Cancer-associated fibroblasts as a potential target in oncology therapy

REVIEW ARTICLE

Cancer-associated fibroblasts as a potential target in oncology therapy

Agnieszka Dominiak 1 , Tomasz Nowicki 2 , Dominika Łacheta 1 , Grażyna Nowicka 1

1. Zakład Biochemii i Farmakogenomiki, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej oraz Laboratorium Biochemii i Chemii Klinicznej Centrum Badań Przedklinicznych, Warszawski Uniwersytet Medyczny, Warszawa, Polska,
2. Student II Wydziału Lekarskiego oraz członek SKN FARMAKON, Warszawski Uniwersytet Medyczny, Warszawa, Polska,

Published: 2019-10-18
DOI: 10.5604/01.3001.0013.5379
GICID: 01.3001.0013.5379
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2019; 73 : 536-549

 

Abstract

Tumors make up a complex environment that consists of intensive proliferating cancer cells surrounded by normal cells. Fibroblasts recruited by cancer termed CAFs, are one of the major cell groups within the reactive stroma of the most common tumors. Because of the crosstalk between quiescent fibroblasts and cancer cells, fibroblasts undergo phenotypic transition and acquire new functions that have been “forced by a tumor”. CAFs affect the development of the drug resistance and cancer progression as they are involved in the growth of cancers, neoangiogenesis, immune evasion and metastatic colonisation in distant organs. Fibroblast-directed therapy offers the opportunity to prevent initiation, progression and metastasis of many invasive tumors. The current studies on CAF-based therapy focus on two strategies. The first strategy leads to the elimination of CAFs and the neutralization of their released factors and the second aims at reverting the CAF-phenotype to a “normal” fibroblast-phenotype. Although the results of preclinical studies conducted on cell cultures and animal models indicate that therapy aimed at reversion or inhibition CAFs function seem to be a promising therapeutic target, available clinical studies have not yet confirmed this. Nevertheless, it is necessary to underline that until now CAF-based therapy has been used in patients with advanced cancer and there is no clinical study using such therapy in the early stage of cancer. The available data also indicates that CAF-based therapy could be used in combination with common anticancer drugs to increase their effectiveness. Therefore, further studies on the usefulness of the proposed CAF-based therapy are needed.

References

  • 1. Adams S.J., Jones B.: Enhanced anti-tumor activity of dipeptidylpeptidase inhibitor PT-100 in combination with chemotherapy inmice. Cancer Res., 2004; 64: 882
    Google Scholar
  • 2. Adams S., Miller G.T., Jesson M.I., Watanabe T., Jones B., WallnerB.P.: PT-100, a small molecule dipeptidyl peptidase inhibitor, has potentantitumor effects and augments antibody-mediated cytotoxicityvia a novel immune mechanism. Cancer Res., 2004; 64: 5471–5480
    Google Scholar
  • 3. Aertgeerts K., Levin I., Shi L., Snell G.P., Jennings A., Prasad G.S.,Zhang Y., Kraus M.L., Salakian S., Sridhar V., Wijnands R., Tennant M.G.:Structural and kinetic analysis of the substrate specificity of humanfibroblast activation protein α. J. Biol. Chem., 2005; 280: 19441–19444
    Google Scholar
