Changes in Oxidative Stress Index and Lipid Peroxidation Product in the Brain of Rats with Lesion of Central Dopaminergic System after Propofol Administration
Ewa Romuk 1 , Wioletta Szczurek 1 , Przemysław Nowak 2 , Magdalena Prudel-Babiuch 1 , Ryszard Szkilnik 3 , Małgorzata Dydoń-Pikor 1 , Joanna Rokicka 1 , Ewa Birkner 1Abstract
Propofol is a commonly used intravenous anesthetic agent with antioxidant properties. However, the effect of propofol on oxidative stress index (OSI) and lipid peroxidation in Parkinson’s disease is still unknown. The present study aimed to evaluate the effect of propofol on OSI and malondialdehyde (MDA) level in the selected brain regions of the rats with Parkinson’s disease (PD). 32 male Wistar rats were divided into four groups: I- control group, II- group with PD, III-control group with propofol, IV-PD group with propofol. 60mg/kg of propofol was given to the 8-weeks-old rats intraperitoneally, and the selected parts of the rats’ brains (frontal cortex, striatum, thalamus and hippocampus) were isolated after decapitation. The concentration of MDA, which is a marker of lipid peroxidation, and OSI were measured. In group IV compared to group II, was observed a significant MDA level decrease in the cortex (39%, p <0.001), striatum (28%, p <0.001), hippocampus (21%, p <0.05) and thalamus (20%, p <0.05), together with a decreased OSI level in the thalamus (71%, p <0,001), cortex (70%, p <0.05), striatum (65%, p <0.001), and hippocampus (57%, p <0.05). In group III compared to group I was observed decrease in MDA level in the cortex (40%, p <0.001). Propofol inhibits oxidative stress in all the evaluated structures of the rat brain with Parkinson’s disease. There are significant differences in the response of brain tissues to administered propofol between rats with PD and healthy ones.
References
- 1. Acar A., Ugur Cevik M., Evliyaoglu O., Uzar E., Tamam Y., Arıkanoglu A., Yucel Y., Varol S., Onder H., Taşdemir N.: Evaluation of serum oxidant/antioxidant balance in multiple sclerosis. Acta Neurol. Belg., 2012; 112(3): 275–80
Google Scholar - 2. Adembri C., Venturi L., Tani A., Chiarugi A., Gramigni E., Cozzi A., Pancani T., De Gaudio R.A., Pellegrini-Giampietro D.E.: Neuroprotective effects of propofol in models of cerebral ischemia: inhibition of mitochondrial swelling as a possible mechanism. Anesthesiology, 2006; 104(1): 80–9
Google Scholar - 3. Ayala A., Muñoz M.F., Argüelles S..: Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev., 2014; 2014: 360438
Google Scholar - 4. Balci Y.I., Acer S., Yagci R., Kucukatay V., Sarbay H., Bozkurt K., Polat A.: N-acetylcysteine supplementation reduces oxidative stress for cytosine arabinoside in rat model. Int. Ophthalmol., 2017; 37: 209–14
Google Scholar - 5. Carrié I., Clément M., de Javel D., Francès H., Bourre J.M.: Specific phospholipid fatty acid composition of brain regions in mice. Effects of n-3 polyunsaturated fatty acid deficiency and phospholipid supplementation. J. Lipid Res., 2000; 41(3): 465–72
Google Scholar - 6. Cunha M.P., Martín-de-Saavedra M.D., Romero A., Egea J., Ludka F.K., Tasca C.I., Farina M., Rodrigues A.L., López M.G.: Both creatine and its product phosphocreatine reduce oxidative stress and afford neuroprotection in an in vitro Parkinson’s model. ASN Neuro., 2014; 6(6): 1759091414554945
Google Scholar - 7. Dias V., Junn E., Mouradian M.M.: The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis., 2013; 3(4): 461–91
Google Scholar - 8. Erel O.: A new automated colorimetric method for measuring total oxidant status. Clin. Biochem., 2005; 38(12): 1103–11
Google Scholar - 9. Erel O.: A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem., 2004; 37(4): 277–85
Google Scholar - 10. Fábregas N., Rapado J., Gambús P.L., Valero R., Carrero E., Salvador L., Nalda-Felipe M.A., Trocóniz I.F.: Modeling of the sedative and airway obstruction effects of propofol in patients with Parkinson disease undergoing stereotactic surgery. Anesthesiology, 2002; 97(6): 1378–86
Google Scholar - 11. Floor E., Wetzel M.G.: Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J. Neurochem., 1998; 70(1): 268–75
Google Scholar - 12. Gressler L.T., Sutili F.J., da Costa S.T., Parodi T.V., Pês Tda S., Koakoski G., Barcellos L.J., Baldisserotto B.: Hematological, morphological, biochemical and hydromineral responses in Rhamdia quelen sedated with propofol. Fish. Physiol. Biochem., 2015; 41(2): 463–72
Google Scholar - 13. Ikawa M., Okazawa H., Kudo T., Kuriyama M., Fujibayashi Y., Yoneda M.: Evaluation of striatal oxidative stress in patients with Parkinson’s disease using [Cu-62]ATSM PET. Nucl. Med. Biol., 2011; 38(7): 945–51
Google Scholar - 14. Javed H., Azimullah S., Haque M.E., Ojha S.K.: Cannabinoid type 2 (CB2) receptors activation protects against oxidative stress and neuroinflammation associated dopaminergic neurodegeneration in rotenone model of Parkinson’s disease. Front Neurosci., 2016; 10: 321
