Sirtuins and their role as physiological modulators of metabolism

REVIEW ARTICLE

Sirtuins and their role as physiological modulators of metabolism

Grażyna Sygitowicz 1 , Dariusz Sitkiewicz 1

1. Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Warsaw,

Published: 2020-11-17
DOI: 10.5604/01.3001.0014.5247
GICID: 01.3001.0014.5247
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2020; 74 : 489-497

 

Abstract

The sirtuins are a family of highly evolutionary conserved NAD+-dependent deacetylases (SIRT1, 2, 3, 5). Certain human sirtuins (SIRT4, 6) have, in addition, an ADP-ribosyltransferase activity. SIRT1 and SIRT2 are located in the nucleus and cytoplasm; SIRT3 exists predominantly in mitochondria, and SIRT6 is located in the nucleus. The mammalian sirtuins have emerged as key metabolic sensors that directly link environmental nutrient signals to metabolic homeostasis. SIRT1 is involved in the regulation of gluconeogenesis and fatty acid oxidation, as well as inhibiting lipogenesis and inflammation in the liver. In addition, they contribute to the mobilization of fat in white adipose tissue, sense nutrient availability in the hypothalamus; regulate insulin secretion in the pancreas; as well as modulating the expression of genes responsible for the activity of the circadian clock in metabolic tissues. Sirtuins are implicated in a variety of cellular functions ranging from gene silencing, through the control of the cell cycle, to energy homeostasis. Caloric restriction, supported by polyphenols, including resveratrol, which is the SIRT1 activator, plays a special role in maintaining energy homeostasis. On a whole body level, the wide range of cellular activities of the sirtuins suggests that they could constitute a therapeutic target to combat obesity and related metabolic diseases. In addition, this work presents the current state of knowledge in the field of sirtuin activity in relation to nutritional status and lifespan.

