Pathomechanism of urinary tract infections caused by uropathogenic E. coli strains

REVIEW ARTICLE

Pathomechanism of urinary tract infections caused by uropathogenic E. coli strains

Beata Zalewska-Piątek 1 , Rafał Piątek 1 , Beata Krawczyk 1 , Marcin Olszewski 1

1. Katedra Biotechnologii Molekularnej i Mikrobiologii, Wydział Chemiczny, Politechnika Gdańska, Gdańsk,

Published: 2019-05-15
DOI: 10.5604/01.3001.0013.2022
GICID: 01.3001.0013.2022
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2019; 73 : 269-281

 

Abstract

Urinary tract infections (UTIs) are one of the most often and most common bacterial infections affecting even 150 millions of people each year worldwide. The problem of these infections results from chronicity, recurrences and increasing drug resistance of uropathogens causing them. Uropathogenic E. coli strains (UPEC) are the dominant causative agent of UTIs. These strains have many adhesion factors located on the surface of their cells responsible for the initial stage of adherence and colonization of the urinary tract. Among UPEC, the most common virulence factors are monoadhesive pili of type 1 and P and poliadhesins of Dr family, that biogensis is carried out via the conserved secretion pathway of chaperone-usher type (CUP). In addition to urovirulence factors, the UPEC strains developed a number of mechanisms important in pathogenesis of UTIs and enabling them to survive in the urinary tract environment (adhesion, invasion, formation of intracellular aggregates and quiescent bacterial reservoirs, strukturalfilamentation of bacteria, resistance to antibiotics). Commonly used antibiotic therapy seems to be very effective in the control and treatment of UTIs. However, the increasing multidrug resistance of bacterial strains and the high frequency of recurrences and chronicity of the infections are the basis for the development of alternative therapeutic forms and prevention strategies.

References

  • 1. Apodaca G.: The uroepithelium: not just a passive barrier. Traffic, 2004; 5: 117-128
    Google Scholar
  • 2. Berger C.N., Billker O., Meyer T.F., Servin A.L., Kansau I.: Differential recognition of members of the carcinoembryonic antigen family by Afa/Dr adhesins of diffusely adhering Echerichia coli (Afa/Dr DAEC). Mol. Microbiol., 2004; 52: 963-983
    Google Scholar
  • 3. Berry R.E., Klumpp D.J., Schaeffer A.J.: Urothelial cultures support intracellular bacterial community formation by uropathogenic Escherichia coli. Infect. Immun., 2009; 77: 2762-2772
    Google Scholar
  • 4. Birder L.A.: More than just a barrier: urothelium as a drug target for urinary bladder pain. Am. J. Physiol. Renal Physiol., 2005; 289: F489-F495
    Google Scholar
  • 5. Bishop B.L., Duncan M.J., Song J., Li G., Zaas D., Abraham S.N.: Cyclic AMP-regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nat. Med., 2007; 13: 625-630
    Google Scholar
  • 6. Blango M.G., Ott E.M., Erman A., Veranic P., Mulvey M.A.: Forced resurgence and targeting of intracellular uropathogenic Escherichia coli reservoirs. PLoS One, 2014; 9: e93327
    Google Scholar
  • 7. Bradford P.A.: Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev., 2001; 14: 933-951
    Google Scholar
  • 8. Carnoy C., Moseley S.L.: Mutational analysis of receptor binding mediated by the Dr family of Escherichia coli adhesins. Mol. Microbiol., 1997; 23: 365-379
    Google Scholar
