Lung cancer stem cells – the role in pathogenesis and progressive growth of cancer

REVIEW ARTICLE

Lung cancer stem cells – the role in pathogenesis and progressive growth of cancer

Agata Raniszewska 1 , Joanna Domagała-Kulawik 2

1. Katedra i Zakład Patomorfologii, Warszawski Uniwersytet Medyczny,
2. Katedra i Klinika Chorób Wewnętrznych, Pneumonologii i Alergologii, Warszawski Uniwersytet Medyczny,

Published: 2017-12-31
DOI: 10.5604/01.3001.0010.7750
GICID: 01.3001.0010.7750
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 1251-1263

 

Abstract

Lung cancer is the main cause of cancer death worldwide. Rapid accurate diagnosis, recognition of risk factors and improvement of treatment efficacy represent the main challenges. An advanced stage of the disease at the time of diagnosis, observed in the majority of cases, makes the introduction of radical treatment impossible or ineffective. Immunotherapy was a breakthrough in achieving long-term survival in recent years. The reason for developing this type of treatment is to know the interaction between the host cells and tumor cells. Cancer stem cells theory is increasingly gaining greater significance in the world. The biological heterogeneity of lung cancer may be due to the presence of a small percentage of cancer stem cells (CSCs). CSCs are the results of genetic and epigenetic changes in normal stem cells, progenitor cells or differentiated cells. CSCs are functionally defined by their unlimited self-renewal capacity, multiple differentiation and their ability to imitate tumors. It is believed that CSCs determine unrestricted growth of tumors and their different morphology. Their ability to self-renew can be the cause of relapses even after long periods of remission. CSCs reside in niches, where they receive signals for differentiation and proliferation process. The identification of CSCs is based on the presence of specific molecules (CD133, CD44, CD90, ALDH, EpCAM). An important feature of CSCs is their resistance to conventional cancer treatment: radio therapy and chemotherapy. Presumably, CSCs are responsible for the synthesis of immunosuppressive particles, and recruiting other molecules, which have immunosuppressive properties. The paper presents the current state of knowledge on CSCs in lung cancer detailing adenocarcinoma.

References

  • 1. Adams D.L., Martin S.S., Alpaugh R.K., Charpentier M., Tsai S., Bergan R.C., Ogden I.M., Catalona W., Chumsri S., Tang C., Cristofanilli M.: Circulating giant macrophages as a potential marker of solid tumors. Proc. Natl. Acad. Sci. USA, 2014; 111: 3514-3519
    Google Scholar
  • 2. Aguirre-Ghiso J.A.: Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer, 2007; 7: 834-846
    Google Scholar
  • 3. Alison M.R., Islam S., Wright N.A.: Stem cells in cancer: instigators and propagators? J. Cell Sci., 2010; 123: 2357-2368
    Google Scholar
  • 4. Alison M.R., Lim S.M., Nicholson L.J.: Cancer stem cells: problems for therapy? J. Pathol., 2011; 223: 147-161
    Google Scholar
  • 5. Baecher-Allan C., Viglietta V., Hafler D.A.: Human CD4+,CD25+ regulatory T cells. Semin. Immunol., 2004; 16: 89-98
    Google Scholar
  • 6. Bao S., Wu Q., Li Z., Sathornsumetee S., Wang H., McLendon R.E., Hjelmeland A.B., Rich J.N.: Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res., 2008; 68: 6043-6048
    Google Scholar
