Vaccinomics and adversomics as new trends in vaccinology

REVIEW ARTICLE

Vaccinomics and adversomics as new trends in vaccinology

Anna Lutyńska 1 , Aleksandra Gołoś 1 , Ewa Augustynowicz 2 , Beata Orzechowska 3

1. Zakład Biologii Medycznej, Instytut Kardiologii, Warszawa,
2. Zakład Badania Surowic i Szczepionek, Narodowy Instytut Zdrowia Publicznego – Państwowy Zakład Higieny, Warszawa,
3. Laboratorium Wirusologii, Zakład Immunologii Chorób Zakaźnych, Instytut Immunologii i Terapii Doświadczalnej im. Ludwika Hirszfelda PAN we Wrocławiu,

Published: 2017-12-28
DOI: 10.5604/01.3001.0010.7616
GICID: 01.3001.0010.7616
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 1140-1153

 

Abstract

Currently used vaccines have been developed based on experimental pre-clinical and clinical trials. Although the widespread availability of vaccines is one of the greatest achievements in public health, the selection of antigens capable of inducing an effective immune response has not been successful for some pathogens to date. Searching for and detecting a relationship between genes or whole genome sequences and the level of immunization response has opened the second “golden age” of vaccinology and led to the development of two new branches: vaccinomics and adversomics. Vaccinomics is a combination of pharmacogenetics, which defines the correlation between single gene polymorphism and immunization response and pharmacogenomics, which characterizes the correlation between genome sequence polymorphism, immunogenicity induced by the vaccine. Adversomics is aimed at developing a strategy for reducing the risk of adverse events by diagnosing potentially high-risk individuals and using modified vaccines. The assumptions and achievements of vaccinomics, initiated by Georg Poland, have influenced the development of a new vaccine antigen selection strategy. This strategy consists of selecting the optimal antigen after characterizing the genetic and epigenetic determinants of the immune system components of all candidate vaccine antigens. Taking into account the role of variability, not only in the pathogen but also in the host in antigen, selection strategies may significantly improve the efficiency of the newly developed vaccines and vaccines currently in use after their respective modifications.

References

  • 1. Andre F.E., Booy R., Bock H.L., Clemens J., Datta S.K., John T.J., Lee B.W., Lolekha S., Peltola H., Ruff T.A., Santosham M., Schmitt H.J.: Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull. World Health Organ., 2008; 86: 140-146
    Google Scholar
  • 2. Arness M.K., Eckart R.E., Love S.S., Atwood J.E., Wells T.S., Engler R.J., Collins L.C., Ludwig S.L., Riddle J.R., Grabenstein J.D., Tornberg D.N.: Myopericarditis following smallpox vaccination. Am. J. Epidemiol., 2004; 160: 642-651
    Google Scholar
  • 3. Awdeh Z.L., Alper C.A.: Inherited polymorphism of human C4 as revealed by desialyzation. Immunobiology, 1980; 158: 35-41
    Google Scholar
  • 4. Bambini S., Rappuoli R.: The use of genomics in microbial vaccine development. Drug. Discov. Today, 2009; 14: 252-260
    Google Scholar
  • 5. Barbosa T., Barral-Netto M.: Challenges in the research and development of new human vaccines. Braz. J. Med. Biol. Res., 2013; 46: 103-108
    Google Scholar
  • 6. Black F.L., Hierholzer W., Woodall J.P., Pinhiero F.: Intensified reactions to measles vaccine in unexposed populations of american Indians. J. Infect. Dis., 1971; 124: 306-317
    Google Scholar
  • 7. Bui H.H., Peters B., Assarsson E., Mbawuike I., Sette A.: Ab and T cell epitopes of influenza A virus, knowledge and opportunities. Proc. Natl. Acad. Sci. USA, 2007; 104: 246-251
