Chemokines – role in inflammatory and cancer diseases

REVIEW ARTICLE

Chemokines – role in inflammatory and cancer diseases

Sylwia Cisoń-Jurek 1 , Paulina Czajka-Francuz 1 , Tomasz Francuz 1 , Jerzy Wojnar 1

1. Klinika Chorób Wewnętrznych i Chemioterapii Onkologicznej, Śląski Uniwersytet Medyczny, Katowice, Polska,

Published: 2019-08-23
DOI: 10.5604/01.3001.0013.3669
GICID: 01.3001.0013.3669
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2019; 73 : 372-386

 

Abstract

Over 50 human chemokines are known at present; the number of the newly discovered compounds from this group still grows. These proteins of low molecular weight, belonging to the family of cytokines with chemotactic properties. Chemokines participate in the physiological and pathological processes of the organism. Recent papers show their role in the processes of embryogenesis, organogenesis, allergies, wound healing, angiogenesis and apoptosis, the course of viral and bacterial infections, autoimmune diseases and cancerogenesis. Chemokines play crucial role in activation and migration of immune cells. Being a key player in chronic inflammation, chemokines may interfere the processes of cellular differentiation and contribute to loss of control over proliferation. Coexistence of inflammatory and cancerogenesis processes, impact of chemokines on cells associated with the tumor and stromal cells, mechanisms of immunological escape is considered to be a current scientific issue. Newly discovered functions of chemokines may reveal their new roles and create the new therapeutic perspectives. It is important to understand the relationship between the structure and function of chemokine receptors, the regulation of their signaling pathways and the genetic and epigenetic mechanisms that regulate the expression of chemokines and their receptors. This article presents the current state of knowledge regarding the construction and classification of chemokines and summarizes the most prominent roles of chemokines. Chemokines are still the subject of many scientific studies, new functions are being discovered. It gives an opportunity to limit the development of many dangerous diseases.

References

  • 1. Agesen T.H., Sveen A., Merok M.A., Lind G.E., Nesbakken A., SkotheimR.I., Lothe R.A.: ColoGuideEx: A robust gene classifier specificfor stage II colorectal cancer prognosis. Gut, 2012; 61: 1560–7
    Google Scholar
  • 2. Akishima-Fukasawa Y., Nakanishi Y., Ino Y., Moriya Y., KanaiY., Hirohashi S.: Prognostic significance of CXCL12 expression inpatients with colorectal carcinoma. Am. J. Clin. Pathol., 2009; 132:202–10
    Google Scholar
  • 3. Alberts B., Johnson A., Lewis J., Morgan D., Raff M., Roberts K.,Walter K.: Molecular Biology of the Cell. Garland Science, NewYork 2015, 814–9
    Google Scholar
  • 4. Alon R., Chen S., Fuhlbrigge R., Puri K.D., Springer T.A.: Thekinetics and shear threshold of transient and rolling interactionsof L-selectin with its ligand on leukocytes. Proc. Natl. Acad. Sci.USA, 1998; 95: 11631–6
    Google Scholar
  • 5. Bachelerie F., Ben-Baruch A., Burkhardt A.M., Combadiere C.,Farber J.M., Graham G.J., Horuk R., Sparre-Ulrich A.H., Locati M.,Luster A.D., Mantovani A., Matsushima K., Murphy P.M., NibbsR., Nomiyama H. i wsp.: International Union of Basic and ClinicalPharmacology. LXXXIX. Update on the extended family of chemokinereceptors and introducing a new nomenclature for atypicalchemokine receptors. Pharmacol Rev., 2014; 66: 1–79