  • 9. Cassini A., Plachouras D., Eckmanns T., Abu Sin M., Blank H.P., Ducomble T., Haller S., Harder T., Klingeberg A., Sixtensson M., Velasco E., Weiß B., Kramarz P, Monnet D.L., Kretzschmar M.E., Suetens C.: Burden of six healthcare-associated infections on European population health: estimating incidence-based disability-adjusted life years through a population prevalence-based modeling study. PLoS Med., 2016; 13: e1002150
    Google Scholar
  • 10. Caza M., Kronstad J.W.: Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front. Cell. Infect. Microbiol., 2013; 3: 80
    Google Scholar
  • 11. Chassin C., Vimont S., Cluzeaud F., Bens M., Goujon J.M., Fernandez B., Hertig A., Rondeau E., Arlet G., Hornef M.W., Vandewalle A.: TLR4 facilitates translocation of bacteria across renal collecting duct cells. J. Am. Soc. Nephrol., 2008; 19: 2364-2374
    Google Scholar
  • 12. Chaturvedi K.S., Hung C.S., Crowley J.R., Stapleton A.E., Henderson J.P.: The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat. Chem. Biol., 2012; 8: 731-736
    Google Scholar
  • 13. Chen Y.H., Ko W.C., Hsueh P.R.: Emerging resistance problems and future perspectives in pharmacotherapy for complicated urinary tract infections. Expert Opin. Pharmacother., 2013; 14: 587-596
    Google Scholar
  • 14. Chenoweth C.E., Gould C.V., Saint S.: Diagnosis, management, and prevention of catheter-associated urinary tract infections. Infect. Dis. Clin. North Am., 2014; 28: 105-119
    Google Scholar
  • 15. Chlabicz S., Leszczynska K., Lukas W., Gualco L., Schito G., Naber K.G.: Uncomplicated lower urinary tract infections in females – clinical aspects, aetiology and antimicrobial resistance epidemiology. Results of the ARESC (Antimicrobial Resistance Epidemiological Survey on Cystitis) study in Poland and their implications for empiric therapy. Przegl. Epidemiol., 2011; 65: 345-51
    Google Scholar
  • 16. Chromek M., Slamová Z., Bergman P., Kovács L., Podracká L., Ehrén I., Hökfelt T., Gudmundsson G.H., Gallo R.L., Agerberth B., Brauner A.: The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat. Med., 2006; 12: 636-641
    Google Scholar
  • 17. Chue-Gonçalves M., Custódio C.C., Pelayo J.S., Nakazato G., Kobayashi R.K.: New approach for detection of Escherichia coli invasion to HeLa cells. J. Microbiol. Methods, 2018; 152: 31-35
    Google Scholar
  • 18. Conover M.S., Flores-Mireles A.L., Hibbing M.E., Dodson K., Hultgren S.J.: Establishment and characterization of UTI and CAUTI in a mouse model. J. Vis. Exp., 2015; 100: e52892
    Google Scholar
  • 19. Cunningham P.N., Wang Y., Guo R., He G., Quigg R.J.: Role of Toll-like receptor 4 in endotoxin-induced acute renal failure. J. Immunol., 2004; 172: 2629-2635
    Google Scholar
  • 20. Dhakal B.K., Mulvey M.A.: The UPEC pore-forming toxin α-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. Cell Host Microbe, 2012; 11: 58-69
    Google Scholar
  • 21. Dodson K.W., Pinkner J.S., Rose T., Magnusson G., Hultgren S.J., Waksman G.: Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell, 2001; 105: 733-743
    Google Scholar
  • 22. Emödy L., Kerényi M., Nagy G.: Virulence factors of uropathogenic Escherichia coli. Int. J. Antimicrob. Agents, 2003; 2: 29-33
    Google Scholar
  • 23. Eto D.S., Sundsbak J.L., Mulvey M.A.: Actin-gated intracellular growth and resurgence of uropathogenic Escherichia coli. Cell. Microbiol., 2006; 8: 704-717
    Google Scholar