    Google Scholar
  • 8. Burgner D., Jamieson S.E., Blackwell J.M.: Genetic susceptibility to infectious diseases: big is beautiful, but will bigger be even better? Lancet Infect. Dis., 2006; 6: 653-663
    Google Scholar
  • 9. Carroll M.C.: The complement system in regulation of adaptive immunity. Nat. Immunol., 2004; 5: 981-986
    Google Scholar
  • 10. Chang J.: Current progress on development of respiratory syncytial virus vaccine. BMB Rep., 2011; 44: 232-237
    Google Scholar
  • 11. Clifford H.D., Richmond P., Khoo S.K., Zhang G., Yerkovich S.T., Le Souëf P.N., Hayden C.M.: SLAM and DC-SIGN measles receptor polymorphisms and their impact on antibody and cytokine responses to measles vaccine. Vaccine, 2011; 29: 5407-5413
    Google Scholar
  • 12. Collins A., Lonjou C., Morton N.E.: Genetic epidemiology of single-nucleotide polymorphisms. Proc. Natl. Acad. Sci. USA, 1999; 96: 15173-15177
    Google Scholar
  • 13. Collins F.S.: Shattuck lecture-medical and societal consequences of the Human Genome Project. N. Engl. J. Med., 1999; 341: 28-37
    Google Scholar
  • 14. Collins F.S., McKusick V.A.: Implications of the Human Genome Project for medical science. JAMA, 2001; 285: 540-544
    Google Scholar
  • 15. Cooper C.L., Davis H.L., Morris M.L., Efler S.M., Adhami M.A., Krieg A.M., Cameron D.W., Heathcote J.: CPG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults: a double-blind phase I/II study. J. Clin. Immunol., 2004; 24: 693-701
    Google Scholar
  • 16. Crowe J.E. Jr.: Genetic predisposition for adverse events after vaccination. J. Infect. Dis., 2007; 196: 176-177
    Google Scholar
  • 17. Deshpande A., Wheeler C.M., Hunt W.C., Peyton C.L., White P.S., Valdez Y.E., Nolan J.P.: Variation in HLA class I antigen-processing genes and susceptibility to human papillomavirus type 16-associated cervical cancer. J. Infect. Dis., 2008; 197: 371-381
    Google Scholar
  • 18. Desombere I., Willems A., Leroux-Roels G.: Response to hepatitis B vaccine: multiple HLA genes are involved. Tissue Antigens, 1998; 51: 593-604
    Google Scholar
  • 19. Dhiman N., Ovsyannikova I.G., Cunningham J.M., Vierkant R.A., Kennedy R.B., Pankratz V.S., Poland G.A., Jacobson R.M.: Associations between measles vaccine immunity and single-nucleotide polymorphisms in cytokine and cytokine receptor genes. J. Infect. Dis., 2007; 195: 21-29
    Google Scholar
  • 20. Dhiman N., Ovsyannikova I.G., Vierkant R.A., Pankratz V.S., Jacobson R.M., Poland G.A.: Associations between cytokine/cytokine receptor single nucleotide polymorphisms and humoral immunity to measles, mumps and rubella in a Somali population. Tissue Antigens 2008; 72: 211-220
    Google Scholar
  • 21. Dhiman N., Ovsyannikova I.G., Vierkant R.A., Ryan J.E., Pankratz V.S., Jacobson R.M., Poland G.A.: Associations between SNPs in toll-like receptors and related intracellular signaling molecules and immune responses to measles vaccine: preliminary results. Vaccine, 2008; 26: 1731-1736
    Google Scholar
  • 22. Dhiman N., Poland G.A., Cunningham J.M., Jacobson R.M., Ovsyannikova I.G., Vierkant R.A., Wu Y., Pankratz V.S.: Variations in measles vaccine-specific humoral immunity by polymorphisms in SLAM and CD46 measles virus receptors. J. Allergy. Clin. Immunol., 2007; 120: 666-672
    Google Scholar
  • 23. Dobaño C., Campo J.J.: Understanding protective immune mechanisms induced by malaria vaccines in the context of clinical trials. Hum. Vaccin., 2009; 5: 562-565
    Google Scholar