    Google Scholar
  • 6. Bachelerie F., Graham G.J., Locati M., Mantovani A., MurphyP.M., Nibbs R., Rot A., Sozzani S., Thelen M.: New nomenclaturefor atypical chemokine receptors. Nat. Immunol., 2014; 15: 207–8
    Google Scholar
  • 7. Bailey C., Negus R., Morris A., Ziprin P., Goldin R., Allavena P.,Peck D., Darzi A.: Chemokine expression is associated with the accumulationof tumor associated macrophages (TAMs) and progressionin human colorectal cancer. Clin. Exp. Metastasis, 2007; 24: 121–30
    Google Scholar
  • 8. Bajetto A., Bonavia R., Barbero S., Schettini G.: Characterizationof chemokines and their receptors in the central nervous system:physiopathological implications. J. Neurochem., 2002; 82: 1311–29
    Google Scholar
  • 9. Balkwill F.: Cancer and the chemokine network. Nat. Rev. Cancer,2004; 4: 540–550
    Google Scholar
  • 10. Balkwill F., Mantovani A.: Inflammation and cancer: back toVirchow? Lancet, 2001; 357: 539–45
    Google Scholar
  • 11. Berlin C., Bargatze R.F., Campbell J.J., von Andrian U.H., SzaboM.C., Hasslen S.R., Nelson R.D., Berg E.L., Erlandsen S.L., ButcherE.C.: α4 integrins mediate lymphocyte attachment and rolling underphysiologic flow. Cell, 1995; 80: 413–22
    Google Scholar
  • 12. Bingle L., Brown N.J., Lewis C.E.: The role of tumour-associatedmacrophages in tumour progression: implications for new anticancertherapies. J. Pathol., 2002; 196: 254–65
    Google Scholar
  • 13. Brew R., Erikson J.S., West D.C., Kinsella A.R., Slavin J., ChristmasS.E.: Interleukin-8 as an autocrine growth factor for humancolon carcinoma cells in vitro. Cytokine, 200; 12: 78–85
    Google Scholar
  • 14. Butcher E.C., Williams M., Youngman K., Rott L., Briskin M.:Lymphocyte trafficking and regional immunity. Adv. Immunol.,1999; 72: 209–53
    Google Scholar
  • 15. Cheadle E.J., Riyad K., Subar D., Rothwell D.G., Ashton G., BathaH., Sherlock D.J., Hawkins R.E., Gilham D.E.: Eotaxin-2 and colorectalcancer: A potential target for immune therapy. Clin. Cancer Res.,2007; 13: 5719–28
    Google Scholar
  • 16. Clore G.M., Gronenborn A.M.: Three-dimensional structures ofα-chemokines and β-chemokines. FASEB J., 1995; 9: 57–62
    Google Scholar
  • 17. Correale P., Rotundo M.S., Botta C., del Vecchio M.T., GinanneschiC., Licchetta A., Conca R., Apollinari S., De Luca F., Tassone P., TagliaferriP.: Tumor infiltration by T lymphocytes expressing chemokinereceptor 7 (CCR7) is predictive of favorable outcome in patients withadvanced colorectal carcinoma. Clin. Cancer Res., 2012; 18: 850–7
    Google Scholar
  • 18. Desbaillets I., Diserens A.C., Tribolet N., Hamou M.F., Van MeirE.G.: Upregulation of interleukin 8 by oxygen-deprived cells in glioblastomasuggests a role in leukocyte activation, chemotaxis, andangiogenesis. J. Exp. Med., 1997; 186: 1201–12
    Google Scholar
  • 19. Fuhlbrigge R.C., Alon R., Puri K.D., Lowe J.B., Springer T.A.: Sialylated,fucosylated ligands for L-selectin expressed on leukocytesmediate tethering and rolling adhesions in physiologic flow conditions.J. Cell Biol., 1996; 135: 837–48