  • 4. Aggarwal S., Brennen W.N., Kole T.P., Schneider E., Topaloglu O.,Yates M., Cotter R.J., Denmeade S.R.: Fibroblast activation proteinpeptide substrates identified from human collagen I derived gelatincleavage sites. Biochemistry, 2008; 47: 1076–1086
    Google Scholar
  • 5. Amara N., Goven D., Prost F., Muloway R., Crestani B., BoczkowskiJ.: NOX4/NADPH oxidase expression is increased in pulmonaryfibroblasts from patients with idiopathic pulmonary fibrosis andmediates TGFβ1-induced fibroblast differentiation into myofibroblasts.Thorax, 2010; 65: 733–738
    Google Scholar
  • 6. Aprelikova O., Palla J., Hibler B., Yu X., Greer Y.E., Yi M., Stephens R.,Maxwell G.L., Jazaeri A., Risinger J.I., Rubin J.S., Niederhuber J.: Silencingof miR-148a in cancer-associated fibroblasts results in WNT10B-mediatedstimulation of tumor cell motility. Oncogene, 2013; 32: 3246–3253
    Google Scholar
  • 7. Balkwill F.: Cancer and the chemokine network. Nat. Rev. Cancer,2004; 4: 540–550
    Google Scholar
  • 8. Bechtel W., McGoohan S., Zeisberg E.M., Müller G.A., KalbacherH., Salant D.J., Müller C.A., Kalluri R., Zeisberg M.: Methylation determinesfibroblast activation and fibrogenesis in the kidney. Nat.Med., 2010; 16: 544–550
    Google Scholar
  • 9. Bhowmick N.A., Chytil A., Plieth D., Gorska A.E., Dumont N., ShappellS., Washington M.K., Neilson E.G., Moses H.L.: TGF-β signaling infibroblasts modulates the oncogenic potential of adjacent epithelia.Science, 2004; 303: 848–851
    Google Scholar
  • 10. Chan J.S., Sng M.K., Teo Z.Q., Chong H.C., Twang J.S., Tan N.S.:Targeting nuclear receptors in cancer-associated fibroblasts as concurrenttherapy to inhibit development of chemoresistant tumors.Oncogene, 2018; 37: 160–173
    Google Scholar
  • 11. Chang P.H., Hwang-Verslues W.W., Chang Y.C., Chen C.C., HsiaoM., Jeng Y.M., Chang K.J., Lee E.Y., Shew J.Y., Lee W.H.: Activation ofRobo1 signaling of breast cancer cells by Slit2 from stromal fibroblastrestrains tumorigenesis via blocking PI3K/Akt/β-catenin pathway.Cancer Res., 2012; 72: 4652–4661
    Google Scholar
  • 12. Cheteh E.H., Augsten M., Rundqvist H., Bianchi J., Sarne V., EgevadL., Bykov V.J., Östman A., Wiman K.G.: Human cancer-associatedfibroblasts enhance glutathione levels and antagonize drug-inducedprostate cancer cell death. Cell Death Dis., 2017; 8: e2848
    Google Scholar
  • 13. Cooper C.R., Chay C.H., Gendernalik J.D., Lee H.L., Bhatia J.,TaichmanR.S., McCauley L.K., Keller E.T., Pienta K.J.: Stromal factorsinvolved in prostate carcinoma metastasis to bone. Cancer,2003; 97: 739–747
    Google Scholar
  • 14. Coussens L.M., Fingleton B., Matrisian L.M.: Matrix metalloproteinaseinhibitors and cancer: trials and tribulations. Science,2002; 295: 2387–2392
    Google Scholar
  • 15. Devy L., Huang L., Naa L., Yanamandra N., Pieters H., Frans N.,Chang E., Tao Q., Vanhove M., Lejeune A., van Gool R., Sexton D.J.,Kuang G., Rank D., Hogan S. i wsp.: Selective inhibition of matrixmetalloproteinase-14 blocks tumor growth, invasion, and angiogenesis.Cancer Res., 2009; 69: 1517–1526
    Google Scholar
  • 16. Elenbaas B., Weinberg R.A.: Heterotypic signaling between epithelialtumor cells and fibroblasts in carcinoma formation. Exp. CellRes., 2001; 264: 169–184