  • 7. Basak S.K., Veena M.S., Oh S., Huang G., Srivatsan E., Huang M., Sharma S., Batra R.K.: The malignant pleural effusion as a model to investigate intratumoral heterogenity in lung cancer. PLoS One, 2009; 4: e5884
    Google Scholar
  • 8. Borovski T., De Sousa E., Melo F., Vermeulen L., Medema J.P.: Cancer stem cell niche: the place to be. Cancer Res., 2011; 71: 634-639
    Google Scholar
  • 9. Borthwick D.W., Shahbazian M., Krantz Q.T., Dorin J.R., Randell S.H.: Evidence for stem-cell niches in the tracheal epithelium. Am. J. Respir. Cell. Mol. Biol., 2001; 24: 662-670
    Google Scholar
  • 10. Bourguignon L.Y., Peyrollier K., Xia W., Gilad E.: Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J. Biol. Chem., 2008; 283: 17635-17651
    Google Scholar
  • 11. Brahmer J.R., Tykodi S.S., Chow L.Q., Hwu W.J, Topalian S.L, Hwu P., Drake C.G., Camacho L.H, Kauh J., Odunsi K., Pitot H.C., Hamid O., Bhatia S., Martins R., Eaton K. i wsp.: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med., 2012; 366: 2455-2465
    Google Scholar
  • 12. Brower M., Carney D.N., Oie H.K, Gazdar A.F., Minna J.D.: Growth of cell lines and clinical specimens of human non-small cell lung cancer in a serum-free defined medium. Cancer Res., 1986; 46: 798-806
    Google Scholar
  • 13. Cabarcas S.M., Mathews L.A., Farrar W.L.: The cancer stem cell niche – there goes the neighborhood? Int. J. Cancer, 2011; 129: 2315- 2327
    Google Scholar
  • 14. Chapman H.A.: Epithelial-mesenchymal interactions in pulmonary fibrosis. Annu. Rev. Physiol. 2011; 73: 413-435
    Google Scholar
  • 15. Chiou S.H., Wang M.L., Chou Y.T., Chen C.J., Hong C.F., Hsieh W.J., Chang H.T., Chen Y.S., Lin T.W., Hsu H.S., Wu C.W.: Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res., 2010; 70: 10433-10444
    Google Scholar
  • 16. Clarke M.F., Dick J.E., Dirks P.B., Eaves C.J., Jamieson C.H., Jones D.L., Visvader J., Weissman I.L., Wahl G.M.: Cancer stem cells – Perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res., 2006; 66: 9339-9344
    Google Scholar
  • 17. Clarke M.F., Fuller M.: Stem cells and cancer: two faces of eve. Cell, 2006; 124: 1111-1115
    Google Scholar
  • 18. Domagała-Kulawik J., Osińska I.: Immune alterations in lung cancer – the new therapeutic approach. Pneumonol. Alergol. Pol., 2014; 82: 286-299
    Google Scholar
  • 19. Domagała-Kulawik J., Osińska I., Hoser G.: Mechanisms of immune response regulation in lung cancer. Transl. Lung Cancer Res., 2014; 3: 15-22
    Google Scholar
  • 20. Dong H., Strome S.E., Salomao D.R., Tamura H., Hirano F., Flies D.B., Roche P.C., Lu J., Zhu G., Tamada K., Lennon V.A., Celis E., Chen L.: Tumor assiociated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med., 2002; 8: 793-800
    Google Scholar
  • 21. Eramo A., Lotti F., Sette G., Pilozzi E., Biffoni M., Di Virgilio A., Conticello C., Ruco L., Peschle C., De Maria R.: Identification and expansion of the tumorigenic lung cancer stem cell population. Cell. Death. Differ., 2008; 15: 504-514
    Google Scholar
  • 22. Eramo A., Ricci-Vitiani L., Zeuner A., Pallini R., Lotti F., Sette G., Pilozzi E., Larocca L.M., Peschle C., De Maria R.: Chemotherapy resistance of glioblastoma stem cells. Cell. Death. Differ., 2006; 13: 1238-1241
    Google Scholar
  • 23. Evangelista M., Tian H., de Sauvage F.J.: The hedgehog signaling pathway in cancer. Clin. Cancer. Res., 2006; 12: 5924-5928
    Google Scholar
  • 24. Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D.M., Forman D., Bray F.: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015; 136: E359-E386
