Paclitaxel in breast cancer – drug resistance and strategies to counteract it
Alicja Zajdel 1 , Daniel Wolny 1 , Magdalena Kałucka-Janik 1 , Adam Wilczok 1Abstract
Despite significant progress in the last few decades in breast cancer biology and the use of different therapeutic strategies, this cancer remains a serious clinical problem. Paclitaxel (PTX) is used to treat breast cancer both as a monotherapy and in combination with other anticancer drugs depending on the severity of the cancer, the presence of metastases and previous therapeutic management. It is characterized by high effectiveness both in early breast cancer and in metastatic breast cancer. Primary or acquired drug resistance of tumour cells to taxanes is a significant clinical problem in the treatment of various histological types of breast cancer. The main problem of resistance of tumour cells is the complexity and multifactorial nature of this phenomenon, which is conditioned by numerous different mechanisms that interact with each other. Among the known mechanisms of breast cancer cells resistance to PTX, the most important are the active removal of the drug from the cell related to the increased activity of ABC family membrane transporters, enhanced drug detoxification by cytochrome P450, CYP3A4/5 and CYP2C8 enzymes, changes within the molecular targets of PTX, microtubule and disorders of microtubule associated protein (MAPs) or apoptosis. This paper presents the latest reports on the mechanisms of drug resistance of breast cancer cells to PTX, pointing to modern strategies to counteract this adverse phenomenon.
References
- 1. Ajabnoor G.M., Crook T., Coley H.M.: Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells. Cell Death Dis., 2012; 3: e260
Google Scholar - 2. Alli E., Yang J.M., Ford J.M., Hait W.N.: Reversal of stathmin-mediated resistance to paclitaxel and vinblastine in human breast carcinoma cells. Mol. Pharmacol., 2007; 71: 1233–1240
Google Scholar - 3. Anreddy N., Gupta P., Kathawala R.J., Patel A., Wurpel J.N., Chen Z.S.: Tyrosine kinase inhibitors as reversal agents for ABC transporter mediated drug resistance. Molecules, 2014; 19: 13848–13877
Google Scholar - 4. Blanco E., Sangai T., Wu S., Hsiao A., Ruiz-Esparza G.U., Gonzalez-Delgado C.A., Cara F.E., Granados-Principal S., Evans K.W., Akcakanat A., Wang Y., Do K.A., Meric-Bernstam F., Ferrari M.: Colocalized delivery of rapamycin and paclitaxel to tumors enhances synergistic targeting of the PI3K/Akt/mTOR pathway. Mol. Ther., 2014; 22: 1310–1319
Google Scholar - 5. Brown R., Curry E., Magnani L., Wilhelm-Benartzi C.S., Borley, J.: Poised epigenetic states and acquired drug resistance in cancer. Nat. Rev. Cancer, 2014; 14: 747–753
Google Scholar - 6. Chen Y., Tang Y., Chen S., Nie D.: Regulation of drug resistance by human pregnane X receptor in breast cancer. Cancer Biol. Ther., 2009; 8: 1265–1272
Google Scholar - 7. Chen Z., Shi T., Zhang L., Zhu P., Deng M., Huang C., Hu T., Jiang L., Li J.: Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett., 2016; 370: 153–164
Google Scholar - 8. Choi Y.H., Yu A.M.: ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr. Pharm. Des., 2014; 20: 793–807
Google Scholar - 9. Conde I., Lobo M.V., Zamora J., Pérez J., González F.J., Alba E.,Fraile B., Paniagua R., Arenas M.I.: Human pregnane X receptor isexpressed in breast carcinomas, potential heterodimers formationbetween hPXR and RXR-alpha. BMC Cancer, 2008; 8: 174
Google Scholar - 10. Croker A.K., Goodale D., Chu J., Postenka C., Hedley B.D., HessD.A., Allan A.L.: High aldehyde dehydrogenase and expressionof cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J. Cell. Mol. Med., 2009; 13: 2236–2252