  • 24. Flores-Mireles A.L., Walker J.N., Caparon M., Hultgren S.J.: Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol., 2015; 13: 269-284
    Google Scholar
  • 25. Foxman B.: Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am. J. Med., 2002; 113 (Suppl. 1A): 5S-13S
    Google Scholar
  • 26. Foxman B.: The epidemiology of urinary tract infection. Nat. Rev. Urol., 2010; 7: 653-660
    Google Scholar
  • 27. Foxman B.: Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect. Dis. Clin. North Am., 2014; 28: 1-13
    Google Scholar
  • 28. Garau J.: Other antimicrobials of interest in the era of extended-spectrum beta-lactamases: fosfomycin, nitrofurantoin and tigecycline. Clin. Microbiol. Infect., 2008; 14 (Suppl 1): 198-202
    Google Scholar
  • 29. Garcia E.C., Brumbaugh A.R., Mobley H.L.: Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. Infect. Immun., 2011; 79: 1225-1235
    Google Scholar
  • 30. Garcia M.I., Jouve M., Nataro J.P., Gounon P., Le Bouguénec C.: Characterization of the AfaD-like family of invasins encoded by pathogenic Escherichia coli associated with intestinal and extra-intestinal infections. FEBS Lett., 2000; 479: 111-117
    Google Scholar
  • 31. Garcia T.A., Ventura C.L., Smith M.A., Merrell D.S., O’Brien A.D.: Cytotoxic necrotizing factor 1 and hemolysin from uropathogenic Escherichia coli elicit different host responses in the murine bladder. Infect. Immun., 2013; 81: 99-109
    Google Scholar
  • 32. Geibel S., Waksman G.: The molecular dissection of the chaperone-usher pathway. Biochim. Biophys. Acta, 2014; 1843: 1559-1567
    Google Scholar
  • 33. Goluszko P., Moseley S.L., Truong L.D., Kaul A., Williford J.R., Selvarangan R., Nowicki S., Nowicki B.: Development of experimental model of chronic pyelonephritis with Escherichia coli O75:K5:H-bearing Dr fimbriae: mutation in the dra region prevented tubulointerstitial nephritis. J. Clin. Investig., 1997; 99: 1662-1672
    Google Scholar
  • 34. Goluszko P., Niesel D., Nowicki B., Selvarangan R., Nowicki S., Hart A., Pawelczyk E., Das M., Urvil P., Hasan R.: Dr operon-associated invasiveness of Escherichia coli from pregnant patients with pyelonephritis. Infect. Immun., 2001; 69: 4678-4680
    Google Scholar
  • 35. Goluszko P., Popov V., Selvarangan R., Nowicki S., Pham T., Nowicki B.J.: Dr fimbriae operon of uropathogenic Escherichia coli mediate microtubule-dependent invasion to the HeLa epithelial cell line. J. Infect. Dis., 1997; 176: 158-167
    Google Scholar
  • 36. Guglietta A.: Recurrent urinary tract infections in women: risk factors, etiology, pathogenesis and prophylaxis. Future Microbiol., 2017; 12: 239-246
    Google Scholar
  • 37. Guignot J., Hudault S., Kansau I., Chau I., Servin A.L.: Human decay-accelerating factor and CEACAM receptor-mediated internalization and intracellular lifestyle of Afa/Dr diffusely adhering Escherichia coli in epithelial cells. Infect. Immun., 2009; 77: 517-531
    Google Scholar
  • 38. Gupta K., Bhadelia N.: Management of urinary tract infections from multidrug-resistant organisms. Infect. Dis. Clin. North Am., 2014; 28: 49-59
    Google Scholar
  • 39. Gupta K., Sahm D.F., Mayfield D., Stamm W.E.: Antimicrobial resistance among uropathogens that cause community-acquired urinary tract infections in women: A nationwide analysis. Clin. Infect. Dis., 2001; 33: 89-94
    Google Scholar
  • 40. Hannan T.J., Mysorekar I.U., Hung C.S., Isaacson-Schmid M.L., Hultgren S.J.: Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection. PLoS Pathog., 2010; 6: e1001042