    Google Scholar
  • 25. Francipane M.G., Alea M.P., Lombardo Y., Todaro M., Medema J.P., Stassi G.: Crucial role of interleukin-4 in the survival of colon cancer stem cells. Cancer Res., 2008; 68: 4022-4025
    Google Scholar
  • 26. Giangreco A., Reynolds S.D., Stripp B.R.: Terminal brionchioles harbor a unique airway stem cell population that localizes to the bronchoalveoral duct junction. Am. J. Pathol., 2002; 161: 173-182
    Google Scholar
  • 27. Giles R.H., van Es J.H., Clevers H.: Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta, 2003; 1653: 1-24
    Google Scholar
  • 28. Gorczynski R.M., Chen Z., Hu J., Kai Y., Lei J.: Evidence of a role for CD200 in regulation of immune rejection of leukaemic tumour cells in C57BL/6 mice. Clin. Exp. Immunol., 2001; 126: 220-229
    Google Scholar
  • 29. Gorczynski R.M., Chen Z., Kai Y., Wong S., Lee L.: Induction of tolerance-inducing antigen-presenting cells in bone marrow cultures in vitro using monoclonal antibodies to CD200R. Transplantation, 2004; 77: 1138-1144
    Google Scholar
  • 30. Hanahan D., Coussens L.M.: Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell, 2012; 21: 309-322
    Google Scholar
  • 31. Hardavella G., George R., Sethi T.: Lung cancer stem cells – characterisctics, phenotype. Transl. Lung Cancer Res., 2016; 5: 272-279
    Google Scholar
  • 32. Hikita S.T., Kosik K.S., Clegg D.O., Bamdad C.: MUC1* mediates the growth of human pluripotent stem cells. PLoS One, 2008; 3: e3312
    Google Scholar
  • 33. Hill R.P., Marie-Egyptienne D.T., Hedley D.W.: Cancer stem cells, hypoxia and metastasis. Semin. Radiat. Oncol., 2009; 19: 106-111
    Google Scholar
  • 34. Ho S.B., Niehans G.A., Lyftogt C., Yan P.S., Cherwitz D.L., Gum E.T., Dahiya R., Kim Y.S: Heterogeniety of mucin gene expression in normal and neoplastic tissues. Cancer Res., 1993; 53: 641-651
    Google Scholar
  • 35. Hugo H., Ackland M.L., Blick T., Lawrence M.G., Clements J.A., Williams E.D., Thompson E.W.: Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J. Cell. Physiol., 2007; 213: 374-383
    Google Scholar
  • 36. Hung J.J., Yang M.H., Hsu H.S., Hsu W.H., Liu J.S., Wu K.J.: Prognostic significance of hypoxia-inducible factor-1α, TWIST1 and SNAIL expression in resectable non-small cell lung cancer. Thorax, 2009; 64: 1082-1089
    Google Scholar
  • 37. Jiang F., Qiu Q., Khanna A., Todd N.W., Deepak J., Xing L., Wang H., Liu Z., Su Y., Stass S.A., Katz R.L.: Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol. Cancer Res., 2009; 7: 330-338
    Google Scholar
  • 38. Kabashima A., Higuchi H., Takaishi H., Matsuzaki Y., Suzuki S., Izumiya M., Iizuka H., Sakai G., Hozawa S., Azuma T., Hibi T.: Side population of pancreatic cancer cells predominates in TGF-β-mediated epithelial to mesenchymal transition and invasion. Int. J. Cancer, 2009; 124: 2771-2779
    Google Scholar
  • 39. Karachaliou N., Rosell R., Viteri S.: The role of SOX2 in small cell lung cancer, lung adenocarcinoma and squamous cell carcinoma of the lung. Transl. Lung Cancer, 2013; 2: 172-179
    Google Scholar
  • 40. Kawasaki B.T., Farrar W.L.: Cancer stem cells, CD200 and immunoevasion. Trends Immunol. 2008; 29: 464-468
    Google Scholar
  • 41. Kawasaki B.T., Mistree T., Hurt E.M., Kalathur M., Farrar W.L.: Co-expression of the toleragenic glycoprotein, CD200, with markers for cancer stem cells. Biochem. Biophys. Res. Commun., 2007; 364: 778-782