Google Scholar - 11. Cui S.Y., Wang R., Chen L.B.: MicroRNAs: key players of taxane resistance and their therapeutic potential in human cancers. J. Cell. Mol. Med., 2013; 17: 1207–1217
Google Scholar - 12. Dehghankelishadi P., Saadat E., Ravar F., Safavi M., Pordeli M., Gholami M., Dorkoosh F.A.: In vitro and in vivo evaluation of paclitaxel-lapatinib-loaded F127 pluronic micelles. Drug Dev. Ind. Pharm., 2017; 43: 390–398
Google Scholar - 13. Duan Z., Li X., Huang H., Yuan W., Zheng S.L., Liu X., Zhang Z., Choy E., Harmon D., Mankin H., Hornicek F.: Synthesis and evaluation of (2-(4-methoxyphenyl)-4-quinolinyl)(2-piperidinyl)methanol (NSC23925) isomers to reverse multidrug resistance in cancer. J. Med. Chem., 2012; 55: 3113–3121
Google Scholar - 14. Fletcher J.I., Williams R.T., Henderson M.J., Norris M.D., Haber M.: ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist. Updat., 2016; 26: 1–9
Google Scholar - 15. Fracasso P.M., Brady M.F., Moore D.H., Walker J.L., Rose P.G., Letvak L., Grogan T.M., McGuire W.P.: Phase II study of paclitaxel and valspodar (PSC 833) in refractory ovarian carcinoma: A gynecologic oncology group study. J. Clin. Oncol., 2001; 19: 2975–2982
Google Scholar - 16. Hansen S.N., Westergaard D., Thomsen M.B., Vistesen M., Do K.N., Fogh L., Belling K.C., Wang J., Yang H., Gupta R., Ditzel H.J., Moreira J., Brünner N., Stenvang J., Schrohl A.S.: Acquisition of docetaxel resistance in breast cancer cells reveals upregulation of ABCB1 expression as a key mediator of resistance accompanied by discrete upregulation of other specific genes and pathways. Tumour Biol., 2015; 36: 4327–4338
Google Scholar - 17. Hari M., Loganzo F., Annable T., Tan X., Musto S., Morilla D.B., Nettles J.H., Snyder J.P., Greenberger L.M.: Paclitaxel resistant cells have a mutation in the paclitaxel-binding region of β-tubulin (Asp26Glu) and less stable microtubules. Mol. Cancer Ther., 2006; 5: 270–278
Google Scholar - 18. Harris J.W., Rahman A., Kim B.R., Guengerich F.P., Collins J.M.: Metabolism of taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzyme. Cancer Res., 1994; 54: 4026–4035
Google Scholar - 19. Kapse-Mistry S., Govender T., Srivastava R., Yergeri M.: Nanodrug delivery in reversing multidrug resistance in cancer cells. Front. Pharmacol., 2014; 5: 159
Google Scholar - 20. Kastl L., Brown I., Schofield A.C.: Altered DNA methylation is associated with docetaxel resistance in human breast cancer cells. Int. J. Oncol., 2010; 36: 1235–1241
Google Scholar - 21. Kathawala R.J., Gupta P., Ashby C.R. Jr., Chen Z.S.: The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist. Updat., 2015; 18: 1–17
Google Scholar - 22. Kavallaris M.: Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer, 2010; 10: 194–204
Google Scholar - 23. Kelly R.J., Draper D., Chen C.C., Robey R.W., Figg W.D., Piekarz R.L., Chen X., Gardner E.R., Balis F.M., Venkatesan A.M., Steinberg S.M., Fojo T., Bates S.E.: A pharmacodynamic study of docetaxel in combination with the P-glycoprotein antagonist tariquidar (XR9576) in patients with lung, ovarian, and cervical cancer. Clin. Cancer Res., 2011; 17: 569–580
Google Scholar - 24. Kelly R.J., Robey R.W., Chen C.C., Draper D., Luchenko V., Barnett D., Oldham R.K., Caluag Z., Frye A.R., Steinberg S.M., Fojo T., Bates S.E.: A pharmacodynamic study of the P-glycoprotein antagonist CBT-1® in combination with paclitaxel in solid tumors. Oncologist, 2012; 17: 512
Google Scholar - 25. Kim M.S., Haney M.J., Zhao Y., Mahajan V., Deygen I., Klyachko N.L., Inskoe E., Piroyan A., Sokolsky M., Okolie O., Hingtgen S.D., Kabanov A.V., Batrakova E.V.: Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine, 2016; 12: 655–664
