The role of prolactin and its receptor in cancer development

REVIEW ARTICLE

The role of prolactin and its receptor in cancer development

Aleksandra Partyńska 1 , Karolina Jabłońska 1 , Katarzyna Nowińska 1 , Piotr Dzięgiel 1

1. Zakład Histologii i Embriologii, Katedra Morfologii i Embriologii Człowieka, Wydział Lekarski, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu,

Published: 2019-05-08
DOI: 10.5604/01.3001.0013.1939
GICID: 01.3001.0013.1939
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2019; 73 : 232-244

 

Abstract

Prolactin (PRL) is a peptide hormone which regulates various processes in the body. It takes part in mammary gland development, regulation of lipid, and carbohydrate metabolism. Expression of a gene encoding PRL was observed in the pituitary gland, in the mammary gland, immune system cells, and adipose tissue. A serum level of PRL depends on many factors, for instance the time of day, sex, levels of various hormones, and stress. Posttranslational modifications result in the appearance of vasoinhibins, characterized by different biological features than in the primary hormone molecule. Elevated levels of prolactin in plasma are associated with hyperprolactinemia. Prolactin receptor (PRLR) is found on the surface of many cells of normal tissues. Its presence can also be detected in various types of cancer cells. The issue of the roles of PRL and prolactin receptor (PRLR) is worthy of attention, because of their contribution to the regulation of normal metabolic processes and their part in cancer development. Among diseases in which PRL or PRLR have an influence on their progression, breast cancer, prostate cancer or colorectal cancer can be found. As prolactin and its receptor take part in cancer initiation and progression, these molecules have a potential to become a good therapeutic target. The aim of this review is to summarize and systemize the knowledge on the subject of the roles of PRL and PRLR in cancerogenesis.

References

  • 1. Abbvie. https://www.abbvie.com/our-science/pipeline/abbv-176.html (26.11.2018)
    Google Scholar
  • 2. Abdelbaset-Ismail A., Pedziwiatr D., Schneider G., Niklinski J., Charkiewicz R., Moniuszko M., Kucia M., Ratajczak M.Z.: Pituitary sex hormones enhance the pro metastatic potential of human lung cancer cells by downregulating the intracellular expression of heme oxygenase. Int. J. Oncol., 2017; 50: 317-328
    Google Scholar
  • 3. Agarwal N., Machiels J.P., Suárez C., Lewis N., Higgins M., Wisinski K., Awada A., Maur M., Stein M., Hwang A., Mosher R., Wasserman E., Wu G., Zhang H., Zieba R. i wsp.: Phase I study of the prolactin receptor antagonist LFA102 in metastatic breast and castration-resistant prostate cancer. Oncologist, 2016; 21: 535-536
    Google Scholar
  • 4. Andreev J., Thambi N., Perez Bay A.E., Delfino F., Martin J., Kelly M.P., Kirshner J.R., Rafique A., Kunz A., Nittoli T., MacDonald D., Daly C., Olson W., Thurston G.: Bispecific antibodies and antibody–drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol. Cancer Ther., 2017; 16: 681-693
    Google Scholar
  • 5. Basu A., Seth S., Chauhan A.K., Bansal N., Arora K., Mahaur A.: Comparative study of tumor markers in patients with colorectal carcinoma before and after chemotherapy. Ann. Transl. Med., 2016; 4: 71
    Google Scholar