  • 24. Doolan D.L., Southwood S., Chesnut R., Appella E., Gomez E., Richards A., Higashimoto Y.I., Maewal A., Sidney J., Gramzinski R.A., Mason C., Koech D., Hoffman S.L., Sette A.: HLA-DR-promiscuous T cell epitopes from Plasmodium falciparum pre-erythrocytic-stage antigens restricted by multiple HLA class II alleles. J. Immunol., 2000; 165: 1123-1137
    Google Scholar
  • 25. Falugi F., Petracca R., Mariani M., Luzzi E., Mancianti S., Carinci V., Melli M.L., Finco O., Wack A., Di Tomasso A., De Magistris M.T., Costantino P., Del Giudice G., Abrignani S., Rappuoli R. i wsp.: Rationally designed strings of promiscuous CD4+ T cell epitopes provide help to Haemophilus influenzae type b oligosaccharide: a model for new conjugate vaccines. Eur. J. Immunol., 2001; 31: 3816-3824
    Google Scholar
  • 26. Gilbert S.C.: Influenza vaccines and immunopathology. Expert Rev. Vaccines, 2012; 11: 873-875
    Google Scholar
  • 27. Gostout B.S., Poland G.A., Calhoun E.S., Sohni Y.R., Giuntoli R.L., McGovern R.M., Sloan J.A., Cha S.S., Persing D.H.: TAP1, TAP2, and HLA-DR2 alleles are predictors of cervical cancer risk. Gynecol. Oncol., 2003; 88: 326-332
    Google Scholar
  • 28. Gottlieb S.L., Johnston C.: Future prospects for new vaccines against sexually transmitted infection. Curr. Opin. Infect. Dis., 2017; 30: 77-86
    Google Scholar
  • 29. Grygorowicz M.A., Kozłowska E.: Udział receptorów TLR rozpoznających wzorce molekularne organizmów patogennych w modulowaniu aktywności regulatorowych limfocytów T CD4+ CD25+ FoxP3+ . Post. Mikrobiol., 2011; 50: 141-154
    Google Scholar
  • 30. Haber P., DeStefano F., Angulo F.J., Iskander J., Shadomy S.V., Weintraub E., Chen R.T.: Guillain-Barré syndrome following influenza vaccination. JAMA, 2004; 292: 2478-2481
    Google Scholar
  • 31. Halsell J.S., Riddle J.R., Atwood J.E., Gardner P., Shope R., Poland G.A., Gray G.C., Ostroff S., Eckart R.E., Hospenthal D.R., Gibson R.L., Grabenstein J.D., Arness M.K., Tornberg D.N., Department of Defense Smallpox Vaccination Clinical Evaluation Team: Myopericarditis following smallpox vaccination among vaccinia-naive US military personnel. JAMA, 2003; 289: 3283-3289
    Google Scholar
  • 32. Haralambieva I.H., Ovsyannikova I.G., Dhiman N., Kennedy R.B., O’Byrne M., Pankratz V.S., Jacobson R.M., Poland G.A.: Common SNPs/haplotypes in IL18R1 and IL18 genes are associated with variations in humoral immunity to smallpox vaccination in Caucasians and African Americans. J. Infect. Dis., 2011; 204: 433-441
    Google Scholar
  • 33. Haralambieva I.H., Ovsyannikova I.G., Kennedy R.B., Vierkant R.A., Pankratz V.S., Jacobson R.M., Poland G.A.: Associations between single nucleotide polymorphisms and haplotypes in cytokine and cytokine receptor genes and immunity to measles vaccination. Vaccine, 2011; 29: 7883-7895
    Google Scholar
  • 34. He Y., Rappuoli R., De Groot A.S., Chen R.T.: Emerging vaccine informatics. J. Biomed. Biotechnol., 2010; 2010: 218590
    Google Scholar
  • 35. Heer A.K., Shamshiev A., Donda A., Uematsu S., Akira S., Kopf M., Marsland B.J.: TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses. J. Immunol., 2007; 178: 2182-2191
    Google Scholar
  • 36. Hemmer B., Pinilla C., Gran B., Vergelli M., Ling N., Conlon P., McFarland H.F., Houghten R., Martin R.: Contribution of individual amino acids within MHC molecule or antigenic peptide to TCR ligand potency. J. Immunol., 2000; 164: 861-871
    Google Scholar
  • 37. Höhler T., Reuss E., Evers N., Dietrich E., Rittner C., Freitag C.M., Vollmar J., Schneider P.M., Fimmers R.: Differential genetic determination of immune responsiveness to hepatitis B surface antigen and to hepatitis A virus: a vaccination study in twins. Lancet, 2002; 360: 991-995
    Google Scholar