Google Scholar - 26. Kuang Y.H., Shen T., Chen X., Sodani K., Hopper-Borge E., Tiwari A.K., Lee J.W., Fu L.W., Chen Z.S.: Lapatinib and erlotinib are potent reversal agents for MRP7 (ABCC10)-mediated multidrug resistance. Biochem. Pharmacol., 2010; 79: 154–161
Google Scholar - 27. Lhommé C., Joly F., Walker J.L., Lissoni A.A., Nicoletto M.O., Manikhas G.M., Baekelandt M.M., Gordon A.N., Fracasso P.M., Mietlowski W.L., Jones G.J., Dugan M.H.: Phase III study of valspodar (PSC 833) combined with paclitaxel and carboplatin compared with paclitaxel and carboplatin alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary peritoneal cancer. J. Clin. Oncol., 2008; 26: 2674–2682
Google Scholar - 28. Li W., Zhai B., Zhi H., Li Y., Jia L., Ding C., Zhang B., You W.: Association of ABCB1, β tubulin I, and III with multidrug resistance of MCF7/DOC subline from breast cancer cell line MCF7. Tumour Biol., 2014; 35: 8883–8891
Google Scholar - 29. Li W.J., Zhong S.L., Wu Y.J., Xu W.D., Xu J.J., Tang J.H., Zhao J.H.: Systematic expression analysis of genes related to multidrug-resistance in isogenic docetaxel and adriamycin-resistant breast cancer cell lines. Mol. Biol. Rep., 2013; 40: 6143–6150
Google Scholar - 30. Litviakov N.V., Cherdyntseva N.V., Tsyganov M.M., Denisov E.V., Garbukov E.Y., Merzliakova M.K., Volkomorov V.V., Vtorushin S.V., Zavyalova M.V., Slonimskaya E.M., Perelmuter V.M.: Changing the expression vector of multidrug resistance genes is related to neoadjuvant chemotherapy response. Cancer Chemother. Pharmacol., 2013; 71: 153–163
Google Scholar - 31. Löwe J., Li H., Downing K.H., Nogales E.: Refined structure of αβ-tubulin at 3.5 A resolution. J. Mol. Biol., 2001; 313: 1045–1057
Google Scholar - 32. Luo Y., Wang X., Wang H., Xu Y., Wen Q., Fan S., Zhao R., Jiang S., Yang J., Liu Y., Li X., Xiong W., Ma J., Peng S., Zeng Z., Li X., Phillips J.B., Li G., Tan M., Zhou M.: High Bak expression is associated with a favorable prognosis in breast cancer and sensitizes breast cancer cells to paclitaxel. PLoS One, 2015; 10: e0138955
Google Scholar - 33. Malaguti P., Vari S., Cognetti F., Fabi A.: The mammalian target of rapamycin inhibitors in breast cancer: current evidence and future directions. Anticancer Res., 2013; 33: 21–28
Google Scholar - 34. Miki Y., Suzuki T., Kitada K., Yabuki N., Shibuya R., Moriya T., Ishida T., Ohuchi N., Blumberg B., Sasano H.: Expression of the steroid and xenobiotic receptor and its possible target gene, organic anion transporting polypeptide-A, in human breast carcinoma. Cancer Res., 2006; 66: 535–542
Google Scholar - 35. Murray S., Briasoulis E., Linardou H., Bafaloukos D., Papadimitriou C.: Taxane resistance in breast cancer: mechanisms, predictive biomarkers and circumvention strategies. Cancer Treat. Rev., 2012; 38: 890–903
Google Scholar - 36. Němcová-Fürstová V., Kopperová D., Balušíková K., Ehrlichová M., Brynychová V., Václavíková R., Daniel P., Souček P., Kovář J.: Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters. Toxicol. Appl. Pharmacol., 2016; 310: 215–228
Google Scholar - 37. Peereboom D.M., Murphy C., Ahluwalia M.S., Conlin A., Eichler A., Van Poznak C., Baar J., Elson P., Seidman A.D.: Phase II trial of patupilone in patients with brain metastases from breast cancer. Neuro Oncol., 2014; 16: 579–583
Google Scholar - 38. Perez EA.: Paclitaxel in breast cancer. Oncologist, 1998; 3: 373–389
Google Scholar - 39. Pusztai L., Wagner P., Ibrahim N., Rivera E., Theriault R., Booser D., Symmans F.W., Wong F., Blumenschein G., Fleming D.R., Rouzier R., Boniface G., Hortobagyi G.N.: Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer, 2005; 104: 682–691
Google Scholar - 40. Qiao E.Q., Yang H.J.: Effect of pregnane X receptor expression on drug resistance in breast cancer. Oncol. Lett., 2014; 7: 1191–1196