    Google Scholar
  • 17. Fakhrai H., Dorigo O., Shawler D.L., Lin H., Mercola D., BlackK.L., Royston I., Sobol R.E.: Eradication of established intracranialrat gliomas by transforming growth factor β antisense gene therapy.Proc. Natl. Acad. Sci. USA, 1996; 93: 2909–2914
    Google Scholar
  • 18. Ferrari N., Calvo F.: Tumor microenvironment: unleashing metalloproteinasesto induce a CAF phenotype. Curr. Biol., 2014; 24:R1009-R1011
    Google Scholar
  • 19. Gao X., Sun J., Huang C., Hu X., Jiang N., Lu C.: RNAi-mediatedsilencing of NOX4 inhibited the invasion of gastric cancer cells throughJAK2/STAT3 signaling. Am. J. Transl. Res., 2017; 9: 4440–4449
    Google Scholar
  • 20. Gascard P., Tlsty T.D.: Carcinoma-associated fibroblasts: orchestratingthe composition of malignancy. Genes Dev., 2016; 30: 1002–1019
    Google Scholar
  • 21. Gialeli C., Theocharis A.D., Karamanos N.K.: Roles of matrix metalloproteinasesin cancer progression and their pharmacologicaltargeting. FEBS J., 2011; 278: 16–27
    Google Scholar
  • 22. Gil-Martin M., Gomez Pardo P., Lopez-Tarruella S., Manso L.,Perez-Fidalgo J.A., Olabisi Ademuyiwa F., Mayer I.A., Pluard T.J.,Martinez Garcia M., Kaufman P.A., Vahdat L.T., Hooftman L.W., RomagnoliB., Hernando C., Weilbaecher K.N. i wsp.: Phase I study ofthe combination of balixafortide (CXCR4 inhibitor) and eribulin inHER2-negative metastatic breast cancer (MBC) patients (pts). J. Clin.Oncol., 2017; 35: 2555
    Google Scholar
  • 23. Grum-Schwensen B., Klingelhofer J., Berg C.H., El-Naaman C.,Grigorian M., Lukanidin E., Ambartsumian N.: Suppression of tumordevelopment and metastasis formation in mice lacking the S100A4(mts1) gene. Cancer Res., 2005; 65: 3772–3780
    Google Scholar
  • 24. Hanley C.J., Mellone M., Ford K., Thirdborough S.M., MellowsT., Frampton S.J., Smith D.M., Harden E., Szyndralewiez C., BullockM., Noble F., Moutasim K.A., King E.V., Vijayanand P., MirnezamiA.H. i wsp.: Targeting the myofibroblastic cancer-associated fibroblastphenotype through inhibition of NOX4. J. Natl. Cancer Inst.,2018; 110: 109–120
    Google Scholar
  • 25. Hartmann T.N., Burger M., Burger J.A.: The role of adhesion moleculesand chemokine receptor CXCR4 (CD184) in small cell lungcancer. J. Biol. Regul. Homeost. Agents, 2004; 18: 126–130
    Google Scholar
  • 26. Hayward S.W., Wang Y., Cao M., Hom Y.K., Zhang B., Grossfeld G.D.,Sudilovsky D., Cunha G.R.: Malignant transformation in a nontumorigenichuman prostatic epithelial cell line. Cancer Res., 2001; 61: 8135–8142
    Google Scholar
  • 27. Heldin C.H.: Targeting the PDGF signaling pathway in tumortreatment. Cell Commun. Signal., 2013; 11: 97
    Google Scholar
  • 28. Henry L.R., Lee H.O., Lee J.S., Klein-Szanto A., Watts P., RossE.A., Chen W.T., Cheng J.D.: Clinical implications of fibroblast activationprotein in patients with colon cancer. Clin. Cancer Res.,2007; 13: 1736–1741
    Google Scholar
  • 29. Hofheinz R.D., al-Batran S.E., Hartmann F., Hartung G., Jäger D.,Renner C., Tanswell P., Kunz U., Amelsberg A., Kuthan H., Stehle G.:Stromal antigen targeting by a humanised monoclonal antibody:an early phase II trial of sibrotuzumab in patients with metastaticcolorectal cancer. Onkologie, 2003; 26: 44–48
    Google Scholar