  • 38. Ingram R., Baillie L.: It’s in the genes! Human genetic diversity and the response to anthrax vaccines. Expert. Rev. Vaccines, 2012; 11: 633-635
    Google Scholar
  • 39. Itoh K., Yamada A.: Personalized peptide vaccines: a new therapeutic modality for cancer. Cancer Sci., 2006; 97: 970-976
    Google Scholar
  • 40. Jacobson R.M., Ovsyannikova I.G., Targonski P.V., Poland G.A.: Studies of twins in vaccinology. Vaccine, 2007; 25: 3160-3164
    Google Scholar
  • 41. Johnson K.L., Ovsyannikova I.G., Madden B.J., Poland G.A., Muddiman D.C.: Accurate mass precursor ion data and tandem mass spectrometry identify a class I human leukocyte antigen A*0201- -presented peptide originating from vaccinia virus. J. Am. Soc. Mass Spectrom., 2005; 16: 1812-1817
    Google Scholar
  • 42. Johnson K.L., Ovsyannikova I.G., Mason C.J., Bergen H.R. 3rd, Poland G.A.: Discovery of naturally processed and HLA-presented class I peptides from vaccinia virus infection using mass spectrometry for vaccine development. Vaccine, 2009; 28: 38-47
    Google Scholar
  • 43. Johnson K.L., Ovsyannikova I.G., Poland G.A., Muddiman D.C.: Identification of class II HLA-DRB1*03-bound measles virus peptides by 2D-liquid chromatography tandem mass spectrometry. J. Proteome Res., 2005; 4: 2243-2249
    Google Scholar
  • 44. ohnston M.I., Fauci A.S.: An HIV vaccine – challenges and prospects. N. Engl. J. Med., 2008; 359: 888-890
    Google Scholar
  • 45. Jin P., Wang E.: Polymorphism in clinical immunology – From HLA typing to immunogenetic profiling. J. Transl. Med., 2003; 1: 8
    Google Scholar
  • 46. Khoury M.J., Little J.: Human genome epidemiologic reviews: the beginning of something HuGE. Am. J. Epidemiol., 2000; 151: 2-3
    Google Scholar
  • 47. Kim M.J., Nafziger A.N., Harro C.D., Keyserling H.L., Ramsey K.M., Drusano G.L., Bertino J.S. Jr.: Revaccination of healthy nonresponders with hepatitis B vaccine and prediction of seroprotection response. Vaccine, 2003; 21: 1174-1179
    Google Scholar
  • 48. Kitchener S.: Viscerotropic and neurotropic disease following vaccination with the 17D yellow fever vaccine, ARILVAX. Vaccine, 2004; 22: 2103-2105
    Google Scholar
  • 49. Konradsen H.B., Henrichsen J., Wachmann H., Holm N.: The influence of genetic factors on the immune response as judged by pneumococcal vaccination of mono- and dizygotic Caucasian twins. Clin. Exp. Immunol., 1993; 92: 532-536
    Google Scholar
  • 50. Kopf M., Abel B., Gallimore A., Carroll M., Bachmann M.F.: Complement component C3 promotes T-cell priming and lung migration to control acute influenza virus infection. Nat. Med., 2002; 8: 373-378
    Google Scholar
  • 51. Kruger A., Adams P., Hammer J., Böcher W.O., Schneider P.M., Rittner C., Hoehler T.: Hepatitis B surface antigen presentation and HLA-DRB1*- lessons from twins and peptide binding studies. Clin. Exp. Immunol., 2005; 140: 325-332
    Google Scholar
  • 52. Lee H.G., Lim J.S., Lee K.Y., Choi Y.K., Choe I.S., Chung T.W., Kim K.: Peptide-specific CTL induction in HBV-seropositive PBMC by stimulation with peptides in vitro: novel epitopes identified from chronic carriers. Virus Res., 1997; 50: 185-194
    Google Scholar
  • 53. Lee Y.C., Newport M.J., Goetghebuer T., Siegrist C.A., Weiss H.A., Pollard A.J., Marchant A., MRC Twin Study Group: Influence of genetic and environmental factors on the immunogenicity of Hib vaccine in Gambian twins. Vaccine, 2006; 24: 5335-5340
    Google Scholar
  • 54. Lewis L.A., Ram S., Prasad A., Gulati S., Getzlaff S., Blom A.M., Vogel U., Rice P.A.: Defining targets for complement components C4b and C3b on the pathogenic neisseriae. Infect. Immun., 2008; 76: 339-350