    Google Scholar
  • 42. Kim Y., Kim H.S., Cui Z.Y., Lee H.S., Ahn J.S., Park C.K., Park K., Ahn M.J.: Clinicopathological implications of EpCAM expression in adenocarcinoma of the lung. Anticancer. Res., 2009; 29: 1817-1822
    Google Scholar
  • 43. Korkaya H., Liu S., Wicha M.S.: Regulation of cancer stem cells by cytokine networks: Attacking cancer’s inflammatory roots. Clin. Cancer Res., 2011; 17: 6125-6129
    Google Scholar
  • 44. Krebs M.G., Sloane R., Priest L., Lancashire L., Hou J.M., Greystoke A., Ward T.H., Ferraldeschi R., Hughes A., Clack G., Ranson M., Dive C., Blackhall F.H.: Evaluation and prognostic significance of circulating tumor cells in patients with non-small cell lung cancer. J. Clin. Oncol., 2011; 29: 1556-1563
    Google Scholar
  • 45. Lahsnig C., Mikula M., Petz M., Zulehner G., Schneller D., van Zijl F., Huber H., Csiszar A., Beug H., Mikulits W.: ILEI requires oncogenic Ras for the epithelial to mesenchymal transition of hepatocytes and liver carcinoma progression. Oncogene, 2009; 28: 638-650
    Google Scholar
  • 46. Laprus I., Adamek M., Kozielski J.: The need of lung cancer screening: new evidence, new expectations. Pneumonol. Alergol. Pol., 2011; 79: 419-427
    Google Scholar
  • 47. Leach D.R., Krummel M.F., Allison J.P.: Enhancement of antitumor immunity by CTLA-4 blockade. Science, 1996; 271: 1734-1736
    Google Scholar
  • 48. Lee Y., Sunwoo J.: PD-L1 is preferentially expressed on CD44+ tumor-initiating cells in head and neck squamous cell carcinoma. J. Immunother. Cancer, 2014; 2: P270
    Google Scholar
  • 49. Leong K.G., Karsan A.: Recent insights into the role of Notch signaling in tumorigenesis. Blood, 2006; 107: 2223-2233
    Google Scholar
  • 50. Leung E.L., Fiscus R.R., Tung J.W., Tin V.P., Cheng L.C., Sihoe A.D., Fink L.M., Ma Y., Wong M.P.: Non-small cell lung cencer cells expressing CD44 are enriched for stem cell-like properties. PLoS One, 2010; 5: e14062
    Google Scholar
  • 51. Li L., Bhatia R.: Stem cell quiescence. Clin. Cancer Res. 2011; 17: 4936-4941
    Google Scholar
  • 52. Li N., Qu B., Shao K., Chen Z., Tan F., Tan X., Li B., Wang J., He J.: Smoking cause specific lung cancer – evidence from non-smoking lung adenocarcinoma. J. Cancer Therapy, 2012; 3: 435-441
    Google Scholar
  • 53. Lindeman N.I., Cagle P.T., Beasley M.B., Chitale D.A., Dacic S., Giaccone G., Jenkins R.B., Kwiatkowski D.J., Saldivar J.S., Squire J., Thunnissen E., Ladanyi M.: Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors. J. Thorac. Oncol,. 2013; 8: 823-859
    Google Scholar
  • 54. Liu R.,Wang X., Chen G.Y., Dalerba P., Gurney A., Hoey T., Sherlock G., Lewicki J., Shedden K., Clarke M.F.: The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med., 2007; 356: 217-226
    Google Scholar
  • 55. Lu H., Clauser K.R., Tam W.L., Fröse J., Ye X., Eaton E.N., Reinhardt F., Donnenberg V.S., Bhargava R., Carr S.A., Weinberg R.A.: A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat. Cell Biol., 2014; 16: 1105-1117
    Google Scholar
  • 56. Maheswaran S., Sequist L.V., Nagrath S., Ulkus L., Brannigan B., Collura C.V., Inserra E., Diederichs S., Iafrate A.J., Bell D.W., Digumarthy S., Muzikansky A., Irimia D., Settleman J., Tompkins R.G. i wsp.: Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med., 2008; 359: 366-377
    Google Scholar
