee B.W., Lolekha S., Peltola H., Ruff T.A., Santosham M., Schmitt H.J.: Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull. World Health Organ., 2008; 86: 140-146
Google Scholar - 2. Arness M.K., Eckart R.E., Love S.S., Atwood J.E., Wells T.S., Engler R.J., Collins L.C., Ludwig S.L., Riddle J.R., Grabenstein J.D., Tornberg D.N.: Myopericarditis following smallpox vaccination. Am. J. Epidemiol., 2004; 160: 642-651
Google Scholar - 3. Awdeh Z.L., Alper C.A.: Inherited polymorphism of human C4 as revealed by desialyzation. Immunobiology, 1980; 158: 35-41
Google Scholar - 4. Bambini S., Rappuoli R.: The use of genomics in microbial vaccine development. Drug. Discov. Today, 2009; 14: 252-260
Google Scholar - 5. Barbosa T., Barral-Netto M.: Challenges in the research and development of new human vaccines. Braz. J. Med. Biol. Res., 2013; 46: 103-108
Google Scholar - 6. Black F.L., Hierholzer W., Woodall J.P., Pinhiero F.: Intensified reactions to measles vaccine in unexposed populations of american Indians. J. Infect. Dis., 1971; 124: 306-317
Google Scholar - 7. Bui H.H., Peters B., Assarsson E., Mbawuike I., Sette A.: Ab and T cell epitopes of influenza A virus, knowledge and opportunities. Proc. Natl. Acad. Sci. USA, 2007; 104: 246-251
Google Scholar - 8. Burgner D., Jamieson S.E., Blackwell J.M.: Genetic susceptibility to infectious diseases: big is beautiful, but will bigger be even better? Lancet Infect. Dis., 2006; 6: 653-663
Google Scholar - 9. Carroll M.C.: The complement system in regulation of adaptive immunity. Nat. Immunol., 2004; 5: 981-986
Google Scholar - 10. Chang J.: Current progress on development of respiratory syncytial virus vaccine. BMB Rep., 2011; 44: 232-237
Google Scholar - 11. Clifford H.D., Richmond P., Khoo S.K., Zhang G., Yerkovich S.T., Le Souëf P.N., Hayden C.M.: SLAM and DC-SIGN measles receptor polymorphisms and their impact on antibody and cytokine responses to measles vaccine. Vaccine, 2011; 29: 5407-5413
Google Scholar - 12. Collins A., Lonjou C., Morton N.E.: Genetic epidemiology of single-nucleotide polymorphisms. Proc. Natl. Acad. Sci. USA, 1999; 96: 15173-15177
Google Scholar - 13. Collins F.S.: Shattuck lecture-medical and societal consequences of the Human Genome Project. N. Engl. J. Med., 1999; 341: 28-37
Google Scholar - 14. Collins F.S., McKusick V.A.: Implications of the Human Genome Project for medical science. JAMA, 2001; 285: 540-544
Google Scholar - 15. Cooper C.L., Davis H.L., Morris M.L., Efler S.M., Adhami M.A., Krieg A.M., Cameron D.W., Heathcote J.: CPG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults: a double-blind phase I/II study. J. Clin. Immunol., 2004; 24: 693-701
Google Scholar - 16. Crowe J.E. Jr.: Genetic predisposition for adverse events after vaccination. J. Infect. Dis., 2007; 196: 176-177
Google Scholar - 17. Deshpande A., Wheeler C.M., Hunt W.C., Peyton C.L., White P.S., Valdez Y.E., Nolan J.P.: Variation in HLA class I antigen-processing genes and susceptibility to human papillomavirus type 16-associated cervical cancer. J. Infect. Dis., 2008; 197: 371-381
Google Scholar - 18. Desombere I., Willems A., Leroux-Roels G.: Response to hepatitis B vaccine: multiple HLA genes are involved. Tissue Antigens, 1998; 51: 593-604