    Google Scholar
  • 55. Lipińska A., Bieńkowska-Szewczyk K.: Nowe szczepionki przeciw herpeswirusom i wektory herpeswirusowe w terapii czlowieka. Post. Mikrobiol., 2010; 49: 199-207
    Google Scholar
  • 56. Mahmoud A.: New vaccines: challenges of discovery. Microb. Biotechnol., 2016; 9: 549-552
    Google Scholar
  • 57. Manolio T.A., Brooks L.D., Collins F.S.: A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest., 2008; 118: 1590-1605
    Google Scholar
  • 58. Mata-Haro V., Cekic C., Martin M., Chilton P.M., Casella C.R., Mitchell T.C.: The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science, 2007; 316: 1628-1632
    Google Scholar
  • 59. McKinney B.A., Reif D.M., Rock M.T., Edwards K.M., Kingsmore S.F., Moore J.H., Crowe J.E. Jr.: Cytokine expression patterns associated with systemic adverse events following smallpox immunization. J. Infect. Dis., 2006; 194: 444-453
    Google Scholar
  • 60. Mitchell L.A., Zhang T., Tingle A.J.: Differential antibody responses to rubella virus infection in males and females. J. Infect. Dis., 1992; 166: 1258-1265
    Google Scholar
  • 61. Mora M., Telford J.L.: Genome-based approaches to vaccine development. J. Mol. Med., 2010; 88: 143-147
    Google Scholar
  • 62. Murata Y.: Respiratory syncytial virus vaccine development. Clin. Lab. Med., 2009; 29: 725-739
    Google Scholar
  • 63. Nakaya H.I., Wrammert J., Lee E.K., Racioppi L., Marie-Kunze S., Haining W.N., Means A.R., Kasturi S.P., Khan N., Li G.M., McCausland M., Kanchan V., Kokko K.E., Li S., Elbein R. i wsp.: Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol., 2011; 12: 786-795
    Google Scholar
  • 64. Newport M.J., Goetghebuer T., Weiss H.A., Whittle H., Siegrist C.A., Marchant A., MRC Gambia Twin Study Group: Genetic regulation of immune responses to vaccines in early life. Genes Immun., 2004; 5: 122-129
    Google Scholar
  • 65. Orzechowska B., Antoszków Z., Błach-Olszewska Z.: Individual differentiation of innate antiviral immunity in humans; the role of endogenous interferons and tumor necrosis factor in the immunity of leukocytes. Arch. Immunol. Ther. Exp., 2003; 51: 51-60
    Google Scholar
  • 66. Ota M.O., Ndhlovu Z., Oh S., Piyasirisilp S., Berzofsky J.A., Moss W.J., Griffin D.E.: Hemagglutinin protein is a primary target of the measles virus-specific HLA-A2-restricted CD8+ T cell response during measles and after vaccination. J. Infect. Dis., 2007; 195: 1799-1807
    Google Scholar
  • 67. Ovsyannikova I.G., Haralambieva I.H., Kennedy R.B., Pankratz V.S., Vierkant R.A., Jacobson R.M., Poland G.A.: Impact of cytokine and cytokine receptor gene polymorphisms on cellular immunity after smallpox vaccination. Gene, 2012; 510: 59-65
    Google Scholar
  • 68. Ovsyannikova I.G., Haralambieva I.H., Vierkant R.A., O’Byrne M.M., Jacobson R.M., Poland G.A.: The association of CD46, SLAM and CD209 cellular receptor gene SNPs with variations in measles vaccine-induced immune responses: a replication study and examination of novel polymorphisms. Hum. Hered., 2011; 72: 206-223
    Google Scholar
  • 69. Ovsyannikova I.G., Haralambieva I.H., Vierkant R.A., Pankratz V.S., Jacobson R.M., Poland G.A.: The role of polymorphisms in Toll-like receptors and their associated intracellular signaling genes in measles vaccine immunity. Hum. Genet., 2011; 130: 547-561
    Google Scholar
  • 70. Ovsyannikova I.G., Jacobson R.M., Dhiman N., Vierkant R.A., Pankratz V.S., Poland G.A.: HLA homozygosity does not adversely affect measles vaccine-induced cytokine responses. Virology, 2007; 364: 87-94
    Google Scholar