    Google Scholar
  • 41. Hannan T.J., Totsika M., Mansfield K.J., Moore K.H., Schembri M.A., Hultgren S.J.: Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol. Rev., 2012; 36: 616-648
    Google Scholar
  • 42. Hooton T.M.: Clinical practice. Uncomplicated urinary tract infection. N. Engl. J. Med., 2012; 366: 1028-1037
    Google Scholar
  • 43. Hung C.S., Bouckaert J., Hung D., Pinkner J., Widberg C., DeFusco A., Auguste C.G., Strouse R., Langermann S., Waksman G., Hultgren S.J.: Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol. Microbiol., 2002; 44: 903-915
    Google Scholar
  • 44. Hung C.S., Dodson K.W., Hultgren S.J.: A murine model of urinary tract infection. Nat. Protoc., 2009; 4: 1230-1243
    Google Scholar
  • 45. Hunstad D.A., Justice S.S.: Intracellular lifestyles and immune evasion strategies of uropathogenic Escherichia coli. Annu. Rev. Microbiol., 2010; 64: 203-221
    Google Scholar
  • 46. Jacobsen S.M., Stickler D.J., Mobley H.L., Shirtliff M.E.: Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev., 2008; 21: 26-59
    Google Scholar
  • 47. Justice S.S., Hung C., Theriot J.A., Fletcher D.A., Anderson G.G., Footer M.J., Hultgren S.J.: Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc. Natl. Acad. Sci. USA, 2004; 101: 1333-1338
    Google Scholar
  • 48. Justice S.S., Hunstad D.A.: UPEC hemolysin: more than just for making holes. Cell Host Microbe, 2012; 11: 4-5
    Google Scholar
  • 49. Justice S.S., Hunstad D.A., Seed P.C., Hultgren S.J.: Filamentation by Escherichia coli subverts innate defenses during urinary tract infection. Proc. Natl. Acad. Sci. USA, 2006; 103: 19884-19889
    Google Scholar
  • 50. Kahlmeter G., Poulsen H.O.: Antimicrobial susceptibility of Escherichia coli from community-acquired urinary tract infections in Europe: the ECO·SENS study revisited. Int. J. Antimicrob. Agents, 2012; 39: 45-51
    Google Scholar
  • 51. Kline K.A., Schwartz D.J., Lewis W.G., Hultgren S.J., Lewis A.L.: Immune activation and suppression by group B streptococcus in a murine model of urinary tract infection. Infect. Immun., 2011; 79: 3588-3595
    Google Scholar
  • 52. Korhonen T.K, Parkkinen J., Hacker J., Finne J., Pere A., Rhen M., Holthöfer H.: Binding of Escherichia coli S fimbriae to human kidney epithelium. Infect. Immun., 1986; 54: 322-327
    Google Scholar
  • 53. Korotkova N., Yang Y., Le Trong I., Cota E., Demeler B., Marchant J., Thomas W.E., Stenkamp R.E., Moseley S.L., Matthews S.: Binding of Dr adhesins of Escherichia coli to carcinoembryonic antigen triggers receptor dissociation. Mol. Microbiol., 2008; 67: 420-434
    Google Scholar
  • 54. Korotkova N., Yarova-Yarovaya Y., Tchesnokova V., Yazvenko N., Carl M.A., Stapleton A.E., Moseley S.L.: Escherichia coli DraE adhesin-associated bacterial internalization by epithelial cells is promoted independently by decay-accelerating factor and carcinoembryonic antigen-related cell adhesion molecule binding and does not require the DraD invasin. Infect. Immun., 2008; 76: 3869-3880
    Google Scholar
  • 55. Kot B., Wicha J., Żak-Puławska Z.: Susceptibility of Escherichia coli strains isolated from persons with urinary tract infections in 2007-2008 to antimicrobial agents. Przegl. Epidemiol., 2010; 64: 307-312
    Google Scholar
  • 56. Landraud L., Pulcini C., Gounon P., Flatau G., Boquet P., Lemichez E.: E. coli CNF1 toxin: a two-in-one system for host-cell invasion. Int. J. Med. Microbiol., 2004; 293: 513-518