Google Scholar - 19. Dhiman N., Ovsyannikova I.G., Cunningham J.M., Vierkant R.A., Kennedy R.B., Pankratz V.S., Poland G.A., Jacobson R.M.: Associations between measles vaccine immunity and single-nucleotide polymorphisms in cytokine and cytokine receptor genes. J. Infect. Dis., 2007; 195: 21-29
Google Scholar - 20. Dhiman N., Ovsyannikova I.G., Vierkant R.A., Pankratz V.S., Jacobson R.M., Poland G.A.: Associations between cytokine/cytokine receptor single nucleotide polymorphisms and humoral immunity to measles, mumps and rubella in a Somali population. Tissue Antigens 2008; 72: 211-220
Google Scholar - 21. Dhiman N., Ovsyannikova I.G., Vierkant R.A., Ryan J.E., Pankratz V.S., Jacobson R.M., Poland G.A.: Associations between SNPs in toll-like receptors and related intracellular signaling molecules and immune responses to measles vaccine: preliminary results. Vaccine, 2008; 26: 1731-1736
Google Scholar - 22. Dhiman N., Poland G.A., Cunningham J.M., Jacobson R.M., Ovsyannikova I.G., Vierkant R.A., Wu Y., Pankratz V.S.: Variations in measles vaccine-specific humoral immunity by polymorphisms in SLAM and CD46 measles virus receptors. J. Allergy. Clin. Immunol., 2007; 120: 666-672
Google Scholar - 23. Dobaño C., Campo J.J.: Understanding protective immune mechanisms induced by malaria vaccines in the context of clinical trials. Hum. Vaccin., 2009; 5: 562-565
Google Scholar - 24. Doolan D.L., Southwood S., Chesnut R., Appella E., Gomez E., Richards A., Higashimoto Y.I., Maewal A., Sidney J., Gramzinski R.A., Mason C., Koech D., Hoffman S.L., Sette A.: HLA-DR-promiscuous T cell epitopes from Plasmodium falciparum pre-erythrocytic-stage antigens restricted by multiple HLA class II alleles. J. Immunol., 2000; 165: 1123-1137
Google Scholar - 25. Falugi F., Petracca R., Mariani M., Luzzi E., Mancianti S., Carinci V., Melli M.L., Finco O., Wack A., Di Tomasso A., De Magistris M.T., Costantino P., Del Giudice G., Abrignani S., Rappuoli R. i wsp.: Rationally designed strings of promiscuous CD4+ T cell epitopes provide help to Haemophilus influenzae type b oligosaccharide: a model for new conjugate vaccines. Eur. J. Immunol., 2001; 31: 3816-3824
Google Scholar - 26. Gilbert S.C.: Influenza vaccines and immunopathology. Expert Rev. Vaccines, 2012; 11: 873-875
Google Scholar - 27. Gostout B.S., Poland G.A., Calhoun E.S., Sohni Y.R., Giuntoli R.L., McGovern R.M., Sloan J.A., Cha S.S., Persing D.H.: TAP1, TAP2, and HLA-DR2 alleles are predictors of cervical cancer risk. Gynecol. Oncol., 2003; 88: 326-332
Google Scholar - 28. Gottlieb S.L., Johnston C.: Future prospects for new vaccines against sexually transmitted infection. Curr. Opin. Infect. Dis., 2017; 30: 77-86
Google Scholar - 29. Grygorowicz M.A., Kozłowska E.: Udział receptorów TLR rozpoznających wzorce molekularne organizmów patogennych w modulowaniu aktywności regulatorowych limfocytów T CD4+ CD25+ FoxP3+ . Post. Mikrobiol., 2011; 50: 141-154
Google Scholar - 30. Haber P., DeStefano F., Angulo F.J., Iskander J., Shadomy S.V., Weintraub E., Chen R.T.: Guillain-Barré syndrome following influenza vaccination. JAMA, 2004; 292: 2478-2481