    Google Scholar
  • 20. Gangadhar T., Nandi S., Salgia R.: The role of chemokine receptorCXCR4 in lung cancer. Cancer Biol. Ther., 2010; 9: 409–16
    Google Scholar
  • 21. Gerard C., Rollins B.J.: Chemokines and disease. Nat. Immunol.,2001; 2: 108–115
    Google Scholar
  • 22. Gębura K., Bogunia-Kubik K.: Kliniczne znaczenie receptorachemokinowego CXCR4. Postępy Hig. Med. Dośw., 2012; 66: 252–66
    Google Scholar
  • 23. Ghadjar P., Coupland S.E., Na I.K., Noutsias M., Letsch A., StrouxA., Bauer S., Buhr H.J., Thiel E., Scheibenbogen C. Keilholz U.: Chemokinereceptor CCR6 expression level and liver metastases in colorectalcancer. J. Clin. Oncol., 2006; 24: 1910–6
    Google Scholar
  • 24. Ghadjar P., Rubie C., Aebersold D.M., Keilholz U.: The chemokineCCL20 and its receptor CCR6 in human malignancy with focus oncolorectal cancer. Int. J. Cancer, 2009; 125: 741–5
    Google Scholar
  • 25. Gonzalo J.A., Lloyd C.M., Peled A., Delaney T., Coyle A.J., Gutierrez-Ramos J.C.: Critical involvement of the chemotactic axis CXCR4/stromal cell-derived factor-1α in the inflammatory component ofallergic airway disease. J. Immunol., 2000; 165: 499–508
    Google Scholar
  • 26. Grayson M.H., Holtzman M.J.: Chemokine signaling regulatesapoptosis as well as immune cell traffic in host defense. Cell Cycle,2006; 5: 380–3
    Google Scholar
  • 27. Griffith J.W., Sokol C.L., Luster A.D.: Chemokines and chemokinereceptors: positioning cells for host defense and immunity. Annu.Rev. Immunol., 2014; 32: 659–702
    Google Scholar
  • 28. Guan E., Wang J., Norcross M.A., Identification of human macrophageinflammatory proteins 1α and 1β as a native secreted heterodimer.J. Biol. Chem., 2001; 276: 12404–9
    Google Scholar
  • 29. Günther K., Leier J., Henning G., Dimmler A., Weissbach R., HohenbergerW., Förster R.: Prediction of lymph node metastasis in colorectal carcinoma by expression of chemokine receptor CCR7.Int. J. Cancer, 2005; 116: 726–33
    Google Scholar
  • 30. Hashimoto W., Osaki T., Okamura H., Robbins P.D., KurimotoM., Nagata S., Lotze M.T., Tahara H.: Differential antitumor effectsof administration of recombinant IL-18 or recombinant IL-12 aremediated primarily by Fas-Fas ligand- and perforin-induced tumorapoptosis, respectively. J. Immunol., 1999; 163: 583–9
    Google Scholar
  • 31. Heikenwalder M., Borsig L.: Pathways of metastasizing intestinalcancer cells revealed: how will fighting metastases at the site of cancercell arrest affect drug development? Future Oncol., 2013; 9: 1–4
    Google Scholar
  • 32. Hu H., Sun L., Guo C., Liu Q., Zhou Z., Peng L., Pan J., Yu L., Lou J., YangZ., Zhao P., Ran Y.: Tumor cell-microenvironment interaction modelscoupled with clinical validation reveal CCL2 and SNCG as two predictors ofcolorectal cancer hepatic metastasis. Clin. Cancer Res., 2009; 15: 5485–93
    Google Scholar
  • 33. Iwata T., Tanaka K., Inoue Y., Toiyama Y., Hiro J., Fujikawa H.,Okugawa Y., Uchida K., Mohri Y., Kusunoki M.: Macrophage inflammatoryprotein-3 alpha (MIP-3a) is a novel serum prognostic markerin patients with colorectal cancer. J. Surg. Oncol., 2013; 107: 160–6
    Google Scholar
  • 34. Jiang J., Beller D.I., Frendl G., Graves D.T.: Monocyte chemoattractantprotein-1 regulates adhesion molecule expression and cytokineproduction in human monocytes. J. Immunol., 1992; 148: 2423–8