  • 30. Izumi D., Ishimoto T., Miyake K., Sugihara H., Eto K., SawayamaH., Yasuda T., Kiyozumi Y., Kaida T., Kurashige J., Imamura Y., HiyoshiY., Iwatsuki M., Iwagami S., Baba Y. i wsp.: CXCL12/CXCR4 activationby cancer-associated fibroblasts promotes integrin β1 clustering andinvasiveness in gastric cancer. Int. J. Cancer, 2016; 138: 1207–1219
    Google Scholar
  • 31. Jakubowska M.A., Kerkhofs M., Martines C., Efremov D.G., GerasimenkoJ.V., Gerasimenko O.V., Petersen O.H., Bultynck G., VervlietT., Ferdek P.E.: ABT-199 (Venetoclax), a BH3-mimetic Bcl-2 inhibitor,does not cause Ca – – signalling dysregulation or toxicity in pancreaticacinar cells. Br. J. Pharmacol., 2018 (w druku)
    Google Scholar
  • 32. Ji X., Ji J., Shan F., Zhang Y., Chen Y., Lu X.: Cancer-associatedfibroblasts from NSCLC promote the radioresistance in lung cancercell lines. Int. J. Clin. Exp. Med., 2015; 8: 7002–7008
    Google Scholar
  • 33. Jia C.C., Wang T.T., Liu W., Fu B.S., Hua X., Wang G.Y., Li T.J., LiX., Wu X.Y., Tai Y., Zhou J., Chen G.H., Zhang Q.: Cancer-associatedfibroblasts from hepatocellular carcinoma promote malignant cellproliferation by HGF secretion. PLoS One, 2013; 8: e63243
    Google Scholar
  • 34. Jiang L., Gonda T.A., Gamble M.V., Salas M., Seshan V., Tu S.,Twaddell W.S., Hegyi P., Lazar G., Steele I., Varro A., Wang T.C., TyckoB.: Global hypomethylation of genomic DNA in cancer-associatedmyofibroblasts. Cancer Res., 2008; 68: 9900–9908
    Google Scholar
  • 35. Jimenez R.E., Hartwig W., Antoniu B.A., Compton C.C., WarshawA.L., Fernández-Del Castillo C.: Effect of matrix metalloproteinaseinhibition on pancreatic cancer invasion and metastasis: an additivestrategy for cancer control. Ann. Surg., 2000; 231: 644–654
    Google Scholar
  • 36. Kalluri R.: The biology and function of fibroblasts in cancer. Nat.Rev. Cancer, 2016; 16: 582–598
    Google Scholar
  • 37. Kalluri R., Zeisberg M.: Fibroblasts in cancer. Nat. Rev. Cancer,2006; 6: 392–401
    Google Scholar
  • 38. Kessenbrock K., Plaks V., Werb Z.: Matrix metalloproteinases:regulators of the tumor microenvironment. Cell, 2010; 141: 52–67
    Google Scholar
  • 39. Kilvaer T.K., Khanehkenari M.R., Hellevik T., Al-Saad S., Paulsen E.E.,Bremnes R.M., Busund L.T., Donnem T., Martinez I.Z.: Cancer associatedfibroblasts in stage I-IIIA NSCLC: Prognostic impact and their correlationswith tumor molecular markers. PLoS One, 2015; 10: e0134965
    Google Scholar
  • 40. Kucia M., Jankowski K., Reca R., Wysoczynski M., Bandura L.,Allendorf D.J., Zhang J., Ratajczak J., Ratajczak M.Z.: CXCR4-SDF-1signalling, locomotion, chemotaxis and adhesion. J. Mol. Histol.,2004; 35: 233–245
    Google Scholar
  • 41. Kuzet S.E., Gaggioli C.: Fibroblast activation in cancer: whenseed fertilizes soil. Cell Tissue Res., 2016; 365: 607–619
    Google Scholar
  • 42. Li C., Rezov V., Joensuu E., Vartiainen V., Rönty M., Yin M., Myllärniemi M., Koli K.: Pirfenidone decreases mesothelioma cell proliferation and migration via inhibition of ERK and AKT and regulatesmesothelioma tumor microenvironment in vivo. Sci. Rep., 2018; 8: 10070
    Google Scholar
  • 43. Li M., Li M., Yin T., Shi H., Wen Y., Zhang B., Chen M., Xu G., Ren K., Wei Y.: Targeting of cancer-associated fibroblasts enhances the efficacy of cancer chemotherapy by regulating the tumor microenvironment. Mol. Med. Rep., 2016; 13: 2476–2484