Google Scholar - 31. Halsell J.S., Riddle J.R., Atwood J.E., Gardner P., Shope R., Poland G.A., Gray G.C., Ostroff S., Eckart R.E., Hospenthal D.R., Gibson R.L., Grabenstein J.D., Arness M.K., Tornberg D.N., Department of Defense Smallpox Vaccination Clinical Evaluation Team: Myopericarditis following smallpox vaccination among vaccinia-naive US military personnel. JAMA, 2003; 289: 3283-3289
Google Scholar - 32. Haralambieva I.H., Ovsyannikova I.G., Dhiman N., Kennedy R.B., O’Byrne M., Pankratz V.S., Jacobson R.M., Poland G.A.: Common SNPs/haplotypes in IL18R1 and IL18 genes are associated with variations in humoral immunity to smallpox vaccination in Caucasians and African Americans. J. Infect. Dis., 2011; 204: 433-441
Google Scholar - 33. Haralambieva I.H., Ovsyannikova I.G., Kennedy R.B., Vierkant R.A., Pankratz V.S., Jacobson R.M., Poland G.A.: Associations between single nucleotide polymorphisms and haplotypes in cytokine and cytokine receptor genes and immunity to measles vaccination. Vaccine, 2011; 29: 7883-7895
Google Scholar - 34. He Y., Rappuoli R., De Groot A.S., Chen R.T.: Emerging vaccine informatics. J. Biomed. Biotechnol., 2010; 2010: 218590
Google Scholar - 35. Heer A.K., Shamshiev A., Donda A., Uematsu S., Akira S., Kopf M., Marsland B.J.: TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses. J. Immunol., 2007; 178: 2182-2191
Google Scholar - 36. Hemmer B., Pinilla C., Gran B., Vergelli M., Ling N., Conlon P., McFarland H.F., Houghten R., Martin R.: Contribution of individual amino acids within MHC molecule or antigenic peptide to TCR ligand potency. J. Immunol., 2000; 164: 861-871
Google Scholar - 37. Höhler T., Reuss E., Evers N., Dietrich E., Rittner C., Freitag C.M., Vollmar J., Schneider P.M., Fimmers R.: Differential genetic determination of immune responsiveness to hepatitis B surface antigen and to hepatitis A virus: a vaccination study in twins. Lancet, 2002; 360: 991-995
Google Scholar - 38. Ingram R., Baillie L.: It’s in the genes! Human genetic diversity and the response to anthrax vaccines. Expert. Rev. Vaccines, 2012; 11: 633-635
Google Scholar - 39. Itoh K., Yamada A.: Personalized peptide vaccines: a new therapeutic modality for cancer. Cancer Sci., 2006; 97: 970-976
Google Scholar - 40. Jacobson R.M., Ovsyannikova I.G., Targonski P.V., Poland G.A.: Studies of twins in vaccinology. Vaccine, 2007; 25: 3160-3164
Google Scholar - 41. Johnson K.L., Ovsyannikova I.G., Madden B.J., Poland G.A., Muddiman D.C.: Accurate mass precursor ion data and tandem mass spectrometry identify a class I human leukocyte antigen A*0201- -presented peptide originating from vaccinia virus. J. Am. Soc. Mass Spectrom., 2005; 16: 1812-1817
Google Scholar - 42. Johnson K.L., Ovsyannikova I.G., Mason C.J., Bergen H.R. 3rd, Poland G.A.: Discovery of naturally processed and HLA-presented class I peptides from vaccinia virus infection using mass spectrometry for vaccine development. Vaccine, 2009; 28: 38-47
Google Scholar - 43. Johnson K.L., Ovsyannikova I.G., Poland G.A., Muddiman D.C.: Identification of class II HLA-DRB1*03-bound measles virus peptides by 2D-liquid chromatography tandem mass spectrometry. J. Proteome Res., 2005; 4: 2243-2249
Google Scholar - 44. ohnston M.I., Fauci A.S.: An HIV vaccine – challenges and prospects. N. Engl. J. Med., 2008; 359: 888-890
Google Scholar - 45. Jin P., Wang E.: Polymorphism in clinical immunology – From HLA typing to immunogenetic profiling. J. Transl. Med., 2003; 1: 8