References

  • 1. Ahn B.H., Kim H.S., Song S., Lee I.H., Liu J., Vassilopoulos A.,Deng C.X., Finkel T.: A role for the mitochondrial deacetylase Sirt3in regulating energy homeostasis. Proc. Natl. Acad. Sci. USA, 2008;105: 14447–14452
    Google Scholar
  • 2. Ahuja N., Schwer B., Carobbio S., Waltregny D., North B.J., CastronovoV., Maechler P., Verdin E.: Regulation of insulin secretionby SIRT4, a mitochondrial ADP-ribosyl transferase. J. Biol. Chem.,2007; 282: 33583–33592
    Google Scholar
  • 3. Ardid-Ruiz A., Ibars M., Mena P., Del Rio D., Muguerza B., BladéC., Arola L., Aragonés G., Suárez M.: Potential involvement ofperipheral leptin/STAT3 signaling in the effects of resveratroland its metabolites on reducing body fat accumulation. Nutrients,2018; 10: 1757
    Google Scholar
  • 4. Beher D., Wu J., Cumine S., Kim K.W., Lu S.C., Atangan L., WangM.: Resveratrol is not a direct activator of SIRT1 enzyme activity.Chem. Biol. Drug Des., 2009; 74: 619–624
    Google Scholar
  • 5. Blander G., Guarente L.: The Sir2 family of protein deacetylases.Annu. Rev. Biochem., 2004; 73: 417–435
    Google Scholar
  • 6. Camins A., Sureda F.X., Junyent F., Verdaguer E., Folch J., PelegriC., Vilaplana J., Beas-Zarate C, Pallàs M.: Sirtuin activators:Designing molecules to extend life span. Biochim. Biophys. Acta,2010; 1799: 740–749
    Google Scholar
  • 7. Cantó C., Gerhart-Hines Z., Feige J.N., Lagouge M., Noriega L.,Milne J.C., Elliott P.J., Puigserver P., Auwerx J.: AMPK regulatesenergy expenditure by modulating NAD+ metabolism and SIRT1activity. Nature, 2009; 458: 1056–1060
    Google Scholar
  • 8. Cantó C., Jiang L.Q., Deshmukh A.S., Mataki C., Coste A., LagougeM., Zierath J.R., Auwerx J.: Interdependence of AMPK and SIRT1for metabolic adaptation to fasting and exercise in sketal muscle.Cell Metab., 2010; 11: 213–219
    Google Scholar
  • 9. Chen D., Bruno J., Easlon E., Lin S.J., Cheng H.L., Alt F.W., GuarenreL.: Tissue-specific regulation of SIRT1 by calorie restriction.Genes Dev., 2008; 22: 1753–1757
    Google Scholar
  • 10. Chung J.H., Manganiello V., Dyck J.R.: Resveratrol as a calorierestriction mimetic: Therapeutic implications. Trends Cell Biol.,2012; 22: 546–554
    Google Scholar
  • 11. Du J., Zhou Y., Su X., Yu J.J., Khan S., Jiang H., Kim J., Woo J.,Kim J.H., Choi B.H., He B., Chen W., Zhang S., Cerione R.A., AuwerxJ., Hao Q., Lin H.: Sirt5 is an NAD-dependent protein lysine demalonylaseand desuccinylase. Science, 2011; 334: 806–809
    Google Scholar
  • 12. Escande C., Chini C.C., Nin V., Dykhouse K.M., Novak C.M.,Levine J., van Deursen J., Gores G.J., Chen J., Lou Z., Chini E.N.: Deleted in breast cancer-1 regulates SIRT1 activity and contributesto high-fat diet-induced liver steatosis in mice. J. Clin. Invest.,2010; 120: 545–558
    Google Scholar
  • 13. Fahie K., Hu P., Swatkoski S., Cotter R.J., Zhang Y., WolbergerC.: Side chain specificity of ADP-ribosylation by a sirtuin. FEBS J.,2009; 276: 7159–7176
    Google Scholar
  • 14. Fontana L., Meyer T.E., Klein S., Holloszy J.O.: Long-term calorierestriction is highly effective in reducing the risk for atherosclerosisin humans. Proc. Natl. Acad. Sci. USA, 2004; 101: 6659–6663
    Google Scholar
  • 15. Ford E., Voit R., Liszt G., Magin C., Grummt I., Guarente L.:Mammalian Sir2 homolog SIRT7 is an activator of RNA polymeraseI transcription. Genes Dev., 2006; 20: 1075–1080
    Google Scholar
  • 16. Frye R.A.: Characterization of five human cDNAs with homologyto the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolizeNAD and may have protein ADP-ribosyl transferase activity. Biochem.Biophys. Res. Commun., 1999; 260: 273–279
    Google Scholar
  • 17. Frye R.A.: Phylogenetic classification of prokaryotic and eukaryoticSir2-like proteins. Biochem. Biophys. Res. Commun., 2000;273: 793–798
    Google Scholar
  • 18. Gabandé-Rodríguez E., Gómez de las Heras M.M., MittelbrunnM.: Control of inflammation by calorie restriction mimetics: Onthe crossroad of autophagy and mitochondria. Cells, 2020; 9: 82
    Google Scholar
  • 19. Galiniak S., Aebisher D., Bartusik-Aebisher D.: Health benefitsof resveratrol administration. Acta Biochim. Pol., 2019: 66: 13–21
    Google Scholar
  • 20. Grabowska W., Sikora E., Bielak-Zmijewska A.: Sirtuins, a promisingtarget in slowing down the ageing process. Biogerontology,2017; 18: 447–476
    Google Scholar
  • 21. Haigis M.C., Guarente L.P.: Mammalian sirtuins – emergingroles in physiology, aging, and calorie restriction. Genes Dev., 2006;20: 2913–2921
    Google Scholar
  • 22. Haigis M.C., Mostoslavsky R., Haigis K.M., Fahie K., ChristodoulouD.C., Murphy A.J., Valenzuela D.M., Yancopoloulos G.D.,Karow M., Blander G., Wolberger C., Prolla T.A., Weindruch R., AltF.W., Guarente L.: SIRT4 inhibits glutamate dehydrogenase and opposesthe effects of calorie restriction in pancreatic β cells. Cell,2006; 126: 941–954
    Google Scholar
  • 23. Haigis M.C., Sinclair D.A.: Mammalian sirtuins: Biological insightsand disease relevance. Annu. Rev. Pathol., 2010; 5: 253–295
    Google Scholar
  • 24. Hallows W.C., Lee S., Denu J.M.: Sirtuins deacetylate and activatemammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci.USA, 2006; 103: 10230–10235
    Google Scholar
  • 25. Hawse W.F., Hoff K.G., Fatkins D.G., Daines A., Zubkova O.V.,Schramm V.L., Zheng W., Wolberger C.: Structural insights into intermediate steps in the Sir2 deacetylation reaction. Structure,2008; 16: 1368–1377
    Google Scholar
  • 26. Hawse W.F., Wolberger C.: Structure-based mechanism of ADPribosylationby sirtuins. J. Biol. Chem., 2009; 284: 33654–33661
    Google Scholar
  • 27. Herranz D., Muñoz-Martin M., Cañamero M., Mulero F., Martinez-Pastor B., Fernandez-Capetillo O., Serrano M.: Sirt1 improveshealthy ageing and protects from metabolic syndrome-associatedcancer. Nat. Commun., 2010; 1: 3
    Google Scholar
  • 28. Hirschey M.D., Shimazu T., Goetzman E., Jing E., Schwer B.,Lombard D.B., Grueter C.A., Harris C., Biddinger S., Ikayeva O.R.,Stevens R.D., Li Y., Saha A.K., Ruderman N.B., Bain J.R., et al.: SIRT3regulates mitochondrial fatty-acid oxidation by reversible enzymedeacetylation. Nature, 2010; 464: 121–125
    Google Scholar
  • 29. Holbert M.A., Marmorstein R.: Structure and activity of enzymesthat remove histone modifications. Curr. Opin. Struct. Biol.,2005; 15: 673–680
    Google Scholar
  • 30. Imai S., Armstrong C.M., Kaeberlein M., Guarente L.: Transcriptionalsilencing and longevity protein Sir2 is an NAD-dependenthistone deacetylase. Nature, 2000; 403: 795–800
    Google Scholar
  • 31. Iwabu M., Yamauchi T., Okada-Iwabu M., Sato K., NakagawaT., Funata M., Yamaguchi M., Namiki S., Nakayama R., Tabata M.,Agata H., Kubota N., Takamoto I., Hayashi Y.K., Yamauchi N. et al.:Adiponectin and AdipoR1 regulate PGC-1α and mitochondria byCa2+ and AMPK/SIRT1. Nature, 2010; 464: 1