    Google Scholar
  • 44. Loeffler M., Krüger J.A., Niethammer A.G., Reisfeld R.A.: Targetingtumor-associated fibroblasts improves cancer chemotherapyby increasing intratumoral drug uptake. J. Clin. Invest., 2006; 116: 1955–1962
    Google Scholar
  • 45. Lujambio A., Calin G.A., Villanueva A., Ropero S., Sánchez-CéspedesM., Blanco D., Montuenga L.M., Rossi S., Nicoloso M.S., FallerW.J., Gallagher W.M., Eccles S.A., Croce C.M., Esteller M.: A microRNADNA methylation signature for human cancer metastasis. Proc.Natl. Acad. Sci. USA, 2008; 105: 13556–13561
    Google Scholar
  • 46. Lukasiewicz E., Miekus K., Kijowski J., Drabik G., Wilusz M., Bobis-Wozowicz S., Majka M.: Inhibition of rhabdomyosarcoma’s metastaticbehavior through downregulation of MET receptor signaling.Folia Histochem. Cytobiol., 2009; 47: 485–489
    Google Scholar
  • 47. MacDougall J.R., Matrisian L.M.: Contributions of tumor andstromal matrix metalloproteinases to tumor progression, invasionand metastasis. Cancer Metastasis Rev., 1995; 14: 351–362
    Google Scholar
  • 48. Marlow R., Strickland P., Lee J.S., Wu X., Pebenito M., BinnewiesM., Le E.K., Moran A., Macias H., Cardiff R.D., Sukumar S., Hinck L.:SLITs suppress tumor growth in vivo by silencing Sdf1/Cxcr4 withinbreast epithelium. Cancer Res., 2008; 68: 7819–7827
    Google Scholar
  • 49. Martens E., Leyssen A., Van Aelst I., Fiten P., Piccard H., Hu J.,Descamps F.J., Van den Steen P.E., Proost P., Van Damme J., LiuzziG.M., Riccio P., Polverini E., Opdenakker G.: A monoclonal antibodyinhibits gelatinase B/MMP-9 by selective binding to part of the catalyticdomain and not to the fibronectin or zinc binding domains.Biochim. Biophys. Acta, 2007; 1770: 178–186
    Google Scholar
  • 50. Mertens J.C., Fingas C.D., Christensen J.D., Smoot R.L., BronkS.F., Werneburg N.W., Gustafson M.P., Dietz A.B., Roberts L.R., SiricaA.E., Gores G.J.: Therapeutic effects of deleting cancer-associatedfibroblasts in cholangiocarcinoma. Cancer Res., 2013; 73: 897–907
    Google Scholar
  • 51. Mitra A.K., Zillhardt M., Hua Y., Tiwari P., Murmann A.E., PeterM.E.,Lengyel E.: MicroRNAs reprogram normal fibroblasts into cancer-associatedfibroblasts in ovarian cancer. Cancer Discov., 2012; 2: 1100–1108
    Google Scholar
  • 52. Narra K., Mullins S.R., Lee H.O., Strzemkowski-Brun B., MagalongK., Christiansen V.J., McKee P.A., Egleston B., Cohen S.J.,Weiner L.M., Meropol N.J., Cheng J.D.: Phase II trial of single agentVal-boroPro (Talabostat) inhibiting fibroblast activation proteinin patients with metastatic colorectal cancer. Cancer Biol. Ther.,2007; 6: 1691–1699
    Google Scholar
  • 53. Nemunaitis J., Dillman R.O., Schwarzenberger P.O., Senzer N.,Cunningham C., Cutler J., Tong A., Kumar P., Pappen B., HamiltonC., DeVol E., Maples P.B., Liu L., Chamberlin T., Shawler D.L., FakhraiH.: Phase II study of belagenpumatucel-L, a transforming growthfactor beta-2 antisense gene-modified allogeneic tumor cell vaccinein non-small-cell lung cancer. J. Clin. Oncol., 2006; 24: 4721–4730
    Google Scholar
