Biological function of cobalamin: causes and effects of hypocobalaminemia at the molecular, cellular, tissue and organism level

REVIEW ARTICLE

Biological function of cobalamin: causes and effects of hypocobalaminemia at the molecular, cellular, tissue and organism level

Zuzanna Rzepka 1 , Mateusz Maszczyk 1 , Dorota Wrześniok 1

1. Katedra i Zakład Chemii i Analizy Leków, Wydział Nauk Farmaceutycznych w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach,

Published: 2020-10-28
DOI: 10.5604/01.3001.0014.4741
GICID: 01.3001.0014.4741
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2020; 74 : 443-451

 

Abstract

Cobalamin (vitamin B12) is a complex compound, which is classified as a water-soluble vitamin. Absorption of cobalamin in the gut and its transport to cells is a unique process, in which many proteins are involved. The loss of function of these proteins causes serious cell homeostasis disturbance, which may result in the dysfunction of many tissues and organs. Vitamin B12, a cofactor of methionine synthase, provides methylation process and nucleic acid synthesis. Cobalamin is also necessary for methylmalonyl-CoA mutase activity. The enzyme synthesizes succinyl-CoA, an intermediate in tricarboxylic acid cycle. Vitamin B12 deficiency is an important and current health problem. It may be caused by insufficient dietary intake, age, or disease-related malabsorption and genetic defects of mechanisms involved in the absorption, transport and metabolism of cobalamin. Hypocobalaminemia can also result from long-term pharmacotherapy with medicines: metformin, proton pump inhibitors (e.g. omeprazole) and H2-receptor antagonists (e.g. ranitidine). Significant clinical symptoms of cobalamin deficiency include hematological abnormalities, mainly megaloblastic anemia, as well as neurological disorders resulting from degeneration within the nervous system. Early diagnosis and starting treatment with vitamin B12 increase chances for a complete cure. Therefore, the diagnostically important symptom of hypocobalaminemia may be skin manifestations, mainly hyperpigmentations, but also premature graying of hair. The aim of this review article was to summarize the current state of knowledge on the biological function of cobalamin, as well as the causes and consequences of its deficiency at the molecular, cellular, tissue and organism level.