  • 57. Mather J.P., Roberts P.E., Pan Z., Chen F., Hooley J., Young P., Xu X., Smith D.H., Easton A., Li P., Bonvini E., Koenig S., Moore P.A.: Isolation of cancer stem like cells from human adenosquamous carcinoma of the lung supports a monoclonal origin from a multipotential tissue stem cell. PLoS One, 2013; 8: e79456
    Google Scholar
  • 58. McClellan S,. Slamecka J., Howze P., Thompson L., Finan M., Rocconi R., Owen L.: mRNA detection in living cells: a next generation cancer stem cell identyfication technique. Methods, 2015; 82: 47-54
    Google Scholar
  • 59. Miranda-Lorenzo I., Dorado J., Lonardo E., Alcala S., Serrano A.G., Clausell-Tormos J., Cioffi M., Megias D., Zagorac S., Balic A., Hidalgo M., Erkan M., Kleeff J., Scarpa A., Sainz B.Jr. i wsp.: Intracellular autofluorescence: a biomarker for epithelial cancer stem cells. Nat. Methods., 2014; 11: 1161-1169
    Google Scholar
  • 60. Murdoch C., Giannoudis A., Lewis C.E.: Mechanisms regulating the recruitement of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood, 2004; 104: 2224-2234
    Google Scholar
  • 61. Osińska I., Stelmaszczyk-Emmel A., Polubiec-Kownacka M., Dziedzic D., Domagała-Kulawik J.: CD4+/CD25(high)/FoxP3+/CD127 – regulatory T cells in bronchoalveolar lavage fluid of lung cancer patients. Hum. Immunol., 2016; 77: 912-915
    Google Scholar
  • 62. Panni RZ., Sanford D.E., Belt B.A., Mitchem J.B., Worley L.A., Goetz B.D., Mukherjee P., Wang-Gillam A., Link D.C., Denardo D.G., Goedegebuure S.P., Linehan D.C. Tumor-induced STAT3 activation in monocytic myeloid-derived suppresor cells enhances stemness and mesenchymal properties in human pancreatic caner. Cancer Immunol. Immunother., 2014; 63: 513-528
    Google Scholar
  • 63. Pawelek J.M., Chakraborty A.K.: The cancer cell-leukocyte fusion theory and metastasis. Adv. Cancer Res., 2008; 101: 397-444
    Google Scholar
  • 64. Plaks V., Kong N., Werb Z.: The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell., 2015; 16: 225-238
    Google Scholar
  • 65. Quian B.Z., Pollard J.W.: Macrophage diversity enhances tumor progression and metastasis. Cell, 2010; 141: 39-51
    Google Scholar
  • 66. Ramirez J.M., Fehm T., Orsini M., Cayrefourcq L., Maudelonde T., Pantel K., Alix-Panabières C.: Prognostic relevance of viable circulating tumor cells detected by EPISPOT in metastatic breast cancer patients. Clin. Chem., 2014; 60: 214-221
    Google Scholar
  • 67. Ricci-Vitiani L., Lombardi D.G., Pilozzi E., Biffoni M., Todaro M., Peschle C., De Maria R.: Identification and expansion of human colon-cancer-initiating cells. Nature, 2007; 445: 111-115
    Google Scholar
  • 68. Rokavec M., Wu W., Luo J.L.: IL-6-mediated suppression of miR-200c directs constituitive activation of inflammatory signaling circuit driving transformation and tumorgenesis. Mol. Cell., 2012; 45: 777-789
    Google Scholar
  • 69. Sakaguchi S., Wing K., Yamaguchi T.: Dynamics of peripheral tolerance and immune regulation mediated by Tregs. Eur. J. Immunol., 2009; 39: 2331-2336
    Google Scholar
  • 70. Salnikov A.V., Gladkich J., Moldenhauer G., Volm M., Mattern J., Herr I.: CD133 is indicative for a resistance phenotype but does not represent a prognostic marker for survival of non-small cell lung cancer patients. Int. J. Cancer, 2010; 126: 950-958
    Google Scholar
  • 71. Sceneay J., Smyth M.J., Möller A.: The pre-metastatic niche: finding common ground. Cancer Metastasis Rev. 2013; 32: 449-464
    Google Scholar