  • 54. Niedermeyer J., Enenkel B., Park J.E., Lenter M., Rettig W.J.,Damm K., Schnapp A.: Mouse fibroblast-activation protein – conservedFap gene organization and biochemical function as a serineprotease. Eur. J. Biochem., 1998; 254: 650–654
    Google Scholar
  • 55. Öhlund D., Elyada E., Tuveson D.: Fibroblast heterogeneity inthe cancer wound. J. Exp. Med., 2014; 211: 1503–1523
    Google Scholar
  • 56. Olive K.P., Jacobetz M.A., Davidson C.J., Gopinathan A., McIntyreD., Honess D., Madhu B., Goldgraben M.A., Caldwell M.E.,Allard D., Frese K.K., Denicola G., Feig C., Combs C., Winter S.P.i wsp.: Inhibitionof Hedgehog signaling enhances delivery ofchemotherapy in a mouse model of pancreatic cancer. Science,2009; 324: 1457–1461
    Google Scholar
  • 57. Olumi A.F., Grossfeld G.D., Hayward S.W., Carroll P.R., Tlsty T.D., CunhaG.R.: Carcinoma-associated fibroblasts direct tumor progressionof initiated human prostatic epithelium. Cancer Res., 1999; 59: 5002–5011
    Google Scholar
  • 58. Orimo A., Gupta P.B., Sgroi D.C., Arenzana-Seisdedos F., DelaunayT., Naeem R., Carey V.J., Richardson A.L., Weinberg R.A.: Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12secretion. Cell, 2005; 121: 335–348
    Google Scholar
  • 59. Orimo A., Weinberg R.A.: Heterogeneity of stromal fibroblastsin tumors. Cancer Biol. Ther., 2007; 6: 618–619
    Google Scholar
  • 60. Östman A.: PDGF receptors in tumor stroma: Biological effectsand associations with prognosis and response to treatment. Adv.Drug Deliv. Rev., 2017; 121: 117–123
    Google Scholar
  • 61. Owens P., Polikowsky H., Pickup M.W., Gorska A.E., Jovanovic B.,Shaw A.K., Novitskiy S.V., Hong C.C., Moses H.L.: Bone morphogeneticproteins stimulate mammary fibroblasts to promote mammarycarcinoma cell invasion. PLoS One, 2013; 8: e67533
    Google Scholar
  • 62. Özdemir B.C., Pentcheva-Hoang T., Carstens J.L., Zheng X., WuC.C., Simpson T.R., Laklai H., Sugimoto H., Kahlert C., Novitskiy S.V.,De Jesus-Acosta A., Sharma P., Heidari P., Mahmood U., Chin L. i wsp.:Depletion of carcinoma-associated fibroblasts and fibrosis inducesimmunosuppression and accelerates pancreas cancer with reducedsurvival. Cancer Cell, 2014; 25: 719–734
    Google Scholar
  • 63. Pang W., Su J., Wang Y., Feng H., Dai X., Yuan Y., Chen X., Yao W.:Pancreatic cancer-secreted miR-155 implicates in the conversionfrom normal fibroblasts to cancer-associated fibroblasts. CancerSci., 2015; 106: 1362–1369
    Google Scholar
  • 64. Peña C., Céspedes M.V., Lindh M.B., Kiflemariam S., MezheyeuskiA., Edqvist P.H., Hägglöf C., Birgisson H., Bojmar L., JirströmK., Sandström P., Olsson E., Veerla S., Gallardo A., Sjöblom T. i wsp.:STC1 expression by cancer-associated fibroblasts drives metastasisof colorectal cancer. Cancer Res., 2013; 73: 1287–1297
    Google Scholar
  • 65. Pietras K., Pahler J., Bergers G., Hanahan D.: Functions of paracrinePDGF signaling in the proangiogenic tumor stroma revealedby pharmacological targeting. PLoS Med., 2008; 5: e19
    Google Scholar
  • 66. Prakash J.: Cancer-associated fibroblasts: Perspectives in cancertherapy. Trends Cancer, 2016; 2: 277–279
    Google Scholar
  • 67. Rasmussen H.S., McCann P.P.: Matrix metalloproteinase inhibitionas a novel anticancer strategy: a review with special focuson batimastat and marimastat. Pharmacol. Ther., 1997; 75: 69–75