    Google Scholar
  • 35. Kawada K., Hosogi H., Sonoshita M., Sakashita H., Manabe T.,Shimahara Y., Sakai Y., Takabayashi A., Oshima M., Taketo M.M.:Chemokine receptor CXCR3 promotes colon cancer metastasis tolymph nodes. Oncogene, 2007; 26: 4679–88
    Google Scholar
  • 36. Kawada K., Taketo M.M.: Significance and mechanism of lymphnode metastasis in cancer progression. Cancer Res., 2011; 71: 1214–8
    Google Scholar
  • 37. Kitadai Y., Haruma K., Sumii K., Yamamoto S., Ue T., YokozakiH., Yasui W., Ohmoto Y., Kajiyama G., Fidler I.J., Tahara E.: Expressionof interleukin-8 correlates with vascularity in human gastriccarcinomas. Am. J. Pathol., 1998; 152: 93–100
    Google Scholar
  • 38. Konoplev S., Rassidakis G.Z., Estey E., Kantarjian H., Liakou C.I.,Huang X. Xiao L., Andreeff M., Konopleva M., Medeiros L.J.: Overexpressionof CXCR4 predicts adverse overall and event-free survival inpatients with unmutated FLT3 acute myeloid leukemia with normalkaryotype. Cancer, 2007; 109: 1152–6
    Google Scholar
  • 39. Koshiba T., Hosotani R., Miyamoto Y., Ida J., Tsuji S., NakajimaS., Kawaguchi M., Kobayashi H., Doi R., Hori T., Fujii N., Imamura M.:Expression of stromal cell-derived factor 1 and CXCR4 ligand receptorsystem in pancreatic cancer: a possible role for tumor progression.Clin. Cancer Res., 2000; 6: 3530–5
    Google Scholar
  • 40. Krajowy Rejestr Nowotworów. http://www.onkologia.org.pl/nowotwory-zlosliwe-jelita-grubego-c18-21 (23.11.2017)
    Google Scholar
  • 41. Lewis C.E., Leek R., Harris A., McGee J.O..: Cytokine regulationof angiogenesis in breast cancer: the role of tumor-associated macrophages.J. Leukoc. Biol., 1995; 57: 747–51
    Google Scholar
  • 42. Loetscher M., Gerber B., Loetscher P., Jones S.A., Piali L., Clark-Lewis I., Baggiolini M., Moser B.: Chemokine receptor specific forIP10 and mig: structure, function, and expression in activated Tlymphocytes.J. Exp. Med., 1996; 184: 963–9
    Google Scholar
  • 43. Luker K.E., Luker G.D.: Functions of CXCL12 and CXCR4 in breastcancer. Cancer Lett., 2006; 238: 30–41
    Google Scholar
  • 44. Ma L., Qiao H., He C., Yang Q., Cheung C.H., Kanwar J.R., Sun X.:Modulating the interaction of CXCR4 and CXCL12 by low-molecularweightheparin inhibits hepatic metastasis of colon cancer. Invest.New Drugs, 2012; 30: 508–17
    Google Scholar
  • 45. Majka M., Rozmysłowicz T., Honczarenko M., Ratajczak J., WasikM., Gaulton G.N., Ratajczak M.Z.: Biological significance of the expressionof HIV-related chemokine receptors (CCR5 and CCR4) and their ligandsby human hematopoietic cell lines. Leukemia, 2000; 14: 1821–32
    Google Scholar
  • 46. Mantovani A., Sica A., Sozzani S., Allavena P., Vecchi A., Locati M.:The chemokine system in diverse forms of macrophage activation andpolarization. Trends Immunol., 2004; 25: 677–86
    Google Scholar
  • 47. Mashino K., Sadanaga N., Yamaguchi H., Tanaka F., Ohta M.,Shibuta K., Inoue H., Mori M.: Expression of chemokine receptorCCR7 is associated with lymph node metastasis of gastric carcinoma.Cancer Res., 2002; 62: 2937–41
    Google Scholar
  • 48. Maśliński W., Kontny E.: Podstawy immunologii dla reumatologów.Narodowy Instytut Geriatrii, Reumatologii i Rehabilitacji,Warszawa 2015; 49–50