References

  • 1. Agarwal A., Saini A.G., Attri S.: Reversible hyperpigmentationand paraparesis: A simple remedy! J. Pediatr., 2018; 201:294
    Google Scholar
  • 2. Agrawala R.K., Sahoo S.K., Choudhury A.K., Mohanty B.K.,Baliarsinha A.K.: Pigmentation in vitamin B12 deficiency masqueradingAddison’s pigmentation: A rare presentation.Indian. J. Endocrinol. Metab., 2013; 17: S254–S256
    Google Scholar
  • 3. Albrecht K., Siwicka A., Matysiak M., Dembiński Ł.: Genetycznieuwarunkowana postać niedokrwistości Addisona-Biermera– opis przypadku dwuletniej dziewczynki. Post. N. Med.,2016; 29: 36–41
    Google Scholar
  • 4. Allen L.H.: How common is vitamin B-12 deficiency? Am. J.Clin. Nutr., 2009; 89: 693S–696S
    Google Scholar
  • 5. Arora K., Sequeira J.M., Alarcon J.M., Wasek B., Arning E.,Bottiglieri T., Quadros E.V.: Neuropathology of vitamin B12deficiency in the CD320-/- mouse. FASEB J., 2019; 33: 2563–2573
    Google Scholar
  • 6. Björkegren K., Svärdsudd K.: A population‐based interventionstudy on elevated serum levels of methylmalonic acid andtotal homocysteine in elderly people: results after 36 monthsof follow‐up. J. Intern. Med., 2004; 256: 446–452
    Google Scholar
  • 7. Briani C., Dalla Torre C., Citton V., Manara R., Pompanin S.,Binotto G., Adami F.: Cobalamin deficiency: Clinical picture andradiological findings. Nutrients, 2013; 5: 4521–4539
    Google Scholar
  • 8. Chan W., Almasieh M., Catrinescu M.M., Levin L.A.: Cobalamin-associated superoxide scavenging in neuronal cells is apotential mechanism for vitamin B12-deprivation optic neuropathy.Am. J. Pathol., 2018; 188: 160–172
    Google Scholar
  • 9. Cherqaoui R., Husain M., Madduri S., Okolie P., Nunlee-Bland G., Williams J.: A reversible cause of skin hyperpigmentationand postural hypotension. Case Rep. Hematol., 2013;2013: 680459
    Google Scholar
  • 10. Chiang T.T., Hung C.T., Wang W.M., Lee J.T., Yang F.C.: Recreationalnitrous oxide abuse-induced vitamin B12 deficiencyin a patient presenting with hyperpigmentation of the skin.Case. Rep. Dermatol., 2013; 5: 186–191
    Google Scholar
  • 11. Degnan P.H., Taga M.E., Goodman A.L.: Vitamin B12 as amodulator of gut microbial ecology. Cell Metab., 2014; 20: 769–778
    Google Scholar
  • 12. Demir N., Doğan M., Koç A., Kaba S., Bulan K., Ozkol H.U.,Doğan S.Z.: Dermatological findings of vitamin B12 deficiencyand resolving time of these symptoms. Cutan. Ocul. Toxicol.,2014; 33: 70–73
    Google Scholar
  • 13. Devalia V., Hamilton M.S., Molloy A.M., British Committeefor Standards in Haematology: Guidelines for the diagnosis andtreatment of cobalamin and folate disorders. Br. J. Haematol.,2014; 166: 496–513
    Google Scholar
  • 14. Douaud G., Refsum H., de Jager C.A., Jacoby R., Nichols T.E.,Smith S.M., Smith A.D.: Preventing Alzheimer’s disease-relatedgray matter atrophy by B-vitamin treatment. Proc. Natl. Acad.Sci. USA, 2013; 110: 9523–9528
    Google Scholar
  • 15. Forny P., Froese D.S., Suormala T., Yue W.W., BaumgartnerM.R.: Functional characterization and categorization of missensemutations that cause methylmalonyl‐CoA mutase (MUT)deficiency. Hum. Mutat., 2014; 35: 1449–1458
    Google Scholar
  • 16. Froese D.S., Fowler B., Baumgartner M.R.: Vitamin B12,folate, and the methionine remethylation cycle-biochemistry,pathways, and regulation. J. Inherit. Metab. Dis., 2019; 42:673–685
    Google Scholar
  • 17. Froese D.S., Gravel R.A.: Genetic disorders of vitamin B12metabolism: Eight complementation groups – eight genes.Expert Rev. Mol. Med., 2010; 12: e37
    Google Scholar
  • 18. Genetic Home References: ABCD4 gene. https://ghr.nlm.nih.gov/gene/ABCD4 (22.07.2019)
    Google Scholar
  • 19. Genetic Home References: HCFC1 gene. https://ghr.nlm.nih.gov/gene/HCFC1 (22.07.2019)
    Google Scholar
  • 20. Genetic Home References: LMBRD1 gene. https://ghr.nlm.nih.gov/gene/LMBRD1 (22.07.2019)
    Google Scholar
  • 21. Genetic Home References: MMAA gene. https://ghr.nlm.nih.gov/gene/MMAA (22.07.2019)
    Google Scholar
  • 22. Genetic Home References: MMACHC gene. https://ghr.nlm.nih.gov/gene/MMACHC (22.07.2019)
    Google Scholar
  • 23. Genetic Home References: MMADHC gene. https://ghr.nlm.nih.gov/gene/MMADHC (22.07.2019)
    Google Scholar