    Google Scholar
  • 68. Rizvi S., Mertens J.C., Bronk S.F., Hirsova P., Dai H., Roberts L.R.,Kaufmann S.H., Gores G.J.: Platelet-derived growth factor primescancer-associated fibroblasts for apoptosis. J. Biol. Chem., 2014; 289:22835–22849
    Google Scholar
  • 69. Sampson N., Brunner E., Weber A., Puhr M., Schäfer G., SzyndralewiezC., Klocker H.: Inhibition of Nox4-dependent ROS signalingattenuates prostate fibroblast activation and abrogates stromal-mediatedprotumorigenic interactions. Int. J. Cancer, 2018; 143: 383–395
    Google Scholar
  • 70. Shakya R., Gonda T., Quante M., Salas M., Kim S., Brooks J., HirschS., Davies J., Cullo A., Olive K., Wang T.C., Szabolcs M., Tycko B., LudwigT.: Hypomethylating therapy in an aggressive stroma-rich modelof pancreatic carcinoma. Cancer Res., 2013; 73: 885–896
    Google Scholar
  • 71. Sharon Y., Alon L., Glanz S., Servais C., Erez N.: Isolation of normaland cancer-associated fibroblasts from fresh tissues by fluorescenceactivated cell sorting (FACS). J. Vis. Exp., 2013; 2013: e4425
    Google Scholar
  • 72. Steward W.P.: Marimastat (BB2516): current status of development.Cancer Chemother. Pharmacol., 1999; 43: 56–60
    Google Scholar
  • 73. Strasser A., Cory S., Adams J.M.: Deciphering the rules of programmedcell death to improve therapy of cancer and other diseases.EMBO J., 2011; 30: 3667–3683
    Google Scholar
  • 74. Stuelten C.H., Busch J.I., Tang B., Flanders K.C., Oshima A., SuttonE., Karpova T.S., Roberts A.B., Wakefield L.M., Niederhuber J.E.:Transient tumor-fibroblast interactions increase tumor cell malignancyby a TGF-β mediated mechanism in a mouse xenograft modelof breast cancer. PLoS One, 2010; 5: e9832
    Google Scholar
  • 75. Subramaniam K.S., Tham S.T., Mohamed Z., Woo Y.L., Mat AdenanN.A., Chung I.: Cancer-associated fibroblasts promote proliferationof endometrial cancer cells. PLoS One, 2013; 8: e68923
    Google Scholar
  • 76. Sun Q., Zhang B., Hu Q., Qin Y., Xu W., Liu W., Yu X., Xu J.: Theimpact of cancer-associated fibroblasts on major hallmarks of pancreaticcancer. Theranostics, 2018; 8: 5072–5087
    Google Scholar
  • 77. Sun Y., Campisi J., Higano C., Beer T.M., Porter P., Coleman I.,True L., Nelson P.S.: Treatment-induced damage to the tumor microenvironmentpromotes prostate cancer therapy resistance throughWNT16B. Nat. Med., 2012; 18: 1359–1368
    Google Scholar
  • 78. Takai K., Le A., Weaver V.M., Werb Z.: Targeting the cancer-associatedfibroblasts as a treatment in triple-negative breast cancer.Oncotarget, 2016; 7: 82889–82901
    Google Scholar
  • 79. Tang L.Y., Heller M., Meng Z., Yu L.R., Tang Y., Zhou M., ZhangY.E.: Transforming growth factor-β (TGF-β) directly activates theJAK1-STAT3 axis to induce hepatic fibrosis in coordination with theSMAD pathway. J. Biol. Chem., 2017; 292: 4302–4312
    Google Scholar
  • 80. Tao L., Huang G., Song H., Chen Y., Chen L.: Cancer associatedfibroblasts: An essential role in the tumor microenvironment. Oncol.Lett., 2017; 14: 2611–2620
    Google Scholar
  • 81. Tran E., Chinnasamy D., Yu Z., Morgan R.A., Lee C.C., Restifo N.P.,Rosenberg S.A.: Immune targeting of fibroblast activation proteintriggers recognition of multipotent bone marrow stromal cells andcachexia. J. Exp. Med., 2013; 210: 1125–1135