Google Scholar - 41. Rahman A., Korzekwa K.R., Grogan J., Gonzalez F.J., Harris J.W.: Selective biotransformation of taxol to 6α-hydroxytaxol by human cytochrome P450 2C8. Cancer Res., 1994; 54: 5543–5546
Google Scholar - 42. Reed K., Hembruff S.L., Sprowl J.A., Parissenti A.M.: The temporal relationship between ABCB1 promoter hypomethylation, ABCB1 expression and acquisition of drug resistance. Pharmacogenomics J., 2010; 10: 489–504
Google Scholar - 43. Roque D.M., Bellone S., English D.P., Buza N., Cocco E., Gasparrini S., Bortolomai I., Ratner E., Silasi D.A., Azodi M., Rutherford T.J., Schwartz P.E., Santin A.D.: Tubulin-β-III overexpression by uterine serous carcinomas is a marker for poor overall survival after platinum/taxane chemotherapy and sensitivity to epothilones. Cancer, 2013; 119: 2582–2592
Google Scholar - 44. Seiden M.V., Swenerton K.D., Matulonis U., Campos S., Rose P., Batist G., Ette E., Garg V., Fuller A., Harding M.W., Charpentier D.: A phase II study of the MDR inhibitor biricodar (INCEL, VX-710) and paclitaxel in women with advanced ovarian cancer refractory to paclitaxel therapy. Gynecol. Oncol., 2002; 86: 302–310
Google Scholar - 45. Sève P., Dumontet C.: Is class III β-tubulin a predictive factor in patients receiving tubulin-binding agents? Lancet Oncol., 2008; 9: 168–175
Google Scholar - 46. Sharifi S., Barar J., Hejazi M.S., Samadi N.: Roles of the Bcl-2/Bax ratio, caspase-8 and 9 in resistance of breast cancer cells to paclitaxel. Asian Pac. J. Cancer Prev., 2014; 15: 8617–8622
Google Scholar - 47. Shen T., Kuang Y.H., Ashby C.R., Lei Y., Chen A., Zhou Y., Chen X., Tiwari A.K., Hopper-Borge E., Ouyang J., Chen Z.S.: Imatinib and nilotinib reverse multidrug resistance in cancer cells by inhibiting the efflux activity of the MRP7 (ABCC10). PLoS One, 2009; 4: e7520
Google Scholar - 48. Shi X., Sun X.: Regulation of paclitaxel activity by microtubule-associated proteins in cancer chemotherapy. Cancer Chemother. Pharmacol., 2017; 80: 909–917
Google Scholar - 49. Sparano J.A., Vrdoljak E., Rixe O., Xu B., Manikhas A., Medina C., Da Costa S.C., Ro J., Rubio G., Rondinon M., Perez Manga G., Peck R., Poulart V., Conte P.: Randomized phase III trial of ixabepilone plus capecitabine versus capecitabine in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J. Clin. Oncol., 2010; 28: 3256–3263
Google Scholar - 50. Stavrovskaya A.A.: Cellular mechanisms of multidrug resistance of tumor cells. Biochemistry, 2000; 65: 95–106
Google Scholar - 51. Sudo T., Nitta M., Saya H., Ueno N.T.: Dependence of paclitaxel sensitivity on a functional spindle assembly checkpoint. Cancer Res., 2004; 64: 2502–2508
Google Scholar - 52. Sun Y.L., Kumar P., Sodani K., Patel A., Pan Y., Baer M.R., Chen Z.S., Jiang W.Q.: Ponatinib enhances anticancer drug sensitivity in MRP7-overexpressing cells. Oncol. Rep., 2014; 31: 1605–1612
Google Scholar - 53. Tamaki A., Ierano C., Szakacs G., Robey R.W., Bates S.E.: The controversial role of ABC transporters in clinical oncology. Essays Biochem., 2011; 50: 209–232
Google Scholar - 54. Tanaka S., Nohara T., Iwamoto M., Sumiyoshi K., Kimura K., Takahashi Y., Tanigawa N.: Tau expression and efficacy of paclitaxel treatment in metastatic breast cancer. Cancer Chemother. Pharmacol., 2009; 64: 341–346
Google Scholar - 55. Tanei T., Morimoto K., Shimazu K., Kim S.J., Tanji Y., Taguchi T., Tamaki Y., Noguchi S.: Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential paclitaxel and epirubicin- based chemotherapy for breast cancers. Clin. Cancer Res., 2009; 15: 4234–4241