    Google Scholar
  • 49. Ménétrier-Caux C., Bain C., Favrot M.C., Duc A., Blay J.Y.: Renalcell carcinoma induces interleukin 10 and prostaglandin E2production by monocytes. Br. J. Cancer, 1999; 79: 119–30
    Google Scholar
  • 50. Mirshahi F., Pourtau J., Li H., Muraine M., Trochon V., LegrandE., Vannier J., Soria J., Vasse M., Soria C.: SDF-1 activity onmicrovascular endothelial cells: consequences on angiogenesisin in vitro and in vivo models. Thromb. Res., 2000; 99, 587–94
    Google Scholar
  • 51. Miyamoto M., Shimizu Y., Okada K., Kashii Y., Higuchi K.,Watanabe A.: Effect of interleukin-8 on production of tumorassociatedsubstances and autocrine growth of human liver andpancreatic cancer cells. Cancer Immunol. Immunother., 1998;47: 47–57
    Google Scholar
  • 52. Moser B., Wolf M., Walz A., Loetscher P.: Chemokines: multiple levelsof leukocyte migration control. Trends Immunol., 2004; 25: 75–84
    Google Scholar
  • 53. Möhle R., Schittenhelm M., Failenschmid C., Bautz F., Kratz-Albers K., Serve H., Brugger W., Kanz L.: Functional response ofleukaemic blasts to stromal cell-derived factor-1 correlates withpreferential expression of the chemokine receptor CXCR4 in acutemyelomonocytic and lymphoblastic leukaemia. Br. J. Haematol.,2000; 110: 563–72
    Google Scholar
  • 54. Murdoch C., Finn A.: Chemokine receptors and their role in inflammationand infectious diseases. Blood, 2000; 95: 3032–43
    Google Scholar
  • 55. Müller A., Homey B., Soto H., Ge N., Catron D., Buchanan M.E.,McClanahan T., Murphy E., Yuan W., Wagner S. N., Barrera J.L., MoharA., Verástegui E., Zlotnik A.: Involvement of chemokine receptors inbreast cancer metastasis. Nature, 2001; 410: 50–6
    Google Scholar
  • 56. Nibbs R., Graham G., Rot A.: Chemokines on the move: controlby the chemokine „interceptors” Duffy blood group antigen and D6.Semin. Immunol., 2003; 15: 287–94
    Google Scholar
  • 57. Ning Y., Manegold P.C., Hong Y.K., Zhang W., Pohl A., Lurje G.,Winder T., Yang D., LaBonte M.J., Wilson P.M., Ladner R.D., Lenz H.J.:Interkeukin-8 is associated with proliferation, migration, angiogenesisand chemosensitivity in vitro and in vivo in colon cancer cellline models. Int. J. Cancer, 2011; 128: 2038–49
    Google Scholar
  • 58. Ohta M., Tanaka F., Yamaguchi H., Sadanaga N., Inoue H., MoriM.: The high expression of Fractalkine results in a better prognosisfor colorectal cancer patients. Int. J. Oncol., 2005; 26: 41–7
    Google Scholar
  • 59. Pagès F., Berger A., Camus M., Sanchez-Cabo F., Costes A., MolidorR., Mlecnik B., Kirilovsky A., Nilsson M., Damotte D., Meatchi T.,Bruneval P., Cugnenc P.H., Trajanoski Z., Fridman W.H., Galon J.: Effectormemory T cells, early metastasis, and survival in colorectalcancer. N. Engl. J. Med., 2005; 353: 2654–66
    Google Scholar
  • 60. Palikhe N.S., Kim S.H., Cho B.Y., Ye Y.M., Choi G.S., Park H.S.:Genetic variability in CRTH2 polymorphism increases eotaxin-2levels in patients with aspirin exacerbated respiratory disease. Allergy,2009; 65: 338–46
    Google Scholar
  • 61. Parfejevs V., Debbache J., Shakhova O., Schaefer S.M., GlauschM., Wegner M., Suter U., Riekstina U., Werner S., Sommer L.: Injuryactivatedglial cells promote wound healing of the adult skin in mice.Nat. Commun., 2018; 9: 236