  • 24. Genetic Home References: MMUT gene. https://ghr.nlm.nih.gov/gene/MMUT# (22.07.2019)
    Google Scholar
  • 25. Genetic Home References: MTR gene. https://ghr.nlm.nih.gov/gene/MTR# (22.07.2019)
    Google Scholar
  • 26. Genetic Home References: MTRR gene. https://ghr.nlm.nih.gov/gene/MTRR# (22.07.2019)
    Google Scholar
  • 27. Genetic Home References: TCN2 gene. https://ghr.nlm.nih.gov/gene/TCN2 (22.07.2019)
    Google Scholar
  • 28. Green R., Allen L.H., Bjørke-Monsen A.L., Brito A., GuéantJ.L., Miller J.W., Molloy A.M., Nexo E., Stabler S., Toh B.H.,Ueland P.M., Yajnik C.: Vitamin B12 deficiency. Nat. Rev. Dis.Primers, 2017; 3: 17040
    Google Scholar
  • 29. Gröber U., Kisters K., Schmidt J.: Neuroenhancement withvitamin B12-underestimated neurological significance. Nutrients,2013; 5: 5031–5045
    Google Scholar
  • 30. Halsted C.H., Medici V.: Vitamin-dependent methioninemetabolism and alcoholic liver disease. Adv. Nutr., 2011; 2:421–427
    Google Scholar
  • 31. Hannibal L., Bolisetty K., Axhemi A., DiBello P.M., QuadrosE.V., Fedosov S., Jacobsen D.W.: Transcellular transportof cobalamin in aortic endothelial cells. FASEB J., 2018; 32:5506–5519
    Google Scholar
  • 32. Huemer M., Diodato D., Schwahn B., Schiff M., BandeiraA., Benoist J.F., Burlina A., Cerone R., Couce M.L., Garcia-Cazorla A., la Marca G., Pasquini E., Vilarinho L., Weisfeld-Adams J.D., Kožich V. i wsp.: Guidelines for diagnosis andmanagement of the cobalamin-related remethylation disorderscblC, cblD, cblE, cblF, cblG, cblJ and MTHFR deficiency. J.Inherit. Metab. Dis., 2017; 40: 21–48
    Google Scholar
  • 33. Kannan R., Ng M.J.: Cutaneous lesions and vitamin B12deficiency: An often-forgotten link. Can. Fam. Physician.,2008; 54: 529–532
    Google Scholar
  • 34. Kaur S., Goraya J.S.: Dermatologic findings of vitamin B12deficiency in infants. Pediatr. Dermatol., 2018; 35: 796–799
    Google Scholar
  • 35. Kawaguchi K., Okamoto T., Morita M., Imanaka T.: Translocationof the ABC transporter ABCD4 from the endoplasmicreticulum to lysosomes requires the escort protein LMBD1.Sci. Rep., 2016; 6: 30183
    Google Scholar
  • 36. Kozyraki R., Cases O.: Vitamin B12 absorption: Mammalianphysiology and acquired and inherited disorders. Biochimie,2013; 95: 1002–1007
    Google Scholar
  • 37. Langan R.C., Goodbred A.J.: Vitamin B12 deficiency: Recognitionand management. Am. Fam. Physician., 2017; 96:384–389
    Google Scholar
  • 38. Loikas S., Koskinen P., Irjala K., Löppönen M., IsoahoR., Kivelä S.L., Pelliniemi T.T.: Vitamin B12 deficiency in theaged: A population-based study. Age Ageing, 2007; 36: 177–183
    Google Scholar
  • 39. Machado R., Furtado F., Kjöllerström P., Cunha F.: Cutaneoushyperpigmentation and cobalamin deficiency. Br. J. Haematol.,2016; 174: 834
    Google Scholar
  • 40. Mah W., Deme J.C., Watkins D., Fung S., Janer A., ShoubridgeE.A., Rosenblatt D.S., Coulton J.W.: Subcellular locationof MMACHC and MMADHC, two human proteins centralto intracellular vitamin B12 metabolism. Mol. Genet. Metab.,2013; 108: 112–118
    Google Scholar
  • 41. Marsh E.N., Meléndez G.D.: Adenosylcobalaminenzymes: Theory and experiment begin to converge. Biochim.Biophys. Acta, 2012; 1824: 1154–1164
    Google Scholar
  • 42. Miller A., Korem M., Almog R., Galboiz Y.: Vitamin B12,demyelination, remyelination and repair in multiple sclerosis.J. Neurol. Sci., 2005; 233: 93–97
    Google Scholar
  • 43. Moreira E.S., Brasch N.E., Yun J.: Vitamin B12 protectsagainst superoxide-induced cell injury in human aorticendothelial cells. Free Radic. Biol. Med., 2011; 51: 876–883
    Google Scholar
  • 44. Mori K., Ando I., Kukita A.: Generalized hyperpigmentationof the skin due to vitamin B12 deficiency. J. Dermatol.,2001; 28: 282–285
    Google Scholar
  • 45. Mziray M., Domagała P., Żuralska R., Siepsiak M.:Witamina B12 – skutki niedoboru, zasadność terapii i suplementacjidiety u osób w wieku podeszłym. Pol. Prz. Nauk.Zdr., 2016; 3: 295–301
    Google Scholar
  • 46. Nexo E., Hoffmann-Lücke E.: Holotranscobalamin,a marker of vitamin B-12 status: Analytical aspects and clinicalutility. Am. J. Clin. Nutr., 2011; 94: 359S–365S
    Google Scholar