Google Scholar - 46. Khoury M.J., Little J.: Human genome epidemiologic reviews: the beginning of something HuGE. Am. J. Epidemiol., 2000; 151: 2-3
Google Scholar - 47. Kim M.J., Nafziger A.N., Harro C.D., Keyserling H.L., Ramsey K.M., Drusano G.L., Bertino J.S. Jr.: Revaccination of healthy nonresponders with hepatitis B vaccine and prediction of seroprotection response. Vaccine, 2003; 21: 1174-1179
Google Scholar - 48. Kitchener S.: Viscerotropic and neurotropic disease following vaccination with the 17D yellow fever vaccine, ARILVAX. Vaccine, 2004; 22: 2103-2105
Google Scholar - 49. Konradsen H.B., Henrichsen J., Wachmann H., Holm N.: The influence of genetic factors on the immune response as judged by pneumococcal vaccination of mono- and dizygotic Caucasian twins. Clin. Exp. Immunol., 1993; 92: 532-536
Google Scholar - 50. Kopf M., Abel B., Gallimore A., Carroll M., Bachmann M.F.: Complement component C3 promotes T-cell priming and lung migration to control acute influenza virus infection. Nat. Med., 2002; 8: 373-378
Google Scholar - 51. Kruger A., Adams P., Hammer J., Böcher W.O., Schneider P.M., Rittner C., Hoehler T.: Hepatitis B surface antigen presentation and HLA-DRB1*- lessons from twins and peptide binding studies. Clin. Exp. Immunol., 2005; 140: 325-332
Google Scholar - 52. Lee H.G., Lim J.S., Lee K.Y., Choi Y.K., Choe I.S., Chung T.W., Kim K.: Peptide-specific CTL induction in HBV-seropositive PBMC by stimulation with peptides in vitro: novel epitopes identified from chronic carriers. Virus Res., 1997; 50: 185-194
Google Scholar - 53. Lee Y.C., Newport M.J., Goetghebuer T., Siegrist C.A., Weiss H.A., Pollard A.J., Marchant A., MRC Twin Study Group: Influence of genetic and environmental factors on the immunogenicity of Hib vaccine in Gambian twins. Vaccine, 2006; 24: 5335-5340
Google Scholar - 54. Lewis L.A., Ram S., Prasad A., Gulati S., Getzlaff S., Blom A.M., Vogel U., Rice P.A.: Defining targets for complement components C4b and C3b on the pathogenic neisseriae. Infect. Immun., 2008; 76: 339-350
Google Scholar - 55. Lipińska A., Bieńkowska-Szewczyk K.: Nowe szczepionki przeciw herpeswirusom i wektory herpeswirusowe w terapii czlowieka. Post. Mikrobiol., 2010; 49: 199-207
Google Scholar - 56. Mahmoud A.: New vaccines: challenges of discovery. Microb. Biotechnol., 2016; 9: 549-552
Google Scholar - 57. Manolio T.A., Brooks L.D., Collins F.S.: A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest., 2008; 118: 1590-1605
Google Scholar - 58. Mata-Haro V., Cekic C., Martin M., Chilton P.M., Casella C.R., Mitchell T.C.: The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science, 2007; 316: 1628-1632
Google Scholar - 59. McKinney B.A., Reif D.M., Rock M.T., Edwards K.M., Kingsmore S.F., Moore J.H., Crowe J.E. Jr.: Cytokine expression patterns associated with systemic adverse events following smallpox immunization. J. Infect. Dis., 2006; 194: 444-453
Google Scholar - 60. Mitchell L.A., Zhang T., Tingle A.J.: Differential antibody responses to rubella virus infection in males and females. J. Infect. Dis., 1992; 166: 1258-1265
Google Scholar - 61. Mora M., Telford J.L.: Genome-based approaches to vaccine development. J. Mol. Med., 2010; 88: 143-147