    Google Scholar
  • 62. Pope S.M., Zimmermann N., Stringer K.F., Karow M.L., RothenbergM.E.: The eotaxin chemokines and CCR3 are fundamental regulatorsof allergen-induced pulmonary eosinophilia. J. Immunol.,2005; 175: 5341–50
    Google Scholar
  • 63. Proudfoot A.E.: Chemokine receptors: multifaced therapeutictargets. Nat. Rev. Immunol., 2002; 2: 106–15
    Google Scholar
  • 64. Qian B.Z., Li J., Zhang H., Kitamura T., Zhang J., Campion L.R.,Kaiser E.A., Snyder L.A., Pollard J.W.: CCL2 recruits inflammatorymonocytes to facilitate breast-tumour metastasis. Nature, 2011;475: 222–5
    Google Scholar
  • 65. Qian K., Morris-Natschke S.L., Lee K.H.: HIV entry inhibitorsand their potential in HIV therapy. Med. Res. Rev., 2009; 29: 369–93
    Google Scholar
  • 66. Reich N., Beyer C., Gelse K., Akhmetshina A., Dees C., ZwerinaJ., Schett G., Distler O., Distler J.H.: Microparticles stimulate angiogenesisby inducing ELR+ CXC-chemokines in synovial fibroblasts.J. Cell. Mol. Med., 2011; 15: 756–62
    Google Scholar
  • 67. Romain B., Hachet-Haas M., Rohr S., Brigand C., Galzi J.L., GaubM.P., Pencreach E., Guenot D.: Hypoxia differentially regulatedCXCR4 and CXCR7 signaling in colon cancer. Mol. Cancer, 2014; 13: 58
    Google Scholar
  • 68. Scotton C.J., Wilson J.L., Milliken D., Stamp G., Balkwill F.R.:Epithelial cancer cell migration: a role for chemokine receptors?Cancer Res., 2001; 61: 4961–5
    Google Scholar
  • 69. Shinagawa K., Kitadai Y., Tanaka M., Sumida T., Kodama M. HigashiY., Tanaka S., Yasui W., Chayama K.: Mesenchymal stem cellsenhance growth and metastasis of colon cancer. Int. J. Cancer, 2010;127: 2323–33
    Google Scholar
  • 70. Slettenaar V.I., Wilson J.L.: The chemokine network: a target incancer biology? Adv. Drug Deliv. Rev., 2006; 58: 962–74
    Google Scholar
  • 71. Strieter R.M.: Chemokines: not just leukocyte chemoattractantsin the promotion of cancer. Nat. Immunol., 2001; 2: 285–6
    Google Scholar
  • 72. Szekanecz Z., Koch A.E.: Macrophages and their products inrheumatoid arthritis. Curr. Opin. Rheumatol., 2007; 19: 289–95
    Google Scholar
  • 73. Szekanecz Z., Pakozdi A., Szentpetery A., Besenyei T., Koch A.E.:Chemokines and angiogenesis in rheumatoid arthritis. Front. Biosci.,2009; 1: 44–51
    Google Scholar
  • 74. Szekanecz Z., Strieter R.M., Kunkel S.L., Koch A.E.: Chemokinesin rheumatoid arthritis. Springer Semin. Immunopathol.,1998; 20: 115–32
    Google Scholar
  • 75. Szekanecz Z., Vegvari A., Szabo Z., Koch A.E.: Chemokines andchemokine receptors in arthritis. Front. Biosci., 2010; 2: 153–67
    Google Scholar
  • 76. Taichman R.S., Cooper C., Keller E.T., Pienta K.J., TaichmanN.S., McCauley L.K.: Use of the stromal cell-derived factor-1/CXCR4pathway in prostate cancer metastasis to bone. Cancer Res., 2002;62: 1832–7
    Google Scholar
  • 77. Umehara H., Bloom E.T., Okazaki T., Nagano Y., Yoshie O., ImaiT.: Fractalkine in vascular biology: from basic research to clinicaldisease. Arterioscler. Thromb. Vasc. Biol., 2004; 24: 34–40
    Google Scholar
  • 78. Van Coillie E., Van Damme J., Opdenakker G.: The MCP/eotaxinsubfamily of CC chemokines. Cytokine Growth Factor Rev.,1999; 10: 61–86
    Google Scholar