  • 47. Nielsen M.J., Rasmussen M.R., Andersen C.B., NexøE., Moestrup S.K.: Vitamin B12 transport from food to thebody’s cells – a sophisticated, multistep pathway. Nat. Rev.Gastroenterol. Hepatol., 2012; 9: 345–354
    Google Scholar
  • 48. Niiyama S., Mukai H.: Reversible cutaneous hyperpigmentationand nails with white hair due to vitamin B12deficiency. Eur. J. Dermatol., 2007; 17: 551–552
    Google Scholar
  • 49. Pannérec A., Migliavacca E., De Castro A., Michaud J.,Karaz S., Goulet L., Rezzi S., Ng T.P., Bosco N., Larbi A., FeigeJ.N.: Vitamin B12 deficiency and impaired expression ofamnionless during aging. J. Cachexia. Sarcopenia. Muscle,2018; 9: 41–52
    Google Scholar
  • 50. Paul C., Brady D.M.: Comparative bioavailability andutilization of particular forms of B12 supplements withpotential to mitigate B12-related genetic polymorphisms.Integr. Med., 2017; 16: 42–49
    Google Scholar
  • 51. Próinsias K., Giedyk M., Gryko D.: Vitamin B12: Chemicalmodifications. Chem. Soc. Rev., 2013; 42: 6605–6619
    Google Scholar
  • 52. Pupavac M., Watkins D., Petrella F., Fahiminiya S.,Janer A., Cheung W., Gingras A.C., Pastinen T., Muenzer J.,Majewski J., Shoubridge E.A., Rosenblatt D.S.: Inborn errorof cobalamin metabolism associated with the intracellularaccumulation of transcobalamin-bound cobalamin andmutations in ZNF143, which codes for a transcriptional activator.Hum. Mutat., 2016; 37: 976–982
    Google Scholar
  • 53. Rzepka Z., Respondek M., Rok J., Beberok A., Ó ProinsiasK., Gryko D., Wrześniok D.: Vitamin B12 deficiency inducesimbalance in melanocytes homeostasis – a cellular basis ofhypocobalaminemia pigmentary manifestations. Int. J. Mol.Sci., 2018: 19: 2845
    Google Scholar
  • 54. Sadasivan S., Friedman J.H.: Vitamin B12 (cobalamin)and Parkinson’s disease. Clin. Pract., 2012; 9: 353–356
    Google Scholar
  • 55. Shipton M.J., Thachil J.: Vitamin B12 deficiency – A 21stcentury perspective. Clin. Med., 2015; 15: 145–150
    Google Scholar
  • 56. Simşek O.P., Gönç N., Gümrük F., Cetin M.: A child withvitamin B12 deficiency presenting with pancytopenia andhyperpigmentation. J. Pediatr. Hematol. Oncol., 2004; 26:834–836
    Google Scholar
  • 57. Takeichi T., Hsu C.K., Yang H.S., Chen H.Y., Wong T.W.,Tsai W.L., Chao S.C., Lee J.Y., Akiyama M., Simpson M.A.,McGrath J.A.: Progressive hyperpigmentation in a Taiwanesechild due to an inborn error of vitamin B12 metabolism(cblJ). Br. J. Dermatol., 2015; 172: 1111–1115
    Google Scholar
  • 58. Tatebayashi Y., Nihonmatsu-Kikuchi N., Hayashi Y., YuX., Soma M., Ikeda K.: Abnormal fatty acid composition inthe frontopolar cortex of patients with affective disorders.Transl. Psychiatry, 2012; 2: e204
    Google Scholar
  • 59. van de Lagemaat E.E., de Groot L.C., van den HeuvelE.G.: Vitamin B12 in relation to oxidative stress: A systematicreview. Nutrients, 2019; 11: 482
    Google Scholar
  • 60. Vashi P., Edwin P., Popiel B., Lammersfeld C., Gupta D.:Methylmalonic acid and homocysteine as indicators of vitaminB-12 deficiency in cancer. PLoS One, 2016; 11: e0147843
    Google Scholar
  • 61. Watkins D., Rosenblatt D.S.: Inborn errors of cobalaminabsorption and metabolism. Am. J. Med. Genet. C. Semin.Med. Genet., 2011; 157C: 33–44
    Google Scholar
  • 62. Watkins D., Rosenblatt D.S.: Lessons in biology frompatients with inborn errors of vitamin B12 metabolism. Biochimie,2013; 95: 1019–1022
    Google Scholar
  • 63. Xia L., Cregan A.G., Berben L.A., Brasch N.E.: Studies onthe formation of glutathionylcobalamin: Any free intracellularaquacobalamin is likely to be rapidly and irreversiblyconverted to glutathionylcobalamin. Inorg. Chem., 2004; 43:6848–6857
    Google Scholar
  • 64. Zabrocka J., Wojszel Z.B.: Niedobór witaminy B12w wieku podeszłym – przyczyny, następstwa, podejście terapeutyczne.Geriatria, 2013; 7: 24–32
    Google Scholar
  • 65. Zboch M., Gwizdak-Siwkowska B., Serafin J., ŚmigórskiK., Tyfel P., Leszek J.: Niedobór witaminy B12 jako czynnikrozwoju procesu otępiennego. Med. Rodz., 2010; 13: 14–19
    Google Scholar
  • 66. Zhang Y., Hodgson N.W., Trivedi M.S., AbdolmalekyH.M., Fournier M., Cuenod M., Do K.Q., Deth R.C.: Decreasedbrain levels of vitamin B12 in aging, autism and schizophrenia.PLoS One, 2016; 11: e0146797
    Google Scholar

Full text

Skip to content