    Google Scholar
  • 57. Le Bouguénec C., Servin, A.L.: Diffusely adherent Escherichia coli strains expressing Afa/Dr adhesins (Afa/Dr DAEC): hitherto unrecognized pathogens. FEMS Microbiol. Lett., 2006; 256: 185-194
    Google Scholar
  • 58. Leffler H., Svanborg-Edén C.: Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells. Infect. Immun., 1981; 34: 920-929
    Google Scholar
  • 59. Levison M.E., Kaye D.: Treatment of complicated urinary tract infections with an emphasis on drug-resistant gram-negative uropathogens. Curr. Infect. Dis. Rep., 2013; 15: 109-115
    Google Scholar
  • 60. Lewis A.J. Richards A.C., Mulvey M.A.: Invasion of host cells and tissues by uropathogenic bacteria. Microbiol. Spectr., 2016; 4: 1-29
    Google Scholar
  • 61. Lichtenberger P., Hooton T.M.: Complicated urinary tract infections. Curr. Infect. Dis. Rep., 2008; 10: 499-504
    Google Scholar
  • 62. Lo E., Nicolle L.E., Coffin S.E., Gould C., Maragakis L.L., Meddings J., Pegues D.A., Pettis A.M., Saint S., Yokoe D.S.: Strategies to prevent catheter-associated urinary tract infections in acute care hospitals. Infect. Control Hosp. Epidemiol., 2014; 35 (Suppl 2): S32-S47
    Google Scholar
  • 63. Martinez J.J., Hultgren S.J.: Requirement of Rho-family GTPases in the invasion of Type 1-piliated uropathogenic Escherichia coli. Cell. Microbiol., 2002; 4: 19-28
    Google Scholar
  • 64. Martinez J.J., Mulvey M.A., Schilling J.D., Pinkner J.S., Hultgren S.J.: Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J., 2000; 19: 2803-2812
    Google Scholar
  • 65. Melican K., Sandoval R.M., Kader A., Josefsson L., Tanner G.A., Molitoris B.A., Richter-Dahlfors A.: Uropathogenic Escherichia coli P and Type 1 fimbriae act in synergy in a living host to facilitate renal colonization leading to nephron obstruction. PLoS Pathog. 2011; 7: e1001298
    Google Scholar
  • 66. Miao Y., Li G., Zhang X., Xu H., Abraham S.N.: A TRP channel senses lysosome neutralization by pathogens to trigger their expulsion. Cell, 2015; 161: 1306-1319
    Google Scholar
  • 67. Miao Y., Wu J., Abraham S.N.: Ubiquitination of innate immune regulator TRAF3 orchestrates expulsion of intracellular bacteria by exocyst complex. Immunity, 2016; 45: 94-105
    Google Scholar
  • 68. Muenzner P., Kengmo Tchoupa A., Klauser B., Brunner T., Putze J., Dobrindt U., Hauck C.R.: Uropathogenic E. coli exploit CEA to promote colonization of the urogenital tract mucosa. PLoS Pathog., 2016; 12: e1005608
    Google Scholar
  • 69. Mulvey M.A., Lopez-Boado Y.S., Wilson C.L., Roth R., Parks W.C., Heuser J., Hultgren S.J.: Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science, 1998; 282: 1494-1497
    Google Scholar
  • 70. Mulvey M.A., Schilling J.D., Hultgren S.J.: Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect. Immun., 2001; 69: 4572-4579
    Google Scholar
  • 71. Mysorekar I.U., Hultgren S.J.: Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc. Natl. Acad. Sci. USA, 2006; 103: 14170-14175
    Google Scholar
  • 72. Naber K.G., Schito G., Botto H., Palou J., Mazzei T.: Surveillance study in Europe and Brazil on clinical aspects and Antimicrobial Resistance Epidemiology in Females with Cystitis (ARESC): implications for empiric therapy. Eur. Urol., 2008; 54: 1164-1175
    Google Scholar