  • 6. Baza NCBI: PRL prolactin [Homo sapiens (human)] https://www.ncbi.nlm.nih.gov/gene/5617 (22.08.2018)
    Google Scholar
  • 7. Ben-Jonathan N., Hugo E.: Prolactin (PRL) in adipose tissue: Regulation and functions. W: Recent Advances in Prolactin Research, Advances in Experimental Medicine and Biology, t. 846. red.: M. Diakonova, Springer Int, 2015, 1-35
    Google Scholar
  • 8. Ben-Jonathan N., LaPensee C.R., LaPensee E.W.: What can we learn from rodents about prolactin in humans? Endocr. Rev., 2008; 29: 1-41
    Google Scholar
  • 9. Bhatavdekar J.M., Patel D.D., Vora H.H., Shah N.G., Chikhlikar P.R., Ghosh N.: Prolactin as a local growth promoter in patients with locally advanced tongue cancer: GCRI experience. Head Neck, 2000; 22: 257-264
    Google Scholar
  • 10. Binart N.: Prolactin. W: The Pituitary. red.: S. Melmed, t. 5. Academic Press Elsevier, 2017, 129-161
    Google Scholar
  • 11. Brockman J.L., Schroeder M.D., Schuler L.A.: PRL activates the cyclin D1 promoter via the Jak2/Stat pathway. Mol. Endocrinol., 2002; 16: 774-784
    Google Scholar
  • 12. Bukowska A., Pepłońska B.: Praca w nocy a prolaktyna jako czynnik ryzyka raka piersi. Med. Pr., 2013; 64: 245-257
    Google Scholar
  • 13. Caponnetto S., Iannantuono G., Barchiesi G., Magri V., Gelibter A., Cortesi E.: Prolactin as a potential early predictive factor in metastatic non-small cell lung cancer patients treated with nivolumab. Oncology, 2017; 93: 62-66
    Google Scholar
  • 14. Clapp C., Aranda J., Gonzales C., Jeziorski M.C., Martínez de la Escalera G.: Vasoinhibins: endogenous regulators of angiogenesis and vascular function. Trends Endocrinol. Metab., 2006; 17: 301-307
    Google Scholar
  • 15. Clapp C., Thebault S., Macotela Y., Moreno-Carranza B., Triebel J., Martínez de la Escalera G.: Regulation of blood vessels by prolactin and vasoinhibins. Adv. Exp. Med. Biol., 2015; 846: 83-95
    Google Scholar
  • 16. Clinical Trials. A Study Evaluating the Safety, Pharmacokinetics and Anti-Tumor Activity of ABBV-176 in Subjects With Advanced Solid Tumors Likely to Express Prolactin Receptor (PRLR). https://clinicaltrials.gov/ct2/show/NCT03145909?term=prlr&cond=cancer&rank=1 (26.11.2018)
    Google Scholar
  • 17. Clinical Trials. Cabergoline in Metastatic Breast Cancer. https://clinicaltrials.gov/ct2/show/NCT01730729?term=prolactin&cond=cancer&rank=4 (26.11.2018)
    Google Scholar
  • 18. Clinical Trials. Copanlisib (BAY 80-6946) in Combination With Gemcitabine and Cisplatin in Advanced Cholangiocarcinoma. https://clinicaltrials.gov/ct2/show/NCT02631590 (26.11.2018)
    Google Scholar
  • 19. Clinical Trials. Phase I Study of LFA102 in Patients With Prolactin Receptor-positive Castration-resistant Prostate Cancer or Prolactin Receptor-positive Metastatic Breast Cancer. https://clinicaltrials.gov/ct2/show/NCT01338831?term=prlr&cond=cancer&rank=2 (26.11.2018)
    Google Scholar
  • 20. Clinical Trials. PI3K Inhibitor BKM120, Carboplatin, and Pemetrexed Disodium in Treating Patients With Stage IV Non-Small Cell Lung Cancer. https://clinicaltrials.gov/ct2/show/NCT01723800?term=pi3k+inhibitor&cond=cancer&rank=1 (26.11.2018)
    Google Scholar
  • 21. Clinical Trials. Study of Prolanta™ in Recurrent or Persistent Epithelial Ovarian Cancer (ProlantaOC). https://clinicaltrials.gov/ct2/show/NCT02534922?term=prlr&cond=cancer&rank=3 (26.11.2018)
    Google Scholar