Google Scholar - 62. Murata Y.: Respiratory syncytial virus vaccine development. Clin. Lab. Med., 2009; 29: 725-739
Google Scholar - 63. Nakaya H.I., Wrammert J., Lee E.K., Racioppi L., Marie-Kunze S., Haining W.N., Means A.R., Kasturi S.P., Khan N., Li G.M., McCausland M., Kanchan V., Kokko K.E., Li S., Elbein R. i wsp.: Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol., 2011; 12: 786-795
Google Scholar - 64. Newport M.J., Goetghebuer T., Weiss H.A., Whittle H., Siegrist C.A., Marchant A., MRC Gambia Twin Study Group: Genetic regulation of immune responses to vaccines in early life. Genes Immun., 2004; 5: 122-129
Google Scholar - 65. Orzechowska B., Antoszków Z., Błach-Olszewska Z.: Individual differentiation of innate antiviral immunity in humans; the role of endogenous interferons and tumor necrosis factor in the immunity of leukocytes. Arch. Immunol. Ther. Exp., 2003; 51: 51-60
Google Scholar - 66. Ota M.O., Ndhlovu Z., Oh S., Piyasirisilp S., Berzofsky J.A., Moss W.J., Griffin D.E.: Hemagglutinin protein is a primary target of the measles virus-specific HLA-A2-restricted CD8+ T cell response during measles and after vaccination. J. Infect. Dis., 2007; 195: 1799-1807
Google Scholar - 67. Ovsyannikova I.G., Haralambieva I.H., Kennedy R.B., Pankratz V.S., Vierkant R.A., Jacobson R.M., Poland G.A.: Impact of cytokine and cytokine receptor gene polymorphisms on cellular immunity after smallpox vaccination. Gene, 2012; 510: 59-65
Google Scholar - 68. Ovsyannikova I.G., Haralambieva I.H., Vierkant R.A., O’Byrne M.M., Jacobson R.M., Poland G.A.: The association of CD46, SLAM and CD209 cellular receptor gene SNPs with variations in measles vaccine-induced immune responses: a replication study and examination of novel polymorphisms. Hum. Hered., 2011; 72: 206-223
Google Scholar - 69. Ovsyannikova I.G., Haralambieva I.H., Vierkant R.A., Pankratz V.S., Jacobson R.M., Poland G.A.: The role of polymorphisms in Toll-like receptors and their associated intracellular signaling genes in measles vaccine immunity. Hum. Genet., 2011; 130: 547-561
Google Scholar - 70. Ovsyannikova I.G., Jacobson R.M., Dhiman N., Vierkant R.A., Pankratz V.S., Poland G.A.: HLA homozygosity does not adversely affect measles vaccine-induced cytokine responses. Virology, 2007; 364: 87-94
Google Scholar - 71. Ovsyannikova I.G., Jacobson R.M., Dhiman N., Vierkant R.A., Pankratz V.S., Poland G.A.: Human leukocyte antigen and cytokine receptor gene polymorphisms associated with heterogeneous immune responses to mumps viral vaccine. Pediatrics, 2008; 121: 1091-1099
Google Scholar - 72. Ovsyannikova I.G., Jacobson R.M., Vierkant R.A., Pankratz V.S., Poland G.A.: HLA supertypes and immune responses to measles-mumps-rubella viral vaccine: findings and implications for vaccine design. Vaccine, 2007; 25: 3090-3100
Google Scholar - 73. Ovsyannikova I.G., Johnson K.L., Bergen H.R. 3rd, Poland G.A.: Mass spectrometry and peptide-based vaccine development. Clin. Pharmacol. Ther., 2007; 82: 644-652
Google Scholar - 74. Ovsyannikova I.G., Johnson K.L., Muddiman D.C., Vierkant R.A., Poland G.A.: Identification and characterization of novel, naturally processed measles virus class II HLA-DRB1 peptides. J. Virol., 2004; 78: 42-51