    Google Scholar
  • 82. Wald O., Izhar U., Amir G., Kirshberg S., Shlomai Z., Zamir G.,Peled A., Shapira O.M.: Interaction between neoplastic cells andcancer-associated fibroblasts through the CXCL12/CXCR4 axis: rolein non-small cell lung cancer tumor proliferation. J. Thorac. Cardiovasc.Surg., 2011; 141: 1503–1512
    Google Scholar
  • 83. Wang L., Cao L., Wang H., Liu B., Zhang Q., Meng Z., Wu X., ZhouQ., Xu K.: Cancer-associated fibroblasts enhance metastatic potentialof lung cancer cells through IL-6/STAT3 signaling pathway. Oncotarget,2017; 8: 76116–76128
    Google Scholar
  • 84. Wang W., Li Q., Yamada T., Matsumoto K., Matsumoto I., Oda M., WatanabeG., Kayano Y., Nishioka Y., Sone S., Yano S.: Crosstalk to stromalfibroblasts induces resistance of lung cancer to epidermal growth factorreceptor tyrosine kinase inhibitors. Clin. Cancer Res., 2009; 15: 6630–6638
    Google Scholar
  • 85. Wang Y., Gan G., Wang B., Wu J., Cao Y., Zhu D., Xu Y., Wang X., Han H.,Li X., Ye M., Zhao J., Mi J.: Cancer-associated fibroblasts promote irradiatedcancer cell recovery through autophagy. EBioMedicine, 2017; 17: 45–56
    Google Scholar
  • 86. Weeraratna A.T., Jiang Y., Hostetter G., Rosenblatt K., Duray P., BittnerM., Trent J.M.: Wnt5a signaling directly affects cell motility and invasionof metastatic melanoma. Cancer Cell, 2002; 1: 279–288
    Google Scholar
  • 87. Wikberg M.L., Edin S., Lundberg I.V., Van Guelpen B., DahlinA.M., Rutegård J., Stenling R., Oberg A., Palmqvist R.: High intratumoralexpression of fibroblast activation protein (FAP) in coloncancer is associatedwith poorer patient prognosis. Tumour Biol.,2013; 34: 1013–1020
    Google Scholar
  • 88. Xu Y., Zhou X., Mei M., Ren Y.: Reprograming carcinoma associatedfibroblasts by microRNAs. Curr. Mol. Med., 2017; 17: 341–349
    Google Scholar
  • 89. Xue L.J., Mao X.B., Ren L.L., Chu X.Y.: Inhibition of CXCL12/ CXCR4axis as a potential targeted therapy of advanced gastric carcinoma.CancerMed., 2017; 6: 1424–1436
    Google Scholar
  • 90. Yang Y.C., Lee Z.Y., Wu C.C., Chen T.C., Chang C.L., Chen C.P.: CXCR4expression is associated with pelvic lymph node metastasis in cervicaladenocarcinoma. Int. J. Gynecol. Cancer, 2007; 17: 676–686
    Google Scholar
  • 91. Yauch R.L., Gould S.E., Scales S.J., Tang T., Tian H., Ahn C.P., MarshallD., Fu L., Januario T., Kallop D., Nannini-Pepe M., Kotkow K., MarstersJ.C., Rubin L.L., de Sauvage F.J.: A paracrine requirement for hedgehogsignalling in cancer. Nature, 2008; 455: 406–410
    Google Scholar
  • 92. Yoshida T., Ishii G., Goto K., Neri S., Hashimoto H., Yoh K., NihoS., Umemura S., Matsumoto S., Ohmatsu H., Iida S., Niimi A., NagaiK., Ohe Y., Ochiai A.: Podoplanin-positive cancer-associated fibroblastsin the tumor microenvironment induce primary resistance toEGFR-TKIs in lung adenocarcinoma with EGFR mutation. Clin. CancerRes., 2015; 21: 642–651
    Google Scholar
  • 93. Zhan T., Rindtorff N., Boutros M.: Wnt signaling in cancer. Oncogene,2017; 36: 1461–1473
    Google Scholar
  • 94. Ziani L., Chouaib S., Thiery J.: Alteration of the antitumor immuneresponse by cancer-associated fibroblasts. Front. Immunol., 2018; 9: 414
    Google Scholar

Full text

Skip to content