The analysis of nanomechanical properties of Candida spp. by atomic force microscopy (AFM) method
Małgorzata Tokarska-Rodak 1 , Sławomir Czernik 2 , Marta Chwedczuk 2 , Dorota Plewik 1 , Tomasz Grudniewski 3 , Ewa Teresa Pawłowicz-Sosnowska 1Abstract
The aim of the study was to analyze the selected nanomechanical properties of Candida spp: Candida albicans (standard strain ATCC 10231), Candida albicans (clinical strain, cultured from an oral swab), Candida lipolytica (clinical strain, cultured from a nosal swab) in atomic force microscopy (AFM). The culture Candida spp. was performed of Tryptone Soya Broth (BioMaxima). The topography and sample properties were analysed in AFM (Ntegra Spectra C from NT) and the results were carried out using NOVA 1.1.0.1824 software. C. albicans ATCC 10231 cells were significantly higher 1.81 μm (p = 0.001) from clinical strains: C. albicans (1.30 μm) and C. lipolytica (1.23 μm). C. albicans ATCC 10231 cells, and C. albicans cells of the clinical strain were softer, especially in the top parts of cells, than C. lipolytica cells. Adhesion force measured for C. albicans ATCC 10231 was 62.83 nN, and was significantly higher compared to the values obtained for C. albicans (41.93 nN, p = 0.0002 ) and C. lipolytica (41.78 nN, p = 0.0002 ). The stiffness of the Candida spp. cell surface was comparable and was in the range of 5–6 nA. The differences in height may result from different conditions in which clinical strains grow. Adhesion force can be helpful in the analysis of the degree of destruction of the cell wall by various substances. The conducted analyses showed morphological differences and the differences in mechanical properties of the researched Candida spp. This data may be important in assessing their susceptibility to the effects of various substances of a lytic nature.
References
- 1. Chen L.Y., Yang S.P., Chen T.L., Liao S.Y., Chen Y.Y., Chan Y.J., Chen L.K., Wang F.D.: Clinical significance of time to positivity for yeast in candidemia. J. Microbiol. Immunol. Infect., 2015; 48(4): 425–30
Google Scholar - 2. D’Antonio D., Romano F., Pontieri E., Fioritoni G., Caracciolo C., Bianchini S., Olioso P., Staniscia T., Sferra R., Boccia S., Vetuschi A., Federico G., Gaudio E., Carruba G.: Catheter-related candidemia caused by Candida lipolytica in a patient receiving allogeneic bone marrow transplantation. J. Clin. Microbiol., 2002; 40(4): 1381–6
Google Scholar - 3. Dufrêne Y.F.: Atomic force microscopy in microbiology: New structural and functional insights into the microbial cell surface. MBio, 2014; 5(4): e01363–14
Google Scholar - 4. Formosa C., Schiavone M., Boisrame A., Richard M.L., Duval R.E., Dague E.: Multiparametric imaging of adhesive nanodomains at the surface of Candida albicans by atomic force microscopy. Nanomedicine, 2015; 11(1): 57–65
Google Scholar - 5. Janeczko M., Kubiński K., Martyna A., Muzyczka A., Boguszewska- Czubara A., Czernik S., Tokarska-Rodak M., Chwedczuk M., Demchuk O.M., Golczyk H., Masłyk M.: 1,4-Naphthoquinone derivatives potently suppress Candida albicans growth, inhibit formation of hyphae and show no toxicity toward zebrafish embryos. J. Med. Microbiol., 2018; 67(4): 598–609
Google Scholar - 6. Jarzynka S., Swoboda-Kopeć E., Dąbkowska M., Augustynowicz- Kopeć E.: Phenotypic and genotypic characteristic of Candida spp. strains isolated from patients with suspected catheter-related bloodstrem fungal infections. Postępy Nauk Medycznych, 2015; 28: 16–22
Google Scholar - 7. Krzaczkowska J., Fabiszewska A.U.: Yarrowia lipolytica – niekonwencjonalne drożdże w biotechnologii. Post. Mikrobiol., 2015; 54(1): 33–43
Google Scholar - 8. Liu W.C., Chan M.C., Lin T.Y., Hsu C.H., Chiu S.K.: Candida lipolytica candidemia as a rare infectious complication of acute pancreatitis: A case report and literature review. J. Microbiol. Immunol. Infect., 2013; 46(5): 393–6
Google Scholar - 9. Liu W.L., Lai C.C., Li M.C., Wu C.J., Ko W.C., Hung Y.L., Tang H.J., Hsueh P.R.: Clinical manifestations of candidemia caused by uncommon Candida species and antifungal susceptibility of the isolates in a regional hospital in Taiwan, 2007-2014. J. Microbiol. Immunol. Infect., 2017 (in press)
Google Scholar - 10. Ma S., Ge W., Yan Y., Huang X., Ma L., Li C., Yu S., Chen C.: Effects of Streptococcus sanguinis bacteriocin on deformation, adhesion ability, and Young’s modulus of Candida albicans. Biomed Res. Int., 2017; 2017: 5291486
Google Scholar - 11. Noble S.M., Gianetti B.A., Witchley J.N.: Candida albicans cell type switching and functional plasticity in the mammalian host. Nat. Rev. Microbiol., 2017; 15(2): 96–108
Google Scholar - 12. Polyakov P., Soussen C., Duan J., Duval J.F., Brie D., Francius G.: Automated force volume image processing for biological samples. PLoS One, 2011; 6(4): e18887
Google Scholar - 13. Quilès F., Accoceberry I., Couzigou C., Francius G., Noël T., El- Kirat-Chatel S.: AFM combined to ATR-FTIR reveals Candida cell wall changes under caspofungin treatment. Nanoscale, 2017; 9(36): 137319: 13731–8
Google Scholar - 14. Staniszewska M., Bondaryk M., Kowalska M., Magda U., Łuka M., Ochal Z., Kurzątkowski W.: Patogeneza i leczenie zakażeń Candida spp. Post. Mikrobiol., 2014; 53: 229–240
Google Scholar - 15. Tyagi A.K., Malik A.: In situ SEM, TEM and AFM studies of the antimicrobial activity of lemon grass oil in liquid and vapour phase against Candida albicans. Micron, 2010; 41(7): 797–805
Google Scholar