  • 79. Wang D., Wang H., Brown J., Daikoku T., Ning W., Shi Q., RichmondA., Strieter R., Dey S.K., DuBois R.N.: CXCL1 induced by prostaglandinE2 promotes angiogenesis in colorectal cancer. J. Exp.Med., 2006; 203: 941–51
    Google Scholar
  • 80. Wang J.M., Taraboletti G., Matsushima K., Van Damme J., MantovaniA.: Induction of haptotactic migration of melanoma cells byneutrophil activating protein/interleukin-8. Biochem. Biophys. Res.Comm., 1990; 169: 165–70
    Google Scholar
  • 81. Waśniowska K.: Chemokiny – perspektywy zastosowaniazwiązków blokujących ich działanie w terapii. Postępy Hig. Med.Dośw., 2004; 58: 37–46
    Google Scholar
  • 82. Wendt M.K., Johanesen P.A., Kang-Decker N., Binion D.G., ShahV., Dwinell M.B.: Silencing of epithelial CXCL12 expression by DNAhypermethylation promotes colonic carcinoma metastasis. Oncogene,2006; 25: 4986–97
    Google Scholar
  • 83. Wightman S.C., Uppal A., Pitroda S.P., Ganai S., Burnette B., StackM., Oshima G., Khan S., Huang X., Posner M.C., Weichselbaum R.R.,Khodarev N.N.: Oncogenic CXCL10 signaling drives metastasis developmentand poor clinical outcome. Br. J. Cancer, 2015; 113: 327–35
    Google Scholar
  • 84. Wolf M.J., Hoos A., Bauer J., Boettcher S., Knust M., Weber A.,Simonavicius M., Schneider C., Lang M., Stürzl M., Croner R.S., KonradA., Manz M.G., Moch H., Aguzzi A. i wsp.: Endothelial CCR2 signalinginduced by colon carcinoma cells enables extravasation viathe JAK2-Stat5 and p38MAPK pathway. Cancer Cell, 2012; 22: 91–105
    Google Scholar
  • 85. Yopp A.C., Shia J., Butte J.M., Allen P.J., Fong Y., Jarnagin W.R.,DeMatteo R.P., D’Angelica M.I.: CXCR4 expression predicts patientoutcome and recurrence patterns after hepatic resection for colorectalliver metastases. Ann. Surg. Oncol., 2012; 19: S339–S346
    Google Scholar
  • 86. Yuan A., Yang P.C., Yu C.J., Chen W.J., Lin F.Y., Kuo S.H., Luh K.T.:Interleukin-8 messenger ribonucleic acid expression correlates withtumor progression, tumor angiogenesis, patient survival, and timingof relapse in non-small-cell lung cancer. Am. J. Respir. Crit. CareMed., 2000; 162: 1957–63
    Google Scholar
  • 87. Zernecke A., Weber C.: Chemokines in atherosclerosis: proceedingsresumed. Arterioscler. Thromb. Vasc. Biol., 2014; 34: 742–750
    Google Scholar
  • 88. Zhao F.L., Guo W.: Expression of stromal derived factor-1 (SDF-1)and chemokine receptor (CXCR4) in bone metastasis of renal carcinoma.Mol. Biol. Rep., 2011; 38: 1039–45
    Google Scholar
  • 89. Zheng J., Yang M., Shao J., Miao Y., Han J., Du J.: Chemokine receptorCX3CR1 contributes to macrophage survival in tumor metastasis.Mol. Cancer, 2013; 12: 141
    Google Scholar
  • 90. Zhou Z., Subramanian P., Sevilmis G., Globke B., Soehnlein O.,Karshovska E., Megens R., Heyll K., Chun J., Saulnier-Blache J.S., ReinholzM., van Zandvoort M., Weber C., Schober A.: Lipoprotein-derivedlysophosphatidic acid promotes atherosclerosis by releasing CXCL1from the endothelium. Cell Metab., 2011; 13: 592–600
    Google Scholar
  • 91. Zipin-Roitman A., Meshel T., Sagi-Assif O., Shalmon B., Avivi C.,Pfeffer R.M., Witz I.P., Ben-Baruch A.: CXCL10 promotes invasionrelatedproperties in human colorectal carcinoma cells. Cancer Res.,2007; 67: 3396–3405
    Google Scholar

Full text

Skip to content