  • 22. Dagvadorj A., Collins S., Jomain J.B., Abdulghani J., Karras J., Zellweger T., Li H., Nurmi M., Alanen K., Mirtti T., Visakorpi T., Bubendorf L., Goffin V., Nevalainen M.T.: Autocrine prolactin promotes prostate cancer cell growth via Janus kinase-2-signal transducer and activator of transcription-5a/b signaling pathway. Endocrinology, 2007; 148: 3089-3101
    Google Scholar
  • 23. Dagvadorj A., Kirken R.A., Leiby B., Karras J., Nevalainen M.T.: Transcription factor signal transducer and activator of transcription 5 promotes growth of human prostate cancer cells in vivo. Clin. Cancer Res., 2008; 14: 1317-1324
    Google Scholar
  • 24. Damaghi M., Wojtkowiak J.W., Gillies R.J.: pH sensing and regulation in cancer. Front. Physiol., 2013; 4: 370
    Google Scholar
  • 25. Damiano J.S., Rendahl K.G., Karim C., Embry M.G., Ghoddusi M., Holash J., Fanidi A., Abrams T.J., Abraham J.A.: Neutralization of prolactin receptor function by monoclonal antibody LFA102, a novel potential therapeutic for the treatment of breast cancer. Mol. Cancer Ther., 2013; 12: 295-305
    Google Scholar
  • 26. Damiano J.S., Wasserman E.: Molecular pathways: Blockade of the PRLR signaling pathway as a novel antihormonal approach for the treatment of breast and prostate cancer. Clin. Cancer Res., 2013; 19: 1644-1650
    Google Scholar
  • 27. Duarte M.F., Luis C., Baylina P., Faria M.I., Fernandes R., La Fuente J.M.: Clinical and metabolic implications of obesity in prostate cancer: is testosterone a missing link? Aging Male, 2018; 24: 1-13
    Google Scholar
  • 28. Freeman M.E., Kanyicska B., Lerant A., Nagy G.: Prolactin: structure, function, and regulation of secretion. Physiol. Rev., 2000; 80: 1523-1631
    Google Scholar
  • 29. Gadd S.L., Clevenger C.V.: Ligand-independent dimerization of the human prolactin receptor isoforms: Functional implications. Mol. Endocrinol., 2006; 20: 2734-2746
    Google Scholar
  • 30. Ginsburg E., Alexander S., Lieber S., Tarplin S., Jenkins L., Pang L., Heger C.D., Goldsmith P., Vonderhaar B.K.: Characterization of ductal and lobular breast carcinomas using novel prolactin receptor isoform specific antibodies. BMC Cancer, 2010; 10: 678
    Google Scholar
  • 31. Ginsburg E., Vonderhaar B.K.: Prolactin synthesis and secretion by human breast cancer cells. Cancer Res., 1995; 55: 2591-2595
    Google Scholar
  • 32. Goffin V., Touraine P.: The prolactin receptor as a therapeutic target in human diseases: browsing new potential indications. Expert Opin. Ther. Targets, 2015; 19: 1229-1244
    Google Scholar
  • 33. Goffin V., Touraine P., Pichard C., Bernichtein S., Kelly P.A.: Should prolactin be reconsidered as a therapeutic target in human breast cancer? Mol. Cell. Endocrinol., 1999; 151: 79-87
    Google Scholar
  • 34. Grabarska A., Łuszczki J.J., Nowosadzka E., Gumbarewicz E., Jeleniewicz W., Dmoszynska-Graniczka M., Kowalczuk K., Kupisz K., Polberg K., Stepulak A.: Histone deacetylase inhibitor SAHA as potential targeted therapy agent for larynx cancer cells. J. Cancer, 2017; 8: 19-28
    Google Scholar
  • 35. Green J.E., Shibata M.A., Yoshidome K., Liu M.L., Jorcyk C., Anver M.R., Wigginton J., Wiltrout R., Shibata E., Kaczmarczyk S., Wang W., Liu Z.Y., Calvo A., Couldrey C.: The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer : ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene, 2000; 19: 1020-1027
    Google Scholar
  • 36. Hachim I.Y., Hachim M.Y., Lopez V.M., Lebrun J.J., Ali S.: Prolactin receptor expression is an independent favorable prognostic marker in human breast cancer. Appl. Immunohistochem. Mol. Morphol., 2016; 24: 238-245
    Google Scholar
  • 37. Hammer A., Diakonova M.: Tyrosyl phosphorylated serine-threonine kinase PAK1 is a novel regulator of prolactin-dependent breast cancer cell motility and invasion. Adv. Exp. Med. Biol., 2015; 846: 97-137
    Google Scholar
  • 38. Hammer A., Laghate S., Diakonova M.: Src tyrosyl phosphorylates cortactin in response to prolactin. Biochem. Biophys. Res. Commun., 2015; 463: 644-649
    Google Scholar
  • 39. Hankinson S.E., Willett W.C., Michaud D.S., Manson J.E., Colditz G.A., Longcope C., Rosner B., Speizer F.E.: Plasma prolactin levels and subsequent risk of breast cancer in postmenopausal women. J. Natl. Cancer Inst., 1999; 91: 629-634
    Google Scholar
  • 40. Harbaum L., Pollheimer M.J., Bauernhofer T., Kornprat P., Lindtner R.A., Schlemmer A., Rehak P., Langner C.: Clinicopathological significance of prolactin receptor expression in colorectal carcinoma and corresponding metastases. Mod. Pathol., 2010; 23: 961-971
    Google Scholar
  • 41. Hennighausen L., Robinson G.W., Wagner K.U., Liu W.: Prolactin signaling in mammary gland development. J. Biol. Chem., 1997; 272: 7567-7569
    Google Scholar
  • 42. Howell S.J., Anderson E., Hunter T., Farnie G., Clarke R.B.: Prolactin receptor antagonism reduces the clonogenic capacity of breast cancer cells and potentiates doxorubicin and paclitaxel cytotoxicity. Breast Cancer Res., 2008; 10: R68
    Google Scholar
  • 43. Huang K.T., Walker A.M.: Long term increased expression of the short form 1b prolactin receptor in PC-3 human prostate cancer cells decreases cell growth and migration, and causes multiple changes in gene expression consistent with reduced invasive capacity. Prostate, 2010; 70: 37-47
    Google Scholar
  • 44. Hudson A.L., Colvin E.K.: Transgenic mouse models of SV40-induced cancer. ILAR J., 2016; 57: 44-54
    Google Scholar
  • 45. Kałużny M., Bolanowski M.: Hiperprolaktynemia: przyczyny, objawy kliniczne i możliwości terapeutyczne. Postępy Hig. Med. Dośw., 2005; 59: 20-27
    Google Scholar
  • 46. LaPensee E.W., Schwemberger S.J., LaPensee C.R., Bahassi E.M., Afton S.E., Ben-Jonathan N.: Prolactin confers resistance against cisplatin in breast cancer cells by activating glutathione-S-transferase. Carcinogenesis, 2009; 30: 1298-1304
    Google Scholar
  • 47. Le Bescont A., Vitte A.L., Debernardi A., Curtet S., Buchou T., Vayr J., de Reynies A., Ito A., Guardiola P., Brambilla C., Yoshida M., Brambilla E., Rousseaux S., Khochbin S.: Receptor-independent ectopic activity of prolactin predicts aggressive lung tumors and indicates HDACi-based therapeutic strategies. Antioxid. Redox Signal., 2015; 23: 1-14
    Google Scholar
  • 48. Levina V.V., Nolen B., Su Y., Godwin A.K., Fishman D., Liu J., Mor G., Maxwell L.G., Herberman R.B., Szczepanski M.J., Szajnik M.E., Gorelik E., Lokshin A.E.: Biological significance of prolactin in gynecologic cancers. Cancer Res., 2009; 69: 5226-5233
    Google Scholar
  • 49. Liao Z., Nevalainen M.T.: Targeting transcription factor Stat5a/b as a therapeutic strategy for prostate cancer. Am. J. Transl. Res., 2011; 3: 133-138
    Google Scholar
  • 50. Liu N., Rowley B.R., Bull C.O., Schneider C., Haegebarth A., Schatz C.A., Fracasso P.R., Wilkie D.P., Hentemann M., Wilhelm S.M., Scott W.J., Mumberg D., Ziegelbauer K.: BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models. Mol. Cancer Ther., 2013; 12: 2319-2330
    Google Scholar
  • 51. López-Ozuna V.M., Hachim I.Y., Hachim M.Y., Lebrun J.J., Ali S.: Prolactin pro-differentiation pathway in triple negative breast cancer: impact on prognosis and potential therapy. Sci. Rep., 2016; 6: 30934
    Google Scholar
  • 52. Mahboob S., Ahn S.B., Cheruku H.R., Cantor D., Rennel E., Fredriksson S., Edfeldt G., Breen E.J., Khan A., Mohamedali A., Muktadir M.G., Ranganathan S., Tan S.H., Nice E., Baker M.S.: A novel multiplexed immunoassay identifies CEA, IL-8 and prolactin as prospective markers for Dukes’ stages A-D colorectal cancers. Clin. Proteomics, 2015; 12: 1-12
    Google Scholar
  • 53. Maroulakou I.G., Anver M., Garrett L., Green J.E.: Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proc. Natl. Acad. Sci. USA, 1994; 91: 11236-11240
    Google Scholar
  • 54. Meng J., Tsai-Morris C.H., Dufau M.L.: Human prolactin receptor variants in breast cancer: Low ratio of short forms to the long-form human prolactin receptor associated with mammary carcinoma. Cancer Res., 2004; 64: 5677-5682
    Google Scholar
  • 55. Neradugomma N.K., Subramaniam D., Tawfik O.W., Goffin V., Kumar T.R., Jensen R.A., Anant S.: Prolactin signaling enhances colon cancer stemness by modulating Notch signaling in a Jak2-STAT3/ERK manner. Carcinogenesis, 2014; 35: 795-806
    Google Scholar
  • 56. Nitze L.M., Galsgaard E.D., Din N., Lund V.L., Rasmussen B.B., Berchtold M.W., Christensen L., Panina S.: Reevaluation of the proposed autocrine proliferative function of prolactin in breast cancer. Breast Cancer Res. Treat., 2013; 142: 31-44
    Google Scholar
  • 57. Nolen B.M., Langmead C.J., Choi S., Lomakin A., Marrangoni A., Bigbee W.L., Weissfeld J.L., Wilson D.O., Dacic S., Siegfried J.M., Lokshin A.E.: Serum biomarker profiles as diagnostic tools in lung cancer. Cancer Biomark., 2012; 10: 3-12
    Google Scholar
  • 58. Nouhi Z., Chughtai N., Hartley S., Cocolakis E., Lebrun J.J., Ali S.: Defining the role of prolactin as an invasion suppressor hormone in breast cancer cells. Cancer Res., 2006; 66: 1824-1832
    Google Scholar
  • 59. Oakes S.R., Robertson F.G., Kench J.G., Gardiner-Garden M., Wand M.P., Green J.E., Ormandy C.J.: Loss of mammary epithelial prolactin receptor delays tumor formation by reducing cell proliferation in low-grade preinvasive lesions. Oncogene, 2007; 26: 543-553
    Google Scholar
  • 60. Parada-Turska J., Targońska-Stępniak B., Majdan M.: Prolaktyna w układowych chorobach tkanki łącznej. Postępy Hig. Med. Dośw., 2006; 60: 278-285
    Google Scholar
  • 61. Peck A.R., Witkiewicz A.K., Liu C., Klimowicz A.C., Stringer G.A., Pequignot E., Freydin B., Yang N., Ertel A., Tran T.H., Girondo M.A., Rosenberg A.L., Hooke J.A., Kovatich A.J., Shriver C.D. i wsp.: Low levels of Stat5a protein in breast cancer are associated with tumor progression and unfavorable clinical outcomes. Breast Cancer Res., 2012; 14: R130
    Google Scholar
  • 62. Peirce S.K., Chen W.Y.: Quantification of prolactin receptor mRNA in multiple human tissues and cancer cell lines by real time RT-PCR. J. Endocrinol., 2001; 171: R1-R4
    Google Scholar
  • 63. Peirce S.K., Chen W.Y.: Human prolactin and its antagonist, hPRL-G129R, regulate bax and bcl-2 gene expression in human breast cancer cells and transgenic mice. Oncogene, 2004; 23: 1248-1255
    Google Scholar
  • 64. Perotti C., Liu R., Parusel C.T., Böcher N., Schultz J., Bork P., Pfitzner E., Groner B., Shemanko C.S.: Heat shock protein-90-alpha, a prolactin-STAT5 target gene identified in breast cancer cells, is involved in apoptosis regulation. Breast Cancer Res., 2008; 10: R94
    Google Scholar
  • 65. Plotnikov A., Varghese B., Tran T.H., Liu C., Rui H., Fuchs S.Y.: Impaired turnover of prolactin receptor contributes to transformation of human breast cells. Cancer Res., 2009; 69: 3165-3172
    Google Scholar
  • 66. Ramot Y., Bíró T., Tiede S., Tóth B.I., Langan E.A., Sugawara K., Foitzik K., Ingber A., Goffin V., Langbein L., Paus R.: Prolactin – a novel neuroendocrine regulator of human keratin expression in situ. FASEB J., 2010; 24: 1768-1779
    Google Scholar
  • 67. Reuwer A.Q., Nowak-Sliwinska P., Mans L.A., Van Der Loos C.M., Von Der Thüsen J.H., Twickler M.T., Spek C.A., Goffin V., Griffioen A.W., Borensztajn K.S.: Functional consequences of prolactin signalling in endothelial cells: a potential link with angiogenesis in pathophysiology? J. Cell. Mol. Med., 2012; 16: 2035-2048
    Google Scholar
  • 68. Reynolds C., Montone K.T., Powell C.M., Tomaszewski J.E., Clevenger C.V: Expression of prolactin and its receptor in human breast carcinoma. Endocrinology, 1997; 138: 5555-5560
    Google Scholar
  • 69. Rider L., Oladimeji P., Diakonova M.: PAK1 regulates breast cancer cell invasion through secretion of matrix metalloproteinases in response to prolactin and three-dimensional collagen IV. Mol. Endocrinol., 2013; 27: 1048-1064
    Google Scholar
  • 70. Rose-Hellekant T., Arendt L.M., Schroeder M.D., Gilchrist K., Sandgren E.P., Schuler L.A.: Prolactin induces ER alpha-positive and ER alpha-negative mammary cancer in transgenic mice. Oncogene, 2003; 22: 4664-4674
    Google Scholar
  • 71. Seder C.W., Arndt A.T., Jordano L., Basu S., Fhied C.L., Sayidine S., Chmielewski G.W., Gallo K., Liptay M.J., Borgia J.A.: Serum biomarkers may prognosticate recurrence in node-negative, non-small cell lung cancers less than 4 centimeters. Ann. Thorac. Surg., 2017; 104: 1637-1643
    Google Scholar
  • 72. Seipel A.H., Samaratunga H., Delahunt B., Wiklund P., Clements M., Egevad L.: Immunohistochemistry of ductal adenocarcinoma of the prostate and adenocarcinomas of non-prostatic origin: a comparative study. Acta Pathol. Microbiol. Immunol. Scand., 2016; 124: 263-270
    Google Scholar
  • 73. Shemanko C.S.: Mammary epithelial stem and progenitor cells and the prolactin pathway. Front. Biosci., 2008; 13: 3940-3950
    Google Scholar
  • 74. Shibata M.A., Jorcyk C.L., Liu M.L., Yoshidome K., Gold L.G., Green J.E.: The C3(1)/SV40 T antigen transgenic mouse model of prostate and mammary cancer. Toxicol. Pathol., 1998; 26: 177-182
    Google Scholar
  • 75. Skałba W., Lemm M., Witek A.: Rola przysadkowej i pozaprzysadkowej prolaktyny w rozrodzie i onkologii. Ann. Acad. Med. Siles., 2016; 70: 46-50
    Google Scholar
  • 76. Sustarsic E.G., Junnila R.K., Kopchick J.J.: Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment. Biochem. Biophys. Res. Commun., 2013; 441: 144-150
    Google Scholar
  • 77. Sutherland A., Forsyth A., Cong Y., Grant L., Juan T.H., Lee J.K., Klimowicz A., Petrillo S.K., Hu J., Chan A., Boutillon F., Goffin V., Egan C., Tang P.A., Cai L. i wsp.: The role of prolactin in bone metastasis and breast cancer cell-mediated osteoclast differentiation. J. Natl. Cancer Inst., 2016; 108: djv338
    Google Scholar
  • 78. Swietach P., Vaughan-Jones R.D., Harris A.L.: Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev, 2007; 26: 299-310
    Google Scholar
  • 79. Talati P.G., Gu L., Ellsworth E.M., Girondo M.A., Trerotola M., Hoang D.T., Leiby B., Dagvadorj A., McCue P.A., Lallas C.D., Trabulsi E.J., Gomella L., Aplin A.E., Languino L., Fatatis A. i wsp.: Jak2-Stat5a/b signaling induces epithelial-to-mesenchymal transition and stem-like cell properties in prostate cancer. Am. J. Pathol., 2015; 185: 2505-2522
    Google Scholar
  • 80. Thomas L.N., Merrimen J., Bell D.G., Rendon R., Too C.K.: Prolactin- and testosterone-induced carboxypeptidase-D correlates with increased nitrotyrosines and Ki67 in prostate cancer. Prostate, 2015; 75: 1726-1736
    Google Scholar
  • 81. Thomas L.N., Morehouse T.J., Too C.K.: Testosterone and prolactin increase carboxypeptidase-D and nitric oxide levels to promote survival of prostate cancer cells. Prostate, 2012; 72: 450-460
    Google Scholar
  • 82. Tomblyn S., Springs A.E., Langenheim J.F., Chen W.Y.: Combination therapy using three novel prolactin receptor antagonist-based fusion proteins effectively inhibits tumor recurrence and metastasis in HER2/neu transgenic mice. Int. J. Oncol., 2009; 34: 1139-1146
    Google Scholar
  • 83. Triebel J., Bertsch T., Bollheimer C., Rios-Barrera D., Pearce C.F., Hüfner M., Martínez de la Escalera G., Clapp C.: Principles of the prolactin/vasoinhibin axis. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2015; 309: R1193-R1203
    Google Scholar
  • 84. Urbaniak A., Jabłońska K., Podhorska-Okołów M., Ugorski M., Dzięgiel P.: Prolactin-induced protein (PIP)-characterization and role in breast cancer progression. Am. J. Cancer Res., 2018; 8: 2150-2164
    Google Scholar
  • 85. Utama F.E., Tran T.H., Ryder A., LeBaron M.J., Parlow A.F., Rui H.: Insensitivity of human prolactin receptors to nonhuman prolactins: Relevance for experimental modeling of prolactin receptor-expressing human cells. Endocrinology, 2009; 150: 1782-1790
    Google Scholar
  • 86. Warburg O., Wind F., Negelein E.: The metabolism of tumors in the body. J. Gen. Physiol., 1927; 8: 519-530
    Google Scholar
  • 87. Yang N., Liu C., Peck A.R., Girondo M.A., Yanac A.F., Tran T.H., Utama F.E., Tanaka T., Freydin B., Chervoneva I., Hyslop T., Kovatich A.J., Hooke J.A., Shriver C.D., Rui H.: Prolactin-Stat5 signaling in breast cancer is potently disrupted by acidosis within the tumor microenvironment. Breast Cancer Res., 2013; 15: R73
    Google Scholar
  • 88. Yonezawa T., Chen K.H., Ghosh M.K., Rivera L., Dill R., Ma L., Villa P.A., Kawaminami M., Walker A.M.: Anti-metastatic outcome of isoform-specific prolactin receptor targeting in breast cancer. Cancer Lett., 2015; 366: 84-92
    Google Scholar
  • 89. Zhornitsky S., Johnson T.A., Metz L.M., Weiss S., Yong V.W.: Prolactin in combination with interferon-β reduces disease severity in an animal model of multiple sclerosis. J. Neuroinflammation, 2015; 12: 55
    Google Scholar

Full text

Skip to content