  • 73. Nagamatsu K., Hannan T.J., Guest R.L., Kostakioti M., Hadjifrangiskou M., Binkley J., Dodson K., Raivio T.L., Hultgren S.J.: Dysregulation of Escherichia coli α-hemolysin expression alters the course of acute and persistent urinary tract infection. Proc. Natl. Acad. Sci. USA, 2015; 112: E871-E880
    Google Scholar
  • 74. Nielsen K.L., Dynesen P., Larsen P., Jakobsen L., Andersen P.S., Frimodt-Møller N.: Role of urinary cathelicidin LL-37 and human β-defensin 1 in uncomplicated Escherichia coli urinary tract infections. Infect. Immun., 2014; 82: 1572-1578
    Google Scholar
  • 75. Nielubowicz G.R., Mobley H.L.: Host-pathogen interactions in urinary tract infection. Nat. Rev. Urol., 2010; 7: 430-441
    Google Scholar
  • 76. Nowicki B., Moulds J., Hull R., Hull S.: A hemagglutinin of uropathogenic Escherichia coli recognizes the Dr blood group antigen. Infect. Immun., 1988; 56: 1057-1060
    Google Scholar
  • 77. Nowicki B., Selvarangan R., Nowicki S.: Family of Escherichia coli Dr adhesins: decay-accelerating factor receptor recognition and invasiveness. J. Infect. Dis., 2001; 183 (Suppl. 1): S24-S27
    Google Scholar
  • 78. O’Brien V.P., Hannan T.J., Nielsen H.V., Hultgren S.J.: Drug and vaccine development for the treatment and prevention of urinary tract infections. Microbiol. Spectr., 2016; 4: 1-62
    Google Scholar
  • 79. Oelschlaeger T.A., Dobrindt U., Hacker J.: Pathogenicity islands of uropathogenic E. coli and the evolution of virulence. Int. J. Antimicrob. Agents, 2002; 19: 517-521
    Google Scholar
  • 80. Paterson D.L.: Resistance in gram-negative bacteria: Enterobacteriaceae. Am. J. Infect. Control, 2006; 34 (5 Suppl 1): S20-S28
    Google Scholar
  • 81. Pendleton J.N., Gorman S.P., Gilmore B.F.: Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti Infect. Ther., 2013; 11: 297-308
    Google Scholar
  • 82. Pere A., Leinonen M., Väisänen-Rhen V., Rhen M., Korhonen T.K.: Occurrence of type-1C fimbriae on Escherichia coli strains isolated from human extraintestinal infections. J. Gen. Microbiol., 1985; 131: 1705-1711
    Google Scholar
  • 83. Piątek R., Zalewska B., Kolaj O., Ferens M., Nowicki B., Kur J.: Molecular aspects of biogenesis of Escherichia coli Dr fimbriae: characterization of DraB-DraE complexes. Infect. Immun., 2005; 73: 135-145
    Google Scholar
  • 84. Raz R., Gennesin Y., Wasser J., Stoler Z., Rosenfeld S., Rottensterich E., Stamm W.E.: Recurrent urinary tract infections in postmenopausal women. Clin. Infect. Dis., 2000; 30: 152-156
    Google Scholar
  • 85. Reigstad C.S., Hultgren S.J., Gordon J.I.: Functional genomic studies of uropathogenic Escherichia coli and host urothelial cells when intracellular bacterial communities are assembled. J. Biol. Chem., 2007; 282: 21259-21267
    Google Scholar
  • 86. Roberts J.A., Marklund B.I., Ilver D., Haslam D., Kaack M.B., Baskin G., Louis, M., Möllby R., Winberg J., Normark S.: The Gal(alpha 1-4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc. Natl. Acad. Sci. USA, 1994; 91: 11889-11893
    Google Scholar
  • 87. Robino L., Scavone P., Araujo L., Algorta G., Zunino P., Pírez M.C., Vignoli R.: Intracellular bacteria in the pathogenesis of Escherichia coli urinary tract infection in children. Clin. Infect. Dis., 2014; 59: e158-e164
    Google Scholar
  • 88. Rogers B.A., Sidjabat H.E., Paterson D.L.: Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J. Antimicrob. Chemother., 2011; 66: 1-14
    Google Scholar
  • 89. Ronald A.: The etiology of urinary tract infection: traditional and emerging pathogens. Dis. Mon., 2003; 49: 71-82