  • 72. Schatton T., Murphy G.F., Frank N.Y., Yamaura K., Waaga-Gasser A.M., Gasser M., Zhan Q., Jordan S., Duncan L.M., Weishaupt C., Fuhlbrigge R.C., Kupper T.S., Sayegh M.H., Frank M.H.: Identification of cells initiating human melanomas. Nature, 2008; 451: 345-349
    Google Scholar
  • 73. Schatton T., Schütte U., Frank N.Y., Zhan Q., Hoerning A., Robles S.C., Zhou J., Hodi F.S., Spagnoli G.C., Murphy G.F., Frank M.H.: Modulation of T-cell activation by malignant melanoma initiating cells. Cancer Res., 2010; 70: 697-708
    Google Scholar
  • 74. Schilders K.A., Eenjes E., van Riet S., Poot A.A., Stamatialis D., Truckenmüller R., Hiemstra P.S., Rottier R.J.: Regeneration of the lung: lung stem cells and the development of lung mimicking devices. Respir. Res., 2016; 17: 44
    Google Scholar
  • 75. Schreiber R.D., Old L.J., Smyth M.J.: Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science, 2011; 331: 1565-1570
    Google Scholar
  • 76. Skirecki T., Hoser G., Kawiak J., Dziedzic D., Domagała-Kulawik J.: Flow cytometric analysis of CD133 – and EpCAM-positive cells in the peripheral blood of patients with lung cancer. Arch. Immunol. Ther. Exp., 2014; 62: 67-75
    Google Scholar
  • 77. Solis M.A., Chen Y.H., Wong T.Y., Bittencourt V.Z., Lin Y.C., Huang L.H.: Hyaluronan regulates cell behavior: a potential niche matrix for stem cells. Biochem. Res. Int. 2012; 2012: 346972
    Google Scholar
  • 78. Srivastava M.K., Andersson A., Zhu L., Harris-White M., Lee J.M., Dubinett S., Sharma S.: Myeloid suppressor cells and immune modulation in lung cancer. Immunotherapy, 2012; 4: 291-304
    Google Scholar
  • 79. Stewart B., Wild C.P.: World Cancer Report 2014. International Agency for Research on Cancer. 2014
    Google Scholar
  • 80. Tang D.G.: Understanding cancer stem cell heterogeneity and plasticity. Cell. Res., 2012; 22: 457-472
    Google Scholar
  • 81. Thiery J.P., Acloque H., Huang R.Y., Nieto M.A.: Epithelial-mesenchymal transitions in development and disease. Cell, 2009; 139: 871-890
    Google Scholar
  • 82. Thomson S., Buck E., Petti F., Griffin G., Brown E., Ramnarine N., Iwata K.K., Gibson N., Haley J.D.: Epithelial to mesenchymal transition is a determinant of sensivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res., 2005; 65: 9455-9462
    Google Scholar
  • 83. Tiemessen M.M., Jagger A.L., Evans H.G., van Herwijnen M.J., John S., Taams L.S.: CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc. Natl. Acad. Sci. USA, 2007; 104: 19446-19451
    Google Scholar
  • 84. Tirino V., Camerlingo R., Franco R., Malanga D., La Rocca A., Viglietto G., Rocco G., Pirozzi G.: The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer. Eur. J. Cardiothorac. Surg., 2009; 36: 446-453
    Google Scholar
  • 85. Travis W.D., Brambilla E., Nicholson A.G., Yatabe Y., Austin J.H., Beasley M.B., Chirieac L.R., Dacic S., Duhig E., Flieder D.B., Geisinger K., Hirsch F.R., Ishikawa Y., Kerr K.M., Noguchi M. i wsp.: The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J. Thorac. Oncol., 2015; 10: 1243-1260
    Google Scholar
  • 86. Visvader J.E., Lindeman G.J.: Cancer stem cells: current status and evolving complexities. Cell Stem Cell., 2012; 104: 717-728
    Google Scholar
  • 87. Voo K.S., Wang Y.H., Santori F.R., Boggiano C., Wang Y.H., Arima K., Bover L., Hanabuchi S., Khalili J., Marinova E., Zheng B., Littman D.R., Liu Y.J.: Identification of IL-17 producing Foxp3+ regulatory T cells in humans. Proc. Natl. Acad. Sci. USA, 2009; 106: 4793-4798