Google Scholar - 75. Ovsyannikova I.G., Pankratz V.S., Vierkant R.A., Jacobson R.M., Poland G.A.: Human leukocyte antigen haplotypes in the genetic control of immune response to measles-mumps-rubella vaccine. J. Infect. Dis., 2006; 193: 655-663
Google Scholar - 76. Ovsyannikova I.G., Pankratz V.S., Vierkant R.A., Jacobson R.M., Poland G.A.: Consistency of HLA associations between two independent measles vaccine cohorts: a replication study. Vaccine, 2012; 30: 2146-2152
Google Scholar - 77. Panatto D., Amicizia D., Lai P.L., Gasparini R.: Neisseria meningitidis B vaccines. Expert Rev. Vaccines, 2011; 10: 1337-1351
Google Scholar - 78. Pankratz V., Poland G., Ovsyannikova I.G., Ryan J., Ryan M., Dhiman N., Kennedy R., Vierkant R.A., Jacobson R.M.: SNPs in cytokine and cytokine receptor genes are associated with the immunological heterogeneity to smallpox vaccination – preliminary results; 48th Annual ICAAC/IDSA 46th Annual Meeting; Washington, DC, USA. 25-28 Oct. 2008 (Abstract G401)
Google Scholar - 79. Perera L.P., Waldmann T.A., Mosca J.D., Baldwin N., Berzofsky J.A., Oh S.K.: Development of smallpox vaccine candidates with integrated interleukin-15 that demonstrate superior immunogenicity, efficacy, and safety in mice. J. Virol., 2007; 81: 8774-8783
Google Scholar - 80. Pierce B.G., Keck Z.Y., Foung S.K.: Viral evasion and challenges of hepatitis C virus vaccine development. Curr. Opin. Virol., 2016; 20: 55-63
Google Scholar - 81. Poland G.A.: Hepatitis B immunization in health care workers. Dealing with vaccine nonresponse. Am. J. Prev. Med., 1998; 15: 73-77
Google Scholar - 82. Poland G.A., Kennedy R.B., Ovsyannikova I.G.: Vaccinomics and personalized vaccinology: is science leading us toward a new path of directed vaccine development and discovery? PLoS Pathog., 2011; 7: e1002344
Google Scholar - 83. Poland G.A., Ovsyannikova I.G., Jacobson R.M.: Vaccine immunogenetics: bedside to bench to population. Vaccine, 2008; 26: 6183- 6188
Google Scholar - 84. Poland G.A., Ovsyannikova I.G., Jacobson R.M.: Personalized vaccines: the emerging field of vaccinomics. Expert Opin. Biol. Ther., 2008; 8: 1659-1667
Google Scholar - 85. Poland G.A., Ovsyannikova I.G., Jacobson R.M.: Adversomics: the emerging field of vaccine adverse event immunogenetics. Pediatr. Infect. Dis. J., 2009; 28: 431-432
Google Scholar - 86. Poland G.A., Ovsyannikova I.G., Jacobson R.M.: Application of pharmacogenomics to vaccines. Pharmacogenomics, 2009; 10: 837- 852
Google Scholar - 87. Poland G.A., Ovsyannikova I.G., Jacobson R.M., Smith D.I.: Heterogeneity in vaccine immune response: the role of immunogenetics and the emerging field of vaccinomics. Clin. Pharmacol. Ther., 2007; 82: 653-664
Google Scholar - 88. Poland G.A., Ovsyannikova I.G., Jacobson R.M., Vierkant R.A., Jacobsen S.J., Pankratz V.S., Schaid D.J.: Identification of an association between HLA class II alleles and low antibody levels after measles immunization. Vaccine, 2001; 20: 430-438
Google Scholar - 89. Poland G.A., Ovsyannikova I.G., Kennedy R.B., Haralambieva I.H., Jacobson R.M.: Vaccinomics and a new paradigm for the development of preventive vaccines against viral infections. OMICS, 2011; 15: 625-636