    Google Scholar
  • 90. Rosen D.A., Hooton T.M., Stamm W.E., Humphrey P.A., Hultgren S.J.: Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med., 2007; 4: e329
    Google Scholar
  • 91. Russo T.A., Stapleton A., Wenderoth S., Hooton T.M., Stamm W.E.: Chromosomal restriction fragment length polymorphism analysis of Escherichia coli strains causing recurrent urinary tract infections in young women. J. Infect. Dis., 1995; 172: 440-445
    Google Scholar
  • 92. Salvatore S., Salvatore S., Cattoni E., Siesto G., Serati M., Sorice P., Torella M.: Urinary tract infections in women. Eur. J. Obstet. Gynecol. Reprod. Biol., 2011; 156: 131-136
    Google Scholar
  • 93. Scholes D., Hooton T.M., Roberts P.L. Stapleton A.E., Gupta K., Stamm W.E.: Risk factors for recurrent urinary tract infection in young women. J. Infect. Dis., 2000; 182: 1177-1182
    Google Scholar
  • 94. Schwartz D.J., Chen S.L., Hultgren S.J., Seed P.C.: Population dynamics and niche distribution of uropathogenic Escherichia coli during acute and chronic urinary tract infection. Infect. Immun., 2011; 79: 4250-4259
    Google Scholar
  • 95. Selvarangan R., Goluszko P., Singhal J., Carnoy C., Moseley S., Hudson B., Nowicki S., Nowicki B.: Interaction of Dr adhesin with collagen type IV is a critical step in Escherichia coli renal persistence. Infect. Immun., 2004; 72: 4827-4835
    Google Scholar
  • 96. Servin A.L.: Pathogenesis of Afa/Dr diffusely adhering Escherichia coli. Clin. Microbiol. Rev., 2005; 18: 264-292
    Google Scholar
  • 97. Smaill F., Vazquez J.C.: Antibiotics for asymptomatic bacteriuria in pregnancy. Cochrane Database Syst. Rev., 2007; 2: CD000490
    Google Scholar
  • 98. Sokurenko E.V., Chesnokova V., Doyle R.J, Hasty D.L.: Diversity of the Escherichia coli type 1 fimbrial lectin. Differential binding to mannosides and uroepithelial cells. J. Biol. Chem., 1997; 272: 17880-17886
    Google Scholar
  • 99. Song J., Bishop B.L., Li G., Duncan M.J., Abraham S.N.: TLR4-initiated and cAMP-mediated abrogation of bacterial invasion of the bladder. Cell Host Microbe, 2007; 1: 287-298
    Google Scholar
  • 100. Song J., Bishop B.L., Li G., Grady R., Stapleton A., Abraham S.N.: TLR4-mediated expulsion of bacteria from infected bladder epithelial cells. Proc. Natl. Acad. Sci. USA, 2009; 106: 14966-14971
    Google Scholar
  • 101. Spaulding C.N., Schreiber H.L. 4th, Zheng W., Dodson K.W., Hazen J.E., Conover M.S., Wang F., Svenmarker P., Luna-Rico A., Francetic O., Andersson M., Hultgren S., Egelman E.H.: Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions. eLife, 2018; 7: e31662
    Google Scholar
  • 102. Stamm W.E., Norrby S.R.: Urinary tract infections: disease panorama and challenges. J. Infect. Dis., 2001; 183 (Suppl 1): S1-S4
    Google Scholar
  • 103. Terlizzi M.E., Gribaudo G., Maffei M.E.: UroPathogenic Escherichia coli (UPEC) Infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front. Microbiol., 2017; 8: 1566
    Google Scholar
  • 104. Thankavel K., Madison B., Ikeda T., Malaviya R., Shah A.H., Arumugam P.M., Abraham S.N.: Localization of a domain in the FimH adhesin of Escherichia coli type 1 fimbriae capable of receptor recognition and use of a domain-specific antibody to confer protection against experimental urinary tract infection. Clin. Invest., 1997; 100: 1123-1136
    Google Scholar
  • 105. Thurston T.L., Wandel M.P., von Muhlinen N., Foeglein A., Randow F.: Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature, 2012; 482: 414-418