  • 71. Ovsyannikova I.G., Jacobson R.M., Dhiman N., Vierkant R.A., Pankratz V.S., Poland G.A.: Human leukocyte antigen and cytokine receptor gene polymorphisms associated with heterogeneous immune responses to mumps viral vaccine. Pediatrics, 2008; 121: 1091-1099
    Google Scholar
  • 72. Ovsyannikova I.G., Jacobson R.M., Vierkant R.A., Pankratz V.S., Poland G.A.: HLA supertypes and immune responses to measles-mumps-rubella viral vaccine: findings and implications for vaccine design. Vaccine, 2007; 25: 3090-3100
    Google Scholar
  • 73. Ovsyannikova I.G., Johnson K.L., Bergen H.R. 3rd, Poland G.A.: Mass spectrometry and peptide-based vaccine development. Clin. Pharmacol. Ther., 2007; 82: 644-652
    Google Scholar
  • 74. Ovsyannikova I.G., Johnson K.L., Muddiman D.C., Vierkant R.A., Poland G.A.: Identification and characterization of novel, naturally processed measles virus class II HLA-DRB1 peptides. J. Virol., 2004; 78: 42-51
    Google Scholar
  • 75. Ovsyannikova I.G., Pankratz V.S., Vierkant R.A., Jacobson R.M., Poland G.A.: Human leukocyte antigen haplotypes in the genetic control of immune response to measles-mumps-rubella vaccine. J. Infect. Dis., 2006; 193: 655-663
    Google Scholar
  • 76. Ovsyannikova I.G., Pankratz V.S., Vierkant R.A., Jacobson R.M., Poland G.A.: Consistency of HLA associations between two independent measles vaccine cohorts: a replication study. Vaccine, 2012; 30: 2146-2152
    Google Scholar
  • 77. Panatto D., Amicizia D., Lai P.L., Gasparini R.: Neisseria meningitidis B vaccines. Expert Rev. Vaccines, 2011; 10: 1337-1351
    Google Scholar
  • 78. Pankratz V., Poland G., Ovsyannikova I.G., Ryan J., Ryan M., Dhiman N., Kennedy R., Vierkant R.A., Jacobson R.M.: SNPs in cytokine and cytokine receptor genes are associated with the immunological heterogeneity to smallpox vaccination – preliminary results; 48th Annual ICAAC/IDSA 46th Annual Meeting; Washington, DC, USA. 25-28 Oct. 2008 (Abstract G401)
    Google Scholar
  • 79. Perera L.P., Waldmann T.A., Mosca J.D., Baldwin N., Berzofsky J.A., Oh S.K.: Development of smallpox vaccine candidates with integrated interleukin-15 that demonstrate superior immunogenicity, efficacy, and safety in mice. J. Virol., 2007; 81: 8774-8783
    Google Scholar
  • 80. Pierce B.G., Keck Z.Y., Foung S.K.: Viral evasion and challenges of hepatitis C virus vaccine development. Curr. Opin. Virol., 2016; 20: 55-63
    Google Scholar
  • 81. Poland G.A.: Hepatitis B immunization in health care workers. Dealing with vaccine nonresponse. Am. J. Prev. Med., 1998; 15: 73-77
    Google Scholar
  • 82. Poland G.A., Kennedy R.B., Ovsyannikova I.G.: Vaccinomics and personalized vaccinology: is science leading us toward a new path of directed vaccine development and discovery? PLoS Pathog., 2011; 7: e1002344
    Google Scholar
  • 83. Poland G.A., Ovsyannikova I.G., Jacobson R.M.: Vaccine immunogenetics: bedside to bench to population. Vaccine, 2008; 26: 6183- 6188
    Google Scholar
  • 84. Poland G.A., Ovsyannikova I.G., Jacobson R.M.: Personalized vaccines: the emerging field of vaccinomics. Expert Opin. Biol. Ther., 2008; 8: 1659-1667
    Google Scholar
  • 85. Poland G.A., Ovsyannikova I.G., Jacobson R.M.: Adversomics: the emerging field of vaccine adverse event immunogenetics. Pediatr. Infect. Dis. J., 2009; 28: 431-432
    Google Scholar
  • 86. Poland G.A., Ovsyannikova I.G., Jacobson R.M.: Application of pharmacogenomics to vaccines. Pharmacogenomics, 2009; 10: 837- 852
    Google Scholar
  • 87. Poland G.A., Ovsyannikova I.G., Jacobson R.M., Smith D.I.: Heterogeneity in vaccine immune response: the role of immunogenetics and the emerging field of vaccinomics. Clin. Pharmacol. Ther., 2007; 82: 653-664