Google Scholar - 90. Poland G.A., Whitaker J.A., Poland C.M., Ovsyannikova I.G., Kennedy R.B.: Vaccinology in the third milenium: scientific and social challenges. Curr. Opin. Virol., 2016; 17: 116-125
Google Scholar - 91. Prabdial-Sing N., Puren A.J, Bowyer S.M.: Sequence-based in silico analysis of well studied hepatitis C virus epitopes and their variants in other genotypes (particularly genotype 5a) against South African human leukocyte antigen backgrounds. BMC Immunol., 2012; 13: 67
Google Scholar - 92. Querec T.D., Akondy R.S., Lee E.K., Cao W., Nakaya H.I., Teuwen D., Pirani A., Gernert K., Deng J., Marzolf B., Kennedy K., Wu H., Bennouna S., Oluoch H., Miller J. i wsp.: Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol., 2009; 10: 116-125
Google Scholar - 93. Rappuoli R.: Bridging the knowledge gaps in vaccine design. Nat. Biotechnol., 2007; 25: 1361-1366
Google Scholar - 94. Reed Z.H., Friede M., Kieny M.P.: Malaria vaccine development: progress and challenges. Curr. Mol. Med., 2006; 6: 231-245
Google Scholar - 95. Reif D.M., McKinney B.A., Motsinger A.A., Chanock S.J., Edwards K.M., Rock M.T., Moore J.H., Crowe J.E.: Genetic basis for adverse events after smallpox vaccination. J. Infect. Dis., 2008; 198: 16-22
Google Scholar - 96. Rinaudo C.D., Telford J.L., Rappuoli R., Seib K.L.: Vaccinology in the genome era. J. Clin. Invest., 2009; 119: 2515-2525
Google Scholar - 97. Rock M.T., Yoder S.M., Talbot T.R., Edwards K.M., Crowe J.E. Jr.: Adverse events after smallpox immunizations are associated with alterations in systemic cytokine levels. J. Infect. Dis., 2004; 189: 1401-1410
Google Scholar - 98. Roozendaal R., Carroll M.C.: Complement receptors CD21 and CD35 in humoral immunity. Immunol. Rev., 2007; 219: 157-166
Google Scholar - 99. Sachidanandam R., Weissman D., Schmidt S.C., Kakol J.M., Stein L.D., Marth G., Sherry S., Mullikin J.C., Mortimore B.J., Willey D.L., Hunt S.E., Cole C.G., Coggill P.C.; Rice C.M., Ning Z. i wsp.: A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 2001; 409: 928-933
Google Scholar - 100. Santosham M., Rivin B., Wolff M., Reid R., Newcomer W., Letson G.W., Almeido-Hill J., Thompson C., Siber G.R.: Prevention of Haemophilus influenzae type b infections in Apache and Navajo children. J. Infect. Dis., 1992; 165: S144-S151
Google Scholar - 101. Schaid D.J., Haralambieva I.H., Larrabee B.R., Ovsyannikova I.G., Kennedy R.B., Poland G.A.: Heritability of vaccine-induced measles neutralizing antibody titers. Vaccine, 2017; 35: 1390-1394
Google Scholar - 102. Sette A., Rappuoli R.: Reverse vaccinology: developing vaccines in the era of genomics. Immunity, 2010; 33: 530-541
Google Scholar - 103. Shrestha S., Wang C., Aissani B., Wilson C.M., Tang J., Kaslow R.A.: Interleukin-10 gene (IL10) polymorphisms and human papillomavirus clearance among immunosuppressed adolescents. Cancer Epidemiol. Biomarkers Prev., 2007; 16: 1626-1632
Google Scholar - 104. Siber G.R., Santosham M., Reid G.R., Thompson C., Almeido-Hill J., Morell A., deLange G., Ketcham J.K., Callahan E.H.: Impaired antibody response to Haemophilus influenzae type b polysaccharide and low IgG2 and IgG4 concentrations in Apache children. N. Engl. J. Med., 1990; 323: 1387-1392