    Google Scholar
  • 106. Valdebenito M., Crumbliss A.L., Winkelmann G., Hantke K.: Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. Int. J. Med. Microbiol., 2006; 296: 513-520
    Google Scholar
  • 107. Vallet I., Olson J.W., Lory S., Lazdunski A., Filloux A.: The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc. Natl. Acad. Sci. USA, 2001; 98: 6911-6916
    Google Scholar
  • 108. Valore E.V., Park C.H., Quayle A.J., Wiles K.R., McCray P.B. Jr, Ganz T.: Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J. Clin. Invest., 1998; 101: 1633-1642
    Google Scholar
  • 109. Waksman G., Hultgren S.J.: Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat. Rev. Microbiol., 2009; 7: 765-774
    Google Scholar
  • 110. Wankel B., Ouyang J., Guo X., Hadjiolova K., Miller J., Liao Y., Tham D.K., Romih R., Andrade L.R., Gumper I., Simon J.P., Sachdeva R., Tolmachova T., Seabra M.C., Fukuda M. i wsp.: Sequential and compartmentalized action of Rabs, SNAREs, and MAL in the apical delivery of fusiform vesicles in urothelial umbrella cells. Mol. Biol. Cell, 2016; 27: 1621-1634
    Google Scholar
  • 111. Watts R.E., Totsika M., Challinor V.L., Mabbett A.N., Ulett G.C., De Voss J.J., Schembri M.A.: Contribution of siderophore systems to growth and urinary tract colonization of asymptomatic bacteriuria Escherichia coli. Infect. Immun., 2012; 80: 333-344
    Google Scholar
  • 112. Werneburg G.T., Thanassi D.G.: Pili assembled by the chaperone/usher pathway in Escherichia coli and Salmonella. EcoSal Plus, 2018; 8: 1-37
    Google Scholar
  • 113. Wróblewska-Seniuk K., Selvarangan R., Hart A., Pladzyk R., Goluszko P., Jafari A., du Merle L., Nowicki S., Yallampalli C., Le Bouguénec C., Nowicki B.: Dra/AfaE adhesin of uropathogenic Dr/Afa+ Escherichia coli mediates mortality in pregnant rats. Infect. Immun., 2005; 73: 7597-7601
    Google Scholar
  • 114. Wurpel D.J., Beatson S.A., Totsika M, Petty N.K., Schembri M.A.: Chaperone-usher fimbriae of Escherichia coli. PLoS One, 2013; 8: e52835
    Google Scholar
  • 115. Yamamoto S.: Molecular epidemiology of uropathogenic Escherichia coli. J. Infect. Chemother., 2007; 13: 68-73
    Google Scholar
  • 116. Zalewska-Piątek B., Bury K., Piątek R., Bruździak P., Kur J.: Type II secretory pathway for surface secretion of DraD invasin from the uropathogenic Escherichia coli Dr+ strain. J. Bacteriol., 2008; 190: 5044-5056
    Google Scholar
  • 117. Zalewska-Piątek B., Piątek R., Olszewski M., Kur J.: Identification of antigen Ag43 in uropathogenic Escherichia coli Dr+ strains and defining its role in the pathogenesis of urinary tract infections. Microbiology, 2015; 161:1034-1049
    Google Scholar
  • 118. Zalewska Piątek B.M., Wilkanowicz S.I., Piątek R.J., Kur J.W.: Biofilm formation as a virulence determinant of uropathogenic Escherichia coli Dr+ strains. Pol. J. Microbiol., 2009; 58: 223-229
    Google Scholar
  • 119. Zavialov A., Zav’yalova G., Korpela T., Zav’yalov V.: FGL chaperone-assembled fimbrial polyadhesins: anti-immune armament of Gram-negative bacterial pathogens. FEMS Microbiol. Rev., 2007; 31: 478-514
    Google Scholar
  • 120. Zowawi H.M., Harris P.N., Roberts M.J., Tambyah P.A., Schembri M.A., Pezzani M.D., Williamson D.A., Paterson D.L.: The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat. Rev. Urol., 2015; 12: 570-584
    Google Scholar

Full text

Skip to content