    Google Scholar
  • 88. Poland G.A., Ovsyannikova I.G., Jacobson R.M., Vierkant R.A., Jacobsen S.J., Pankratz V.S., Schaid D.J.: Identification of an association between HLA class II alleles and low antibody levels after measles immunization. Vaccine, 2001; 20: 430-438
    Google Scholar
  • 89. Poland G.A., Ovsyannikova I.G., Kennedy R.B., Haralambieva I.H., Jacobson R.M.: Vaccinomics and a new paradigm for the development of preventive vaccines against viral infections. OMICS, 2011; 15: 625-636
    Google Scholar
  • 90. Poland G.A., Whitaker J.A., Poland C.M., Ovsyannikova I.G., Kennedy R.B.: Vaccinology in the third milenium: scientific and social challenges. Curr. Opin. Virol., 2016; 17: 116-125
    Google Scholar
  • 91. Prabdial-Sing N., Puren A.J, Bowyer S.M.: Sequence-based in silico analysis of well studied hepatitis C virus epitopes and their variants in other genotypes (particularly genotype 5a) against South African human leukocyte antigen backgrounds. BMC Immunol., 2012; 13: 67
    Google Scholar
  • 92. Querec T.D., Akondy R.S., Lee E.K., Cao W., Nakaya H.I., Teuwen D., Pirani A., Gernert K., Deng J., Marzolf B., Kennedy K., Wu H., Bennouna S., Oluoch H., Miller J. i wsp.: Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol., 2009; 10: 116-125
    Google Scholar
  • 93. Rappuoli R.: Bridging the knowledge gaps in vaccine design. Nat. Biotechnol., 2007; 25: 1361-1366
    Google Scholar
  • 94. Reed Z.H., Friede M., Kieny M.P.: Malaria vaccine development: progress and challenges. Curr. Mol. Med., 2006; 6: 231-245
    Google Scholar
  • 95. Reif D.M., McKinney B.A., Motsinger A.A., Chanock S.J., Edwards K.M., Rock M.T., Moore J.H., Crowe J.E.: Genetic basis for adverse events after smallpox vaccination. J. Infect. Dis., 2008; 198: 16-22
    Google Scholar
  • 96. Rinaudo C.D., Telford J.L., Rappuoli R., Seib K.L.: Vaccinology in the genome era. J. Clin. Invest., 2009; 119: 2515-2525
    Google Scholar
  • 97. Rock M.T., Yoder S.M., Talbot T.R., Edwards K.M., Crowe J.E. Jr.: Adverse events after smallpox immunizations are associated with alterations in systemic cytokine levels. J. Infect. Dis., 2004; 189: 1401-1410
    Google Scholar
  • 98. Roozendaal R., Carroll M.C.: Complement receptors CD21 and CD35 in humoral immunity. Immunol. Rev., 2007; 219: 157-166
    Google Scholar
  • 99. Sachidanandam R., Weissman D., Schmidt S.C., Kakol J.M., Stein L.D., Marth G., Sherry S., Mullikin J.C., Mortimore B.J., Willey D.L., Hunt S.E., Cole C.G., Coggill P.C.; Rice C.M., Ning Z. i wsp.: A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 2001; 409: 928-933
    Google Scholar
  • 100. Santosham M., Rivin B., Wolff M., Reid R., Newcomer W., Letson G.W., Almeido-Hill J., Thompson C., Siber G.R.: Prevention of Haemophilus influenzae type b infections in Apache and Navajo children. J. Infect. Dis., 1992; 165: S144-S151
    Google Scholar
  • 101. Schaid D.J., Haralambieva I.H., Larrabee B.R., Ovsyannikova I.G., Kennedy R.B., Poland G.A.: Heritability of vaccine-induced measles neutralizing antibody titers. Vaccine, 2017; 35: 1390-1394
    Google Scholar
  • 102. Sette A., Rappuoli R.: Reverse vaccinology: developing vaccines in the era of genomics. Immunity, 2010; 33: 530-541
    Google Scholar
  • 103. Shrestha S., Wang C., Aissani B., Wilson C.M., Tang J., Kaslow R.A.: Interleukin-10 gene (IL10) polymorphisms and human papillomavirus clearance among immunosuppressed adolescents. Cancer Epidemiol. Biomarkers Prev., 2007; 16: 1626-1632
    Google Scholar