Google Scholar - 56. Tian W., Liu J., Guo Y., Shen Y., Zhou D., Guo S.: Self-assembled micelles of amphiphilic PEGylated rapamycin for loading paclitaxel and resisting multidrug resistant cancer cells. J. Mater. Chem. B, 2015; 3: 1204–1207
Google Scholar - 57. Tiwari A.K., Sodani K., Dai C.L., Abuznait A.H., Singh S., Xiao Z.J., Patel A., Talele T.T., Fu L., Kaddoumi A., Gallo J.M., Chen Z.S.: Nilotinib potentiates anticancer drug sensitivity in murine ABCB1-, ABCG2-, and ABCC10-multidrug resistance xenograft models. Cancer Lett., 2013; 328: 307–317
Google Scholar - 58. Toppmeyer D., Seidman A.D., Pollak M., Russell C., Tkaczuk K., Verma S., Overmoyer B., Garg V., Ette E., Harding M.W., Demetri G.D.: Safety and efficacy of the multidrug resistance inhibitor Incel (biricodar; VX-710) in combination with paclitaxel for advanced breast cancer refractory to paclitaxel. Clin. Cancer Res., 2002; 8: 670–678
Google Scholar - 59. Wang M.Y., Chen P.S., Prakash E., Hsu H.C., Huang H.Y., Lin M.T., Chang K.J., Kuo M.L.: Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1. Cancer Res., 2009; 69: 3482–3491
Google Scholar - 60. Wang W., Zhang H., Wang X., Patterson J., Winter P., Graham K., Ghosh S., Lee J.C., Katsetos C.D., Mackey J.R., Tuszynski J.A., Wong G.K., Ludueña R.F.: Novel mutations involving βI-, βIIA-, or βIVB-tubulin isotypes with functional resemblance to βIII-tubulin in breast cancer. Protoplasma, 2017; 254: 1163–1173
Google Scholar - 61. Wang X., Yi L., Zhu Y., Zou J., Hong Y., Zheng W.: AKT signaling pathway in invasive ductal carcinoma of the breast: correlation with ERa, ERβ and HER-2 expression. Tumori, 2011; 97: 185–190
Google Scholar - 62. Wang Y., Yin S., Blade K., Cooper G., Menick D.R., Cabral F.: Mutations at leucine 215 of β-tubulin affect paclitaxel sensitivity by two distinct mechanisms. Biochemistry, 2006; 45: 185–194
Google Scholar - 63. Xu F., Wang F., Yang T., Sheng Y., Zhong T., Chen Y.: Differential drug resistance acquisition to doxorubicin and paclitaxel in breast cancer cells. Cancer Cell Int., 2014; 14: 538
Google Scholar - 64. Yang X., Shen J., Gao Y., Feng Y., Guan Y., Zhang Z., Mankin H., Hornicek F.J., Duan Z.: Nsc23925 prevents the development of paclitaxel resistance by inhibiting the introduction of P-glycoprotein and enhancing apoptosis. Int. J. Cancer., 2015; 137: 2029–2039
Google Scholar - 65. Yen W.C., Lamph W.W.: The selective retinoid X receptor agonist bexarotene (LGD1069, Targretin) prevents and overcomes multidrug resistance in advanced breast carcinoma. Mol. Cancer Ther., 2005; 4: 824–834
Google Scholar - 66. Yin S., Bhattacharya R., Cabral F.: Human mutations that confer paclitaxel resistance. Mol. Cancer Ther., 2010; 9: 327–335
Google Scholar - 67. Yin S., Cabral F., Veeraraghavan S.: Amino acid substitutions at proline 220 of β-tubulin confer resistance to paclitaxel and colcemid. Mol. Cancer Ther., 2007; 6: 2798–2806
Google Scholar - 68. Zhang H., Zhang X., Wu X., Li W., Su P., Cheng H., Xiang L., Gao P., Zhou G.: Interference of Frizzled 1 (FZD1) reverses multidrug resistance in breast cancer cells through the Wnt/β-catenin pathway. Cancer Lett., 2012; 323: 106–113
Google Scholar - 69. Zhang K., Song H., Yang P., Dai X., Li Y., Wang L., Du J., Pan K., Zhang T.: Silencing dishevelled-1 sensitizes paclitaxel-resistant human ovarian cancer cells via AKT/GSK-3β/β-catenin signalling. Cell Prolif., 2015; 48: 249–258
Google Scholar - 70. Zhao W., Song Y., Xu B., Zhan Q.: Overexpression of centrosomal protein Nlp confers breast carcinoma resistance to paclitaxel. Cancer Biol. Ther., 2012; 13:156–163
Google Scholar - 71. Zhuo W., Hu L., Lv J., Wang H., Zhou H., Fan L.: Role of pregnane X receptor in chemotherapeutic treatment. Cancer Chemother. Pharmacol., 2014; 74: 217–227
Google Scholar