    Google Scholar
  • 88. Wang P., Gao Q., Suo Z., Munthe E., Solberg S., Ma L., Wang M., Westerdaal N.A., Kvalheim G., Gaudernack G.: Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines. PLoS One, 2013; 8: e57020
    Google Scholar
  • 89. Wang P., Suo Z., Wang M., Høifødt H.K., Fodstad O., Gaudernack G., Kvalheim G.: In vitro and in vivo properties of CD133 expressing cells in human lung cancer lines. Exp. Hematol. Oncol. 2013: 2: 16
    Google Scholar
  • 90. Wojciechowska U., Didkowska J., Zatoński W.: Nowotwory złośliwe w Polsce w 2011 roku. Centrum Onkologii Instytut im. M. Skłodowskiej-Curie, Warszawa, 2013
    Google Scholar
  • 91. Woo E.Y., Chu C.S., Goletz T.J., Schlienger K., Yeh H., Coukos G., Rubin S.C., Kaiser L.R., June C.H.: Regulatory CD4+ CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res., 2001; 61: 4766-4772
    Google Scholar
  • 92. Wright G.J., Cherwinski H., Foster-Cuevas M., Brooke G., Puklavec M.J., Bigler M., Song Y., Jenmalm M., Gorman D., McClanahan T., Liu M.R., Brown M.H., Sedgwick J.D., Phillips J.H., Barclay A.N.: Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J. Immunol., 2003; 171: 3034-3046
    Google Scholar
  • 93. Yang J., Liao D., Chen C., Liu Y., Chuang T.H., Xiang R., Markowitz D., Reisfeld R.A., Luo Y.: Tumor-associated macrophages regulate murine breast cancer stem cells though a novel paracrine EGFR/Stat3/ Sox-2 signaling pathway. Stem Cells, 2013; 31: 248-258
    Google Scholar
  • 94. Yang S., Wang B., Guan C., Wu B., Cai C., Wang M., Zhang B., Liu T., Yang P.: Foxp3+ IL-17+ T cells promote development of cancer-initiating cells in colorectal cancer. J. Leukoc. Biol., 2011; 89: 85-91
    Google Scholar
  • 95. Yang Z.F., Ho D.W, Ng M.N., Lau C.K., Yu W.C., Ngai P., Chu P.W., Lam C.T., Poon R.T., Fan S.T.: Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell., 2008; 13: 153-166
    Google Scholar
  • 96. Ye X.Z., Yu S.C., Bian X.W.: Contribution of myeloid-derived suppressor cells to tumor-induced immune suppression, angiogenesis, invasion and metastasis. J. Genet. Genomics, 2010; 37: 423-430
    Google Scholar
  • 97. Yonezawa S., Higashi M., Yamada N., Yokoyama S., Kitamoto S., Kitajima S., Goto M.: Mucins in human neoplasms: clinical pathology, gene expression and diagnostic application. Pathol. Int., 2011; 61: 697-716
    Google Scholar
  • 98. Yu Z., Pestell T.G., Lisanti M.P., Pestell R.G.: Cancer stem cells. Int. J. Biochem. Cell. Biol., 2012; 44: 2144-2151
    Google Scholar
  • 99. Zhang C.H., Guo F.L., Xu G.L., Jia W.D., Ge Y.S.: STAT3 activation mediates epithelial-to-mesenchymal transition in human hepatocellular carcinoma cells. Hepatogastroenterology, 2014; 61: 1082-1089
    Google Scholar
  • 100. Zhang W.C., Shyh-Chang N., Yang H., Rai A., Umashankar S., Ma S., Soh B.S., Sun L.L., Tai B.C., Nga M.E., Bhakoo K.K., Jayapal S.R., Nichane M., Yu Q., Ahmed D.A. i wsp.: Glycine decarboxylase acticity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell, 2012; 148: 259-272
    Google Scholar
  • 101. Zhou J., Zhang Y.: Cancer stem cells: models, mechanisms and implications for improved treatment. Cell Cycle, 2008; 7: 1360-1370
    Google Scholar
  • 102. Zhou W., Ke S.Q., Huang Z., Flavahan W., Fang X., Paul J., Wu L., Sloan A.E., McLendon R.E., Li X., Rich J.N., Bao S.: Perositin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat. Cell Biol., 2015; 17: 170-182
    Google Scholar

Full text

Skip to content