Google Scholar - 15. Jin H., Kanthasamy A., Ghosh A., Anantharam V., Kalyanaraman B., Kanthasamy A.G.: Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochim. Biophys. Acta, 2014; 1842(8): 1282–94
Google Scholar - 16. Kato R., Foëx P.: Myocardial protection by anesthetic agents against ischemia-reperfusion injury: an update for anesthesiologists. Can. J. Anaesth., 2002; 49(8): 777–91
Google Scholar - 17. Kostrzewa J.P., Kostrzewa R.A., Kostrzewa R.M., Brus R., Nowak P.: Perinatal 6-hydroxydopamine to produce a lifelong model of severe Parkinson’s disease. Curr. Top. Behav. Neurosci., 2016; 29: 313–32
Google Scholar - 18. Kostrzewa R.M., Kostrzewa J.P., Brus R., Kostrzewa R.A., Nowak P.: Proposed animal model of severe Parkinson’s disease: neonatal 6-hydroxydopamine lesion of dopaminergic innervation of striatum. J. Neural. Transm. Suppl., 2006; 2006(70): 277–9
Google Scholar - 19. Lee H., Jang Y.H., Lee S.R.: Protective effect of propofol against kainic acid induced lipid peroxidation in mouse brain homogenates: comparison with trolox and melatonin. J. Neurosurg. Anesthesiol., 2005; 17(3): 144–8
Google Scholar - 20. Lee H.M., Koh S.B.: Many faces of Parkinson’s disease: Non-motor symptoms of Parkinson’s disease. J. Mov. Disord., 2015; 8(2): 92–7
Google Scholar - 21. Lee J.Y.: Oxidative stress due to anesthesia and surgical trauma and comparison of the effects of propofol and thiopental in dogs. J. Vet. Med. Sci., 2012; 74(5): 663–5
Google Scholar - 22. Lee J.Y., Kim M.C.: Effect of propofol on oxidative stress status in erythrocytes from dogs under general anaesthesia. Acta Vet. Scand., 2012; 54: 76
Google Scholar - 23. Levant B., Ozias M.K., Carlson S.E.: Specific brain regions of female rats are differentially depleted of docosahexaenoic acid by reproductive activity and an (n-3) fatty acid-deficient diet. J. Nutr., 2007; 137(1): 130–4
Google Scholar - 24. Li Volti G., Murabito P., Attaguile G., Rodella L.F., Astuto M., Di Giacomo C., Gullo A., Giovanni P., Volti L.: Antioxidant properties of propofol: when oxidative stress sleeps with patients. EXCLI J., 2006; 5: 25–32
Google Scholar - 25. Lin W.C., Chou K.H., Lee P.L., Huang Y.C., Tsai N.W., Chen H.L., Cheng K.Y., Wang H.C., Lin T.K., Li S.H., Chen M.H., Lu C.H., Lin C.P.: Brain mediators of systemic oxidative stress on perceptual impairments in Parkinson’s disease. J. Transl. Med., 2015; 13: 386
Google Scholar - 26. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951; 193(1): 265–75
Google Scholar - 27. Mari P.E.: Propofol: therapeutic indications and side-effects. Curr. Pharm. Des., 2004; 10(29): 3639–49
Google Scholar - 28. McKeage K., Perry C.M.: Propofol: a review of its use in intensive care sedation of adults. CNS Drugs, 2003; 17(4): 235–72
Google Scholar - 29. Mentese U., Dogan O.V., Turan I., Usta S., Dogan E., Mentese S.O., Demir S., Ozer T., Aykan A.C., Alver A.: Oxidant-antioxidant balance during on-pump coronary artery bypass grafting. Sci. World J., 2014; 2014: 263058
Google Scholar - 30. Mylonas C., Kouretas D.: Lipid peroxidation and tissue damage. In Vivo, 1999; 13(3): 295–309
Google Scholar - 31. Ohkawa H., Ohishi N., Yagi K.: Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979; 95(2): 351–8
Google Scholar - 32. Oztürk E., Demirbilek S., Kadir But A., Saricicek V., Gulec M., Akyol O., Ozcan Ersoy M.: Antioxidant properties of propofol and erythropoietin after closed head injury in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2005; 29(6): 922–7
Google Scholar - 33. Oztürk E., Demirbilek S., Köroğlu A., But A., Begeç Z.O., Gülec M., Akyol O., Ersoy M.O.: Propofol and erythropoietin antioxidant properties in rat brain injured tissue. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008; 32(1): 81–6
Google Scholar - 34. Romuk E., Szczurek W., Nowak P., Kwiecień I., Stolecka D., Birkner E.: Influence of propofol on oxidative-antioxidative system parameters in peripheral organs of rats with Parkinson disease. Postępy Hig. Med. Dośw., 2015; 69: 661–7
Google Scholar - 35. Sanyal J., Bandyopadhyay S.K., Banerjee T.K., Mukherjee S.C., Chakraborty D.P., Ray B.C., Rao V.R.: Plasma levels of lipid peroxides in patients with Parkinson’s disease. Eur. Rev. Med. Pharmacol. Sci., 2009; 13: 129–132
Google Scholar - 36. Shichiri M.: The role of lipid peroxidation in neurological disorders. J. Clin. Biochem. Nutr., 2014; 54(3): 151–60
Google Scholar - 37. Shokrzadeh M., Zamani E., Mehrzad M., Norian Y., Shaki F.: Protective effects of propofol against methamphetamine-induced neurotoxicity. Toxicol. Int., 2015; 22(1): 92–9
Google Scholar - 38. Sirmatel O., Sert C., Sirmatel F., Selek S., Yokus B.: Total antioxidant capacity, total oxidant status and oxidative stress index in the men exposed to 1.5 T static magnetic field. Gen. Physiol. Biophys., 2007; 26(2): 86–90
Google Scholar - 39. Uttara B., Singh A.V., Zamboni P., Mahajan R.T.: Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009; 7(1): 65–74
Google Scholar