  • 104. Siber G.R., Santosham M., Reid G.R., Thompson C., Almeido-Hill J., Morell A., deLange G., Ketcham J.K., Callahan E.H.: Impaired antibody response to Haemophilus influenzae type b polysaccharide and low IgG2 and IgG4 concentrations in Apache children. N. Engl. J. Med., 1990; 323: 1387-1392
    Google Scholar
  • 105. Sidney J., Southwood S., Mann D.L., Fernandez-Vina M.A., Newman M.J., Sette A.: Majority of peptides binding HLA-A*0201 with high affinity crossreact with other A2-supertype molecules. Hum. Immunol., 2001; 62: 1200-1216
    Google Scholar
  • 106. St Sauver J.L., Dhiman N., Ovsyannikova I.G., Jacobson R.M., Vierkant R.A., Pankratz V.S., Jacobsen S.J., Poland G.A.: Extinction of the human leukocyte antigen homozygosity effect after two doses of the measles-mumps-rubella vaccine. Hum. Immunol., 2005; 66: 788-798
    Google Scholar
  • 107. Stanley S.L.Jr., Frey S.E., Taillon-Miller P., Guo J., Miller R.D., Koboldt D.C., Elashoff M., Christensen R., Saccone N.L., Belshe R.B.: The immunogenetics of smallpox vaccination. J. Infect. Dis., 2007; 196: 212-219
    Google Scholar
  • 108. Summary of opinion – Mosquirix. Plasmodium falciparum and hepatitis B vaccine (recombinant, adjuvanted) – 23 July 2015; EMA/CHMP/464758/2015. http://www.ema.europa.eu/docs/en_ GB/document_library/Medicine_for_use_outside_EU/2015/10/ WC500194576.pdf (07.06.2017)
    Google Scholar
  • 109. Tan P.L., Jacobson R.M., Poland G.A., Jacobsen S.J., Pankratz V.S.: Twin studies of immunogenicity – determining the genetic contribution to vaccine failure. Vaccine, 2001; 19: 2434-2439
    Google Scholar
  • 110. Tanabe M., Kurita-Taniguchi M., Takeuchi K., Takeda M., Ayata M., Ogura H., Matsumoto M., Seya T.: Mechanism of up-regulation of human Toll-like receptor 3 secondary to infection of measles virus-attenuated strains. Biochem. Biophys. Res. Commun., 2003; 311: 39-48
    Google Scholar
  • 111. Thio C.L., Carrington M., Marti D., O’Brien S.J., Vlahov D., Nelson K.E., Astemborski J., Thomas D.L.: Class II HLA alleles and hepatitis B virus persistence in African Americans. J. Infect. Dis., 1999; 179: 1004-1006
    Google Scholar
  • 112. Thursz M.: Pros and cons of genetic association studies in hepatitis B. Hepatology, 2004; 40: 284-286
    Google Scholar
  • 113. Vestergaard M., Hviid A., Madsen K.M., Wohlfahrt J., Thorsen P., Schendel D., Melbye M., Olsen J.: MMR vaccination and febrile seizures: evaluation of susceptible subgroups and long-term prognosis. JAMA, 2004; 292: 351-357
    Google Scholar
  • 114. Vrethem M., Malmgren K., Lindh J.: A patient with both narcolepsy and multiple sclerosis in association with Pandemrix vaccination. J. Neurol. Sci., 2012; 321: 89-91
    Google Scholar
  • 115. Wang C., Tang J., Song W., Lobashevsky E., Wilson C.M., Kaslow R.A.: HLA and cytokine gene polymorphisms are independently associated with responses to hepatitis B vaccination. Hepatology, 2004; 39: 978-988
    Google Scholar
  • 116. Weigl J.A.: RSV – a substantial slice of the airway disease burden and the way to a vaccine. Paediatr. Int. Child Health, 2012; 32: S9-S15
    Google Scholar
  • 117. Yamada A., Sasada T., Noguchi M., Itoh K.: Next-generation peptide vaccines for advanced cancer. Cancer Sci., 2013; 104: 15-21
    Google Scholar
  • 118. Yucesoy B., Johnson V.J., Fluharty K., Kashon M.L., Slaven J.E., Wilson N.W., Weissman D.N., Biagini R.E., Germolec D.R., Luster M.I.: Influence of cytokine gene variations on immunization to childhood vaccines. Vaccine, 2009; 27: 6991-6997
    Google Scholar
  • 119. Zilliox M.J., Moss W.J., Griffin D.E.: Gene expression changes in peripheral blood mononuclear cells during measles virus infection. Clin. Vaccine Immunol., 2007; 14: 918-923
    Google Scholar

Full text

Skip to content