Structure, function, and mechanism of action of the vanilloid TRPV1 receptor

REVIEW ARTICLE

Structure, function, and mechanism of action of the vanilloid TRPV1 receptor

Paweł Siudem 1 , Katarzyna Paradowska 1

1. Zakład Chemii Fizycznej, Katedra Farmacji Fizycznej i Bioanalizy, Wydział Farmaceutyczny, Warszawski Uniwersytet Medyczny, Warszawa,

Published: 2020-11-12
DOI: 10.5604/01.3001.0014.5104
GICID: 01.3001.0014.5104
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2020; 74 : 481-488

 

Abstract

The TRPV1 receptor (transient receptor potential cation channel subfamily V member 1) is a non-selective cationic channel activated by vanilloids like capsaicin. Therefore, TRPV1 is also called a capsaicin’s receptor, which is a spicy substance found in chili peppers. The receptor is located in sensory nerve fibers and non-neuronal cells, for example in vascular endothelial and smooth muscle cells. It is thought to act as an integrator of various physical and chemical stimuli that provide heat and pain. The activation of the TRPV1 may affect at various physiological functions like release inflammatory mediators, gastrointestinal motility and temperature regulation. Numerous studies in recent years show TRPV1 plays an important role in physiology and development of pathological conditions of gastrointestinal, cardiovascular and respiratory system. These receptors are widely studied as a gripping point for new painkillers, but there are also data indicating their potential involvement in the pathomechanism of various diseases, e.g. epilepsy. TRPV1 targeting may be useful not only in paintreatment but also urinary incontinence, chronic cough or irritable bowel syndrome. The need for further investigation of the therapeutic potential of TRPV1 antagonists indicates the lack of effective drugs to treat many of these conditions. The purpose of this article is to collect and summarize knowledge about the TRPV1 receptor, its structure and mechanism of action.