Google Scholar - 105. Sidney J., Southwood S., Mann D.L., Fernandez-Vina M.A., Newman M.J., Sette A.: Majority of peptides binding HLA-A*0201 with high affinity crossreact with other A2-supertype molecules. Hum. Immunol., 2001; 62: 1200-1216
Google Scholar - 106. St Sauver J.L., Dhiman N., Ovsyannikova I.G., Jacobson R.M., Vierkant R.A., Pankratz V.S., Jacobsen S.J., Poland G.A.: Extinction of the human leukocyte antigen homozygosity effect after two doses of the measles-mumps-rubella vaccine. Hum. Immunol., 2005; 66: 788-798
Google Scholar - 107. Stanley S.L.Jr., Frey S.E., Taillon-Miller P., Guo J., Miller R.D., Koboldt D.C., Elashoff M., Christensen R., Saccone N.L., Belshe R.B.: The immunogenetics of smallpox vaccination. J. Infect. Dis., 2007; 196: 212-219
Google Scholar - 108. Summary of opinion – Mosquirix. Plasmodium falciparum and hepatitis B vaccine (recombinant, adjuvanted) – 23 July 2015; EMA/CHMP/464758/2015. http://www.ema.europa.eu/docs/en_ GB/document_library/Medicine_for_use_outside_EU/2015/10/ WC500194576.pdf (07.06.2017)
Google Scholar - 109. Tan P.L., Jacobson R.M., Poland G.A., Jacobsen S.J., Pankratz V.S.: Twin studies of immunogenicity – determining the genetic contribution to vaccine failure. Vaccine, 2001; 19: 2434-2439
Google Scholar - 110. Tanabe M., Kurita-Taniguchi M., Takeuchi K., Takeda M., Ayata M., Ogura H., Matsumoto M., Seya T.: Mechanism of up-regulation of human Toll-like receptor 3 secondary to infection of measles virus-attenuated strains. Biochem. Biophys. Res. Commun., 2003; 311: 39-48
Google Scholar - 111. Thio C.L., Carrington M., Marti D., O’Brien S.J., Vlahov D., Nelson K.E., Astemborski J., Thomas D.L.: Class II HLA alleles and hepatitis B virus persistence in African Americans. J. Infect. Dis., 1999; 179: 1004-1006
Google Scholar - 112. Thursz M.: Pros and cons of genetic association studies in hepatitis B. Hepatology, 2004; 40: 284-286
Google Scholar - 113. Vestergaard M., Hviid A., Madsen K.M., Wohlfahrt J., Thorsen P., Schendel D., Melbye M., Olsen J.: MMR vaccination and febrile seizures: evaluation of susceptible subgroups and long-term prognosis. JAMA, 2004; 292: 351-357
Google Scholar - 114. Vrethem M., Malmgren K., Lindh J.: A patient with both narcolepsy and multiple sclerosis in association with Pandemrix vaccination. J. Neurol. Sci., 2012; 321: 89-91
Google Scholar - 115. Wang C., Tang J., Song W., Lobashevsky E., Wilson C.M., Kaslow R.A.: HLA and cytokine gene polymorphisms are independently associated with responses to hepatitis B vaccination. Hepatology, 2004; 39: 978-988
Google Scholar - 116. Weigl J.A.: RSV – a substantial slice of the airway disease burden and the way to a vaccine. Paediatr. Int. Child Health, 2012; 32: S9-S15
Google Scholar - 117. Yamada A., Sasada T., Noguchi M., Itoh K.: Next-generation peptide vaccines for advanced cancer. Cancer Sci., 2013; 104: 15-21
Google Scholar - 118. Yucesoy B., Johnson V.J., Fluharty K., Kashon M.L., Slaven J.E., Wilson N.W., Weissman D.N., Biagini R.E., Germolec D.R., Luster M.I.: Influence of cytokine gene variations on immunization to childhood vaccines. Vaccine, 2009; 27: 6991-6997
Google Scholar - 119. Zilliox M.J., Moss W.J., Griffin D.E.: Gene expression changes in peripheral blood mononuclear cells during measles virus infection. Clin. Vaccine Immunol., 2007; 14: 918-923
Google Scholar