Parkinson’s disease: Etiopathogenesis, molecular basis and potential treatment opportunities

REVIEW ARTICLE

Parkinson’s disease: Etiopathogenesis, molecular basis and potential treatment opportunities

Marta Lemieszewska 1 , Agnieszka Zabłocka 2 , Joanna Rymaszewska 1

1. Katedra i Klinika Psychiatrii, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu,
2. Laboratorium Białek Sygnałowych, Instytut Immunologii i Terapii Doświadczalnej im. Ludwika Hirszfelda, Polska Akademia Nauk, Wrocław,

Published: 2019-05-15
DOI: 10.5604/01.3001.0013.2021
GICID: 01.3001.0013.2021
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2019; 73 : 256-268

 

Abstract

Neurodegenerative diseases affect the life quality and lifespan of aging populations. Among all forms of neurodegenerative diseases, Parkinson’s disease (PD) has a massive impact on the elderly. Oxidative stress and mitochondrial dysfunction are the main causes of neurodegeneration and progression of PD. Oxidative stress, which plays a vital role in the pathophysiology of PD, is related to the dysfunction of cellular antioxidant mechanisms as a result of enhanced production of reactive oxygen species. A large number of studies have utilized oxidative stress biomarkers to investigate the severity of neurodegeneration and medications are available, but these only treat the symptoms. Extensive studies scientifically validated the beneficial effect of natural products against neurodegenerative diseases, using suitable animal models. The review focuses on the role of oxidative stress in the pathogenesis of Parkinson’s disease and the protective potential of natural products against neurodegeneration.

References

  • 1. Allen S.J., Watson J.J., Shoemark D.K., Barua N.U., Patel N.K.: GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol. Ther., 2013; 138: 155-175
    Google Scholar
  • 2. Aloisi F.: Immune function of microglia. Glia, 2001; 36: 165-179
    Google Scholar
  • 3. Andrew R., Watson D.G., Best S.A., Midgley J.M., Wenlong H., Petty R.K.: The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls. Neurochem. Res., 1993; 18: 1175-1177
    Google Scholar
  • 4. Anichtchik O.V., Kaslin J., Peitsaro N., Scheinin M., Panula P.: Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J. Neurochem., 2004; 88: 443-453
    Google Scholar
  • 5. Antonini A., Abbruzzese G., Barone P., Bonuccelli U., Lopiano L., Onofrj M., Zappia M., Quattrone A.: COMT inhibition with tolcapone in the treatment algorithm of patients with Parkinson’s disease (PD): relevance for motor and non-motor features. Neuropsychiatr. Dis. Treat., 2008; 4: 1-9
    Google Scholar
  • 6. Apaydin H., Ertan S., Özekmekçi S.: Broad bean (Vicia faba) – a natural source of L-dopa – prolongs „on” periods in patients with Parkinson’s disease who have „on-off” fluctuations. Mov. Disord., 2000; 15: 164-166
    Google Scholar
  • 7. Ariga H., Takahashi-Niki K., Kato I., Maita H., Niki T., Iguchi-Ariga S.M.: Neuroprotective function of DJ-1 in Parkinson’s disease. Oxid. Med. Cell. Longev., 2013; 2013: 683920
    Google Scholar
  • 8. Ascherio A., Zhang S.M., Hernán M.A., Kawachi I., Colditz G.A., Speizer F.E., Willett W.C.: Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann. Neurol., 2001; 50: 56-63
    Google Scholar
  • 9. Bartosz G.: Generation of reactive oxygen species in biological systems. Comments Toxicol., 2003; 9: 5-21
    Google Scholar
  • 10. Basu S., Adams L., Guhathakurta S., Kim Y.S.: A novel tool for monitoring endogenous alpha-synuclein transcription by NanoLuciferase tag insertion at the 3′end using CRISPR-Cas9 genome editing technique. Sci. Rep., 2017; 8: 45883
    Google Scholar
  • 11. Beavers K.M., Brinkley T.E., Nicklas B.J.: Effect of exercise training on chronic inflammation. Clin. Chim. Acta, 2010; 411: 785-793
    Google Scholar
  • 12. Bhattacharjee N., Borah A.: Oxidative stress and mitochondrial dysfunction are the underlying events of dopaminergic neurodegeneration in homocysteine rat model of Parkinson’s disease. Neurochem. Int., 2016; 101: 48-55
    Google Scholar
  • 13. Blesa J., Trigo-Damas I., Quiroga-Varela A., Jackson-Lewis V.R.: Oxidative stress and Parkinson’s disease. Front. Neuroanat., 2015; 9: 91
    Google Scholar
  • 14. Blum D., Torch S., Lambeng N., Nissou M.F., Benabid A.L., Sadoul R., Verna J.M.: Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog. Neurobiol., 2001; 65: 135-172
    Google Scholar
  • 15. Bové J., Perier C.: Neurotoxin-based models of Parkinson’s disease. Neuroscience, 2012; 211: 51-76
    Google Scholar
  • 16. Brocker D.T., Swan B.D., Turner D.A., Gross R.E., Tatter S.B., Koop M.M., Bronte-Stewart H., Grill W.M.: Improved efficacy of temporally non-regular deep brain stimulation in Parkinson’s disease. Exp. Neurol., 2013; 239: 60-67
    Google Scholar
  • 17. Brockmann K., Schulte C., Hauser A.K., Lichtner P., Huber H., Maetzler W., Berg D., Gasser T.: SNCA: Major genetic modifier of age at onset of Parkinson’s disease. Mov. Disord., 2013; 28: 1217-1221
    Google Scholar
  • 18. Bronstein J.M., Tagliati M., Alterman R.L., Lozano A.M., Volkmann J., Stefani A., Horak F.B., Okun M.S., Foote K.D., Krack P., Pahwa R., Henderson J.M., Hariz M.I., Bakay R.A., Rezai A. i wsp.: Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch. Neurol., 2011; 68: 165
    Google Scholar
  • 19. Burbulla L.F., Song P., Mazzulli J.R., Zampese E., Wong Y.C., Jeon S., Santos D.P., Blanz J., Obermaier C.D., Strojny C., Savas J.N., Kiskinis E., Zhuang X., Krüger R., Surmeier D.J. i wsp.: Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science, 2017; 357: 1255-1261
    Google Scholar
  • 20. Cadenas E., Davies K.J.: Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med., 2000; 29: 222-230
    Google Scholar
  • 21. Calì T., Ottolini D., Brini M.: Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson’s disease. BioFactors, 2011; 37: 228-240
    Google Scholar
  • 22. Caneda-Ferrón B., De Girolamo L.A., Costa T., Beck K.E., Layfield R., Billett E.E.: Assessment of the direct and indirect effects of MPP+ and dopamine on the human proteasome: implications for Parkinson’s disease aetiology. J. Neurochem., 2008; 105: 225-238
    Google Scholar
  • 23. Canet-Aviles R.M., Wilson M.A., Miller D.W., Ahmad R., McLendon C., Bandyopadhyay S., Baptista M.J., Ringe D., Petsko G.A., Cookson M.R.: The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc. Natl. Acad. Sci. USA, 2004; 101: 9103-9108
    Google Scholar
  • 24. Cannon J.R., Tapias V., Na H.M., Honick A.S., Drolet R.E., Greenamyre J.T.: A highly reproducible rotenone model of Parkinson’s disease. Neurobiol. Dis., 2009; 34: 279-290
    Google Scholar
  • 25. Cartier E.A., Parra L.A., Baust T.B., Quiroz M., Salazar G., Faundez V., Egaña L., Torres G.E.: A biochemical and functional protein complex involving dopamine synthesis and transport into synaptic vesicles. J. Biol. Chem., 2010; 285: 1957-1966
    Google Scholar
  • 26. Cenci M.A.: Presynaptic mechanisms of l-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front. Neurol., 2014; 5: 242
    Google Scholar
  • 27. Checkoway H., Powers K., Smith-Weller T., Franklin G.M., Longstreth W.T.Jr., Swanson P.D.: Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am. J. Epidemiol., 2002; 155: 732-738
    Google Scholar
  • 28. Chen J.J., Marsh L.: Anxiety in Parkinson’s disease: identification and management. Ther. Adv. Neurol. Disord., 2014; 7: 52-59
    Google Scholar
  • 29. Chinta S.J., Kumar M.J., Hsu M., Rajagopalan S., Kaur D., Rane A., Nicholls D.G., Choi J., Andersen J.K.: Inducible alterations of glutathione levels in adult dopaminergic midbrain neurons result in nigrostriatal degeneration. J. Neurosci., 2007; 27: 13997-14006
    Google Scholar
  • 30. Chiueh C.C., Rauhala P.: Free radicals and MPTP-induced selective destruction of substantia nigra compacta neurons. Adv. Pharmacol., 1998; 42: 796-800
    Google Scholar
  • 31. Choi W.S., Palmiter R.D., Xia Z.: Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model. J. Cell Biol., 2011; 192: 873-882
    Google Scholar
  • 32. Cohen G., Heikkila R.E.: The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6 hydroxydopamine, dialuric acid, and related cytotoxic agents. J. Biol. Chem., 1974; 249: 2447-2452
    Google Scholar
  • 33. Cooper O., Seo H., Andrabi S., Guardia-Laguarta C., Graziotto J., Sundberg M., McLean J.R., Carrillo-Reid L., Xie Z., Osborn T., Hargus G., Deleidi M., Lawson T., Bogetofte H., Perez-Torres E. i wsp.: Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci. Transl. Med., 2012; 4: 141ra90
    Google Scholar
  • 34. Cotzias G.C., Van Woert M.H., Schiffer L.M.: Aromatic amino acids and modification of parkinsonism. N. Engl. J. Med., 1967; 276: 374-79
    Google Scholar
  • 35. Coune P.G., Schneider B.L., Aebischer P.: Parkinson’s disease: gene therapies. Cold Spring Harb. Perspect. Med., 2012; 2: a009431
    Google Scholar
  • 36. Dauer W., Przedborski S.: Parkinson’s disease: Mechanisms and models. Neuron, 2003; 39: 889-909
    Google Scholar
  • 37. Deng Y., Wang C.C., Choy K.W., Du Q., Chen J., Wang Q., Li L., Chung T.K., Tang T.: Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene, 2014; 538: 217-227
    Google Scholar
  • 38. Dickson D.W.: Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb. Perspect. Med., 2012; 2: a009258
    Google Scholar
  • 39. Dorsey E.R., Constantinescu R., Thompson J.P., Biglan K.M., Holloway R.G., Kieburtz K., Marshall F.J., Ravina B.M., Schifitto G., Siderowf A., Tanner C.M.: Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology, 2007; 68: 384-386
    Google Scholar
  • 40. Driver J.A., Logroscino G., Gaziano J.M., Kurth T.: Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology, 2009; 72: 432-438
    Google Scholar
  • 41. Evin G., Sharples R.A., Weidemann A., Reinhard F.B., Carbone V., Culvenor J.G., Holsinger R.M., Sernee M.F., Beyreuther K., Masters C.L.: Aspartyl protease inhibitor pepstatin binds to the presenilins of Alzheimer’s disease. Biochemistry, 2001; 40: 8359-8368
    Google Scholar
  • 42. Foster H.D., Hoffer A.: The two faces of L-DOPA: benefits and adverse side effects in the treatment of Encephalitis lethargica, Parkinson’s disease, multiple sclerosis and amyotrophic lateral sclerosis. Med. Hypotheses, 2004; 62: 177-181
    Google Scholar
  • 43. Foubert-Samier A., Helmer C., Perez F., Le Goff M., Auriacombe S., Elbaz A., Dartigues J.F., Tison F.: Past exposure to neuroleptic drugs and risk of Parkinson disease in an elderly cohort. Neurology, 2012; 79: 1615-1621
    Google Scholar
  • 44. Fridovich I.: Superoxide radical and superoxide dismutases. Annu. Rev. Biochem., 1995; 64: 97-112
    Google Scholar
  • 45. Gambini J., Inglés M., Olaso G., Lopez-Grueso R., Bonet-Costa V., Gimeno-Mallench L., Mas-Bargues C., Abdelaziz K.M., Gomez-Cabrera M.C., Vina J., Borras C.: Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell. Longev., 2015; 2015: 837042
    Google Scholar
  • 46. Goedert M., Spillantini M.G., Del Tredici K., Braak H.: 100 years of Lewy pathology. Nat. Rev. Neurol., 2013; 9: 13-24
    Google Scholar
  • 47. Goldstein D.S., Sullivan P., Holmes C., Miller G.W., Alter S., Strong R., Mash D.C., Kopin I.J., Sharabi Y.: Determinants of buildup of the toxic dopamine metabolite DOPAL in Parkinson’s disease. J. Neurochem., 2013; 126: 591-603
    Google Scholar
  • 48. Hamza T.H., Chen H., Hill-Burns E.M., Rhodes S.L., Montimurro J., Kay D.M., Tenesa A., Kusel V.I., Sheehan P., Eaaswarkhanth M., Yearout D., Samii A., Roberts J.W., Agarwal P., Bordelon Y. i wsp.: Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson’s disease modifier gene via interaction with coffee. PLoS Genet., 2011; 7: e1002237
    Google Scholar
  • 49. Hartmann A., Hunot S., Michel P.P., Muriel M.P., Vyas S., Faucheux B.A., Mouatt-Prigent A., Turmel H., Srinivasan A., Ruberg M., Evan G.I., Agid Y., Hirsch E.C.: Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 2000; 97: 2875-2880
    Google Scholar
  • 50. Hawkins R.A., Mokashi A., Simpson I.A.: An active transport system in the blood-brain barrier may reduce levodopa availability. Exp. Neurol., 2005; 195: 267-271
    Google Scholar
  • 51. Hornykiewicz O.: A brief history of levodopa. J. Neurol., 2010; 257: S249-S252
    Google Scholar
  • 52. Hu S., Maiti P., Ma Q., Zuo X., Jones M.R., Cole G.M., Frautschy S.A.: Clinical development of curcumin in neurodegenerative disease. Expert Rev. Neurother., 2015; 15: 629-637
    Google Scholar
  • 53. Iacono R.P., Lonser R.R., Maeda G., Kuniyoshi S., Warner D., Mandybur G., Yamada S.: Chronic anterior pallidal stimulation for Parkinson’s disease. Acta Neurochir., 1995; 137: 106-112
    Google Scholar
  • 54. Jankovic J., Aguilar L.G.: Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr. Dis. Treat., 2008; 4: 743-757
    Google Scholar
  • 55. Jarraya B., Boulet S., Ralph G.S., Jan C., Bonvento G., Azzouz M., Miskin J.E., Shin M., Delzescaux T., Drouot X., Hérard A.S., Day D.M., Brouillet E., Kingsman S.M., Hantraye P. i wsp.: Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci. Transl. Med., 2009; 1: 2ra4
    Google Scholar
  • 56. Jeandet P., Douillet-Breuil A.C., Bessis R., Debord S., Sbaghi M., Adrian M.: Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem., 2002; 50: 2731-2741
    Google Scholar
  • 57. Jenner P.: Oxidative stress in Parkinson’s disease and other neurodegenerative disorders. Pathol. Biol. 1996; 44: 57-64
    Google Scholar
  • 58. Jiang T., Sun Q., Chen S.: Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog. Neurobiol., 2016; 147: 1-19
    Google Scholar
  • 59. Kalia L.V., Lang A.E.: Parkinson’s disease. Lancet, 2015; 386: 896-912
    Google Scholar
  • 60. Katzenschlager R., Sampaio C., Costa J., Lees A.: Anticholinergics for symptomatic management of Parkinson’s disease. Cochrane database Syst. Rev., 2003: CD003735
    Google Scholar
  • 61. Khoo T.K., Yarnall A.J., Duncan G.W., Coleman S., O’Brien J.T., Brooks D.J., Barker R.A., Burn D.J.: The spectrum of nonmotor symptoms in early Parkinson disease. Neurology, 2013; 80: 276-281
    Google Scholar
  • 62. Kim Y.E., Jeon B.S.: Clinical implication of REM sleep behavior disorder in Parkinson’s disease. J. Parkinsons Dis., 2014; 4: 237-244
    Google Scholar
  • 63. Kirkinezos I.G., Moraes C.T.: Reactive oxygen species and mitochondrial diseases. Semin. Cell Dev. Biol., 2001; 12: 449-457
    Google Scholar
  • 64. LaVoie M.J., Ostaszewski B.L., Weihofen A., Schlossmacher M.G., Selkoe D.J.: Dopamine covalently modifies and functionally inactivates parkin. Nat. Med., 2005; 11: 1214-1221
    Google Scholar
  • 65. Leszek J., Inglot A.D., Janusz M., Byczkiewicz F., Kiejna A., Georgiades J., Lisowski J.: Colostrinin proline-rich polypeptide complex from ovine colostrum–a long-term study of its efficacy in Alzheimer’s disease. Med. Sci. Monit., 2002; 8: PI93-PI96
    Google Scholar
  • 66. LeWitt P.A., Rezai A.R., Leehey M.A., Ojemann S.G., Flaherty A.W., Eskandar E.N., Kostyk S.K., Thomas K., Sarkar A., Siddiqui M.S., Tatter S.B., Schwalb J.M., Poston K.L., Henderson J.M., Kurlan R.M. i wsp.: AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol., 2011; 10: 309-319
    Google Scholar
  • 67. Liddelow S.A., Guttenplan K.A., Clarke L.E., Bennett F.C., Bohlen C.J., Schirmer L., Bennett M.L., Münch A.E., Chung W.S., Peterson T.C., Wilton D.K., Frouin A., Napier B.A., Panicker N., Kumar M. i wsp.: Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017; 541: 481-487
    Google Scholar
  • 68. Lindvall O., Björklund A.: Cell therapeutics in Parkinson’s disease. Neurotherapeutics, 2011; 8: 539-548
    Google Scholar
  • 69. Ling N.: Rotenone – a review of its toxicity and use for fisheries management. Department of Conservation, Wellington 2003
    Google Scholar
  • 70. Liu G.S., Zhang Z.S., Yang B., He W.: Resveratrol attenuates oxidative damage and ameliorates cognitive impairment in the brain of senescence-accelerated mice. Life Sci., 2012; 91: 872-877
    Google Scholar
  • 71. Lotharius J., O’Malley K.L.: The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation. A novel mechanism of toxicity. J. Biol. Chem., 2000; 275: 38581-38588
    Google Scholar
  • 72. Luthman J., Fredriksson A., Sundström E., Jonsson G., Archer T.: Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: motor behavior and monoamine alterations at adult stage. Behav. Brain Res., 1989; 33: 267-277
    Google Scholar
  • 73. Ma C., Liu Y., Neumann S., Gao X.: Nicotine from cigarette smoking and diet and Parkinson disease: a review. Transl. Neurodegener., 2017; 6: 18
    Google Scholar
  • 74. Martí M.J., Saura J., Burke R.E., Jackson-Lewis V., Jiménez A., Bonastre M., Tolosa E.: Striatal 6-hydroxydopamine induces apoptosis of nigral neurons in the adult rat. Brain Res., 2002; 958: 185-191
    Google Scholar
  • 75. Martinez T.N., Greenamyre J.T.: Toxin models of mitochondrial dysfunction in Parkinson’s disease. Antioxid. Redox Signal., 2012; 16: 920-934
    Google Scholar
  • 76. Mehanna R., Lai E.C.: Deep brain stimulation in Parkinson’s disease. Transl. Neurodegener., 2013; 2: 22
    Google Scholar
  • 77. Meiser J., Weindl D., Hiller K.: Complexity of dopamine metabolism. Cell Commun. Signal., 2013; 11: 34
    Google Scholar
  • 78. Mills S., Bone K.: Principles & Practice of Phytotherapy: Modern Herbal Medicine. Elsevier Health Sciences 2013
    Google Scholar
  • 79. Mogi M., Harada M., Narabayashi H., Inagaki H., Minami M., Nagatsu T.: Interleukin (IL)-1β, IL-2, IL-4, IL-6 and transforming growth factor-α levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci. Lett., 1996; 211: 13-16
    Google Scholar
  • 80. Muangpaisan W., Hori H., Brayne C.: Systematic review of the prevalence and incidence of Parkinson’s disease in Asia. J. Epidemiol., 2009; 19: 281-293
    Google Scholar
  • 81. Noble W., Hanger D.P., Miller C.C., Lovestone S.: The importance of tau phosphorylation for neurodegenerative diseases. Front. Neurol., 2013; 4: 83
    Google Scholar
  • 82. Noyce A.J., Bestwick J.P., Silveira-Moriyama L., Hawkes C.H., Giovannoni G., Lees A.J., Schrag A.: Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann. Neurol., 2012; 72: 893-901
    Google Scholar
  • 83. Okubadejo N.U.: An analysis of genetic studies of Parkinson’s disease in Africa. Parkinsonism Relat. Disord., 2008; 14: 177-182
    Google Scholar
  • 84. Pacher P., Beckman J.S., Liaudet L.: Nitric oxide and peroxynitrite in health and disease. Physiol. Rev., 2007; 87: 315-424
    Google Scholar
  • 85. Parish C.L., Arenas E.: Stem-cell-based strategies for the treatment of Parkinson’s disease. Neurodegener. Dis., 2007; 4: 339-347
    Google Scholar
  • 86. Pickrell A.M., Youle R.J.: The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron, 2015; 85: 257-273
    Google Scholar
  • 87. Pišlar A.H., Zidar N., Kikelj D., Kos J.: Cathepsin X promotes 6-hydroxydopamine-induced apoptosis of PC12 and SH-SY5Y cells. Neuropharmacology, 2014; 82: 121-131
    Google Scholar
  • 88. Politis M., Lindvall O.: Clinical application of stem cell therapy in Parkinson’s disease. BMC Med., 2012; 10: 1
    Google Scholar
  • 89. Polymeropoulos M.H., Lavedan C., Leroy E., Ide S.E., Dehejia A., Dutra A., Pike B., Root H., Rubenstein J., Boyer R., Stenroos E.S., Chandrasekharappa S., Athanassiadou A., Papapetropoulos T., Johnson W.G. i wsp.: Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science, 1997; 276: 2045-2047
    Google Scholar
  • 90. Popat R.A., Van Den Eeden S.K., Tanner C.M., Kamel F., Umbach D.M., Marder K., Mayeux R., Ritz B., Ross G.W., Petrovitch H., Topol B., McGuire V., Costello S., Manthripragada A.D., Southwick A. i wsp.: Coffee, ADORA2A, and CYP1A2: the caffeine connection in Parkinson’s disease. Eur. J. Neurol., 2011; 18: 756-765
    Google Scholar
  • 91. Postuma R.B., Aarsland D., Barone P., Burn D.J., Hawkes C.H., Oertel W., Ziemssen T.: Identifying prodromal Parkinson’s disease: pre-motor disorders in Parkinson’s disease. Mov. Disord., 2012; 27: 617-626
    Google Scholar
  • 92. Puschmann A.: Monogenic Parkinson’s disease and parkinsonism: Clinical phenotypes and frequencies of known mutations. Parkinsonism Relat. Disord., 2013; 19: 407-415
    Google Scholar
  • 93. Puspita L., Chung S.Y., Shim J.W.: Oxidative stress and cellular pathologies in Parkinson’s disease. Mol. Brain, 2017; 10: 53
    Google Scholar
  • 94. Rhee Y.H., Ko J.Y., Chang M.Y., Yi S.H., Kim D., Kim C.H., Shim J.W., Jo A.Y., Kim B.W., Lee H., Lee S.H., Suh W., Park C.H., Koh H.C., Lee Y.S. i wsp.: Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. J. Clin. Invest., 2011; 121: 2326-2335
    Google Scholar
  • 95. Riederer P., Laux G.: MAO-inhibitors in Parkinson’s disease. Exp. Neurobiol., 2011; 20: 1-17
    Google Scholar
  • 96. Salgado S., Williams N., Kotian R., Salgado M.: An evidence-based exercise regimen for patients with mild to moderate Parkinson’s disease. Brain Sci., 2013; 3: 87-100
    Google Scholar
  • 97. Samii A., Nutt J.G., Ransom B.R.: Parkinson’s disease. Lancet, 2004; 363: 1783-1793
    Google Scholar
  • 98. Schapira A.H.: Glucocerebrosidase and Parkinson disease: Recent advances. Mol. Cell. Neurosci., 2015; 66: 37-42
    Google Scholar
  • 99. Schulz J.B., Lindenau J., Seyfried J., Dichgans J.: Glutathione, oxidative stress and neurodegeneration. Eur. J. Biochem., 2000; 267: 4904-4911
    Google Scholar
  • 100. Seidl S.E., Santiago J.A., Bilyk H., Potashkin J.A.: The emerging role of nutrition in Parkinson’s disease. Front. Aging Neurosci., 2014; 6: 36
    Google Scholar
  • 101. Simola N., Morelli M., Carta A.R.: The 6-hydroxydopamine model of Parkinson’s disease. Neurotox. Res., 2007; 11: 151–167
    Google Scholar
  • 102. Smeyne M., Smeynen R.J.: Glutathione metabolism and Parkinson’s disease. Free Radic. Biol. Med., 2013; 62: 13-25
    Google Scholar
  • 103. Solary E., Eymin B., Droin N., Haugg M.: Proteases, proteolysis, and apoptosis. Cell Biol. Toxicol., 1998; 14: 121-132
    Google Scholar
  • 104. Soto-Otero R., Méndez-Alvarez E., Hermida-Ameijeiras A., Muñoz-Patiño A.M., Labandeira-Garcia J.L.: Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson’s disease. J. Neurochem., 2000; 74: 1605-1612
    Google Scholar
  • 105. Streit W.J.: Microglia as neuroprotective, immunocompetent cells of the CNS. Glia, 2002; 40: 133-139
    Google Scholar
  • 106. Strickland D., Bertoni J.M.: Parkinson’s prevalence estimated by a state registry. Mov. Disord., 2004; 19: 318-323
    Google Scholar
  • 107. Subramaniam S.R., Ellis E.M.: Neuroprotective effects of umbelliferone and esculetin in a mouse model of Parkinson’s disease. J. Neurosci. Res., 2013; 91: 453-461
    Google Scholar
  • 108. Tanner C.M., Kamel F., Ross G.W., Hoppin J.A., Goldman S.M., Korell M., Marras C., Bhudhikanok G.S., Kasten M., Chade A.R., Comyns K., Richards M.B., Meng C., Priestley B., Fernandez H.H. i wsp.: Rotenone, paraquat, and Parkinson’s disease. Environ. Health Perspect., 2011; 119: 866-872
    Google Scholar
  • 109. Tintner R., Jankovic J.: Dopamine agonists in Parkinson’s disease. Expert Opin. Investig. Drugs, 2003; 12: 1803-1820
    Google Scholar
  • 110. Torres F.C., Brucker N., Andrade S.F., Kawano D.F., Garcia S.C., Poser G.L., Eifler-Lima V.L.: New insights into the chemistry and antioxidant activity of coumarins. Curr. Top. Med. Chem., 2014; 14: 2600-2623
    Google Scholar
  • 111. Tsika E., Moore D.J.: Mechanisms of LRRK2-mediated neurodegeneration. Curr. Neurol. Neurosci. Rep., 2012; 12: 251-260
    Google Scholar
  • 112. Tuon T., Souza P.S., Santos M.F., Pereira F.T., Pedroso G.S., Luciano T.F., De Souza C.T., Dutra R.C., Silveira P.C.L., Pinho R.A.: Physical training regulates mitochondrial parameters and neuroinflammatory mechanisms in an experimental model of Parkinson’s disease. Oxid. Med. Cell. Longev., 2015; 2015: 261809
    Google Scholar
  • 113. Turrens J.F.: Mitochondrial formation of reactive oxygen species. J. Physiol., 2003; 552: 335-344
    Google Scholar
  • 114. Van Den Eeden S.K., Tanner C.M., Bernstein A.L., Fross R.D., Leimpeter A., Bloch D.A., Nelson L.M.: Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am. J. Epidemiol., 2003; 157: 1015-1022
    Google Scholar
  • 115. van der Mark M., Brouwer M., Kromhout H., Nijssen P., Huss A., Vermeulen R.: Is pesticide use related to Parkinson’s disease? Some clues to heterogeneity in study results. Environ. Health Perspect., 2012; 120: 340-347
    Google Scholar
  • 116. Von Campenhausen S., Bornschein B., Wick R., Bötzel K., Sampaio C., Poewe W., Oertel W., Siebert U., Berger K., Dodel R.: Prevalence and incidence of Parkinson’s disease in Europe. Eur. Neuropsychopharmacol., 2005; 15: 473-490
    Google Scholar
  • 117. Wang X., Michaelis E.K.: Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci., 2010; 2: 12
    Google Scholar
  • 118. Weingarten H.L.: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): one designer drug and serendipity. J. Forensic Sci., 1988; 33: 588-595
    Google Scholar
  • 119. Woźniak M., Ostrowska K., Szymański Ł., Wybieralska K., Zieliński R.: Aktywność przeciwrodnikowa ekstraktów szałwii i rozmarynu. Zywn. Nauka Technol. Jakość, 2009; 4: 133-141
    Google Scholar
  • 120. Xu J., Kao S.Y., Lee F.J., Song W., Jin L.W., Yankner B.A.: Dopamine-dependent neurotoxicity of α-synuclein: A mechanism for selective neurodegeneration in Parkinson disease. Nat. Med., 2002; 8: 600-606
    Google Scholar
  • 121. Yuan T.F., Paes F., Arias-Carrión O., Ferreira Rocha N.B., de SáFilho A.S., Machado S.: Neural mechanisms of exercise: anti-depression, neurogenesis, and serotonin signaling. CNS Neurol. Disord. Drug Targets, 2015; 14: 1307-1311
    Google Scholar
  • 122. Zabłocka A., Janusz M.: Effect of the proline-rich polypeptide complex/ColostrininTM on the enzymatic antioxidant system. Arch. Immunol. Ther. Exp., 2012, 60, 383-390
    Google Scholar
  • 123. Zabłocka A., Janusz M., Macała J., Lisowski J.: A proline-rich polypeptide complex and its nonapeptide fragment inhibit nitric oxide production induced in mice. Regul. Pept., 2005; 125: 35-39
    Google Scholar
  • 124. Zabłocka A., Janusz M., Macała J., Lisowski J.: A proline-rich polypeptide complex (PRP) isolated from ovine colostrum. Modulation of H2O2 and cytokine induction in human leukocytes. Int. Immunopharmacol., 2007; 7: 981-988
    Google Scholar
  • 125. Zini R., Morin C., Bertelli A., Bertelli A.A., Tillement J.P.: Resveratrol-induced limitation of dysfunction of mitochondria isolated from rat brain in an anoxia-reoxygenation model. Life Sci., 2002; 71: 3091-3108
    Google Scholar
  • 126. Zondler L., Miller-Fleming L., Repici M., Gonçalves S., Tenreiro S., Rosado-Ramos R., Betzer C., Straatman K.R., Jensen P.H., Giorgini F., Outeiro T.F.: DJ-1 interactions with α-synuclein attenuate aggregation and cellular toxicity in models of Parkinson’s disease. Cell Death Dis., 2014; 5: e1350
    Google Scholar
  • 127.
    Google Scholar

Full text

Skip to content