References

  • 1. Andersson K.E.: TRP channels as lower urinary tract sensorytargets. Med. Sci., 2019; 7: 67–82
    Google Scholar
  • 2. Dasse O., Mahadevan A., Han L., Martin B.R., Di Marzo V., RazdanR.K.: The synthesis of N-vanillyl-arachidonoyl-amide (Arvanil) andits analogs: An improved procedure for the synthesis of the keySynthon methyl 14-hydroxy-(all-cis)-5,8,11-tetradecatrienoate.Tetrahedron, 2000; 56: 9195–9202
    Google Scholar
  • 3. Del Fiacco M., Quartu M., Boi M., Serra M.P., Melis T., BoccalettiR., Shevel E., Cianchetti C.: TRPV1, CGRP and SP in scalp arteriesof patients suffering from chronic migraine. J. Neurol. Neurosurg.Psychiatry, 2015; 86: 393–397
    Google Scholar
  • 4. Dennis E.A., Norris P.C.: Eicosanoid storm in infection and inflammation.Nat. Rev. Immunol., 2015; 15: 511–523
    Google Scholar
  • 5. Díaz-Franulic I., Caceres-Molina J., Sepulveda R.V., Gonzalez-Nilo F., Latorre R.: Structure-driven pharmacology of transientreceptor potential channel vanilloid 1. Mol. Pharmacol., 2016; 90:300–308
    Google Scholar
  • 6. Gao L., Yang P., Qin P., Lu Y., Li X., Tian Q., Li Y., Xie C., TianJ.B., Zhang C., Tian C., Zhu M.X., Yao J.: Selective potentiation of2-APB-induced activation of TRPV1-3 channels by acid. Sci. Rep.,2016; 6: 20791–20806
    Google Scholar
  • 7. Gao Y., Cao E., Julius D., Cheng Y.: TRPV1 structures in nanodiscsreveal mechanisms of ligand and lipid action. Nature, 2016;534: 347–351
    Google Scholar
  • 8. Geron M., Hazan A., Priel A.: Animal toxins providing insightsinto TRPV1 activation mechanism. Toxins, 2017; 9: 326–345
    Google Scholar
  • 9. Gouin O., L’Herondelle K., Lebonvallet N., Gall-Ianotto C.L., SakkaM., Buhé V., Plée-Gautier E., Carré J.L., Lefeuvre L., Misery L., LeGarrec R.: TRPV1 and TRPA1 in cutaneous neurogenic and chronicinflammation: Pro-inflammatory response induced by their activationand their sensitization. Protein Cell, 2017; 8: 644–661
    Google Scholar
  • 10. Jara-Oseguera A., Simon S.A., Rosenbaum T.: TRPV1: On theroad to pain relief. Curr. Mol. Pharmacol., 2008; 1: 255–269
    Google Scholar
  • 11. Kaneko Y., Szallasi A.: Transient receptor potential (TRP) channels:A clinical perspective. Br. J. Pharmac., 2014; 171: 2474–2507
    Google Scholar
  • 12. Lograno M.D., Alicchio V.: Cannabinoid receptor CB1 activationin vivo leads to corneal wound healing after chemical injuryvia specific receptor vanilloid TRPV1 desensitization. Ophthalmol.Res. Rep., 2018; 3: 100027–100049
    Google Scholar
  • 13. Ma S.X., Kim H.C., Lee S.Y., Jang C.G.: TRPV1 modulates morphineself-administration via activation of the CaMKII-CREB pathwayin the nucleus accumbens. Neurochem. Int., 2018; 121: 1–7
    Google Scholar
  • 14. Madasu M.K., Roche M., Finn D.P.: Supraspinal transient receptorpotential subfamily V member 1 (TRPV1) in pain and psychiatricdisorders. Mod. Trends Pharmacopsychiatry, 2015; 30: 80–93
    Google Scholar
  • 15. Marrone M.C., Morabito A., Giustizieri M., Chiurchiù V., LeutiA., Mattioli M., Marinelli S., Riganti L., Lombardi M., MuranaE., Totaro A., Piomelli D., Ragozzino D., Oddi S., Maccarrone M.,et al.: TRPV1 channels are critical brain inflammation detectorsand neuropathic pain biomarkers in mice. Nat. Commun., 2017;8: 15292–15310
    Google Scholar
  • 16. Nazıroğlu M.: TRPV1 channel: A potential drug target for treatingepilepsy. Curr. Neuropharmacol., 2015; 13: 239–247
    Google Scholar
  • 17. Newson P.N., van den Buuse M., Martin S., Lynch-Frame A.,Chahl L.A: Effects of neonatal treatment with the TRPV1 agonist,capsaicin, on adult rat brain and behaviour. Behav. Brain Res.,2014; 272: 55–65
    Google Scholar
  • 18. North K.C., Chang J., Bukiya A.N., Dopico A.M.: Extra-endothelialTRPV1 channels participate in alcohol and caffeine actions oncerebral artery diameter. Alcohol, 2018; 73: 45–55
    Google Scholar
  • 19. Reinicker R.A., Gates B.C.: Bisphenol a synthesis: Kinetics ofthe phenol‐acetone condensation reaction catalyzed by sulfonicacid resin. AIChE J., 1974; 20: 933–940
    Google Scholar
  • 20. Sculptoreanu A., de Groat W.C., Buffington C.A., Birder L.A.:Protein kinase C contributes to abnormal capsaicin responses inDRG neurons from cats with feline interstitial cystitis. Neurosci.Lett., 2005; 381: 42–46
    Google Scholar
  • 21. Siudem P., Paradowska K., Bukowicki J.: Conformational analysisof capsaicin using 13C, 15N MAS NMR, GIAO DFT and GA calculations.J. Mol. Struct., 2017; 1146: 773–781
    Google Scholar
  • 22. Storozhuk M.V., Moroz O.F., Zholos A.V.: Multifunctional TRPV1ion channels in physiology and pathology with focus on the brain,vasculature, and some visceral systems. BioMed. Res. Int., 2019;2019: 5806321–5806333
    Google Scholar
  • 23. Szallasi A., Blumberg P.M.: Vanilloid (capsaicin) receptors andmechanisms. Pharmacol. Rev., 1999; 51: 159–212
    Google Scholar
  • 24. Talagas M., Lebonvallet N., Berthod F., Misery L.: Cutaneousnociception: Role of keratinocytes. Exp. Dermatol., 2019; 28: 1466–1469
    Google Scholar
  • 25. Yang F., Zheng J.: Understand spiciness: Mechanism of TRPV1channel activation by capsaicin. Protein Cell, 2017; 8: 169–177
    Google Scholar
  • 26. Yoshiyama M., Mochizuki T., Nakagomi H., Miyamoto T., KiraS., Mizumachi R., Sokabe T., Takayama Y., Tominaga M., Takeda M.:Functional roles of TRPV1 and TRPV4 in control of lower urinarytract activity: Dual analysis of behavior and reflex during the micturitioncycle. Am. J. Physiol. Renal Physiol., 2015; 308: F1128–F1134
    Google Scholar
  • 27. Zhao L.M., Kuang H.Y., Zhang L.X., Wu J.Z., Chen X.L., ZhangX.Y., Ma L.J.: Effect of TRPV1 channel on proliferation and apoptosisof airway smooth muscle cells of rats. J. Huazhong Univ. Sci.Technolog. Med. Sci., 2014; 34: 504–509
    Google Scholar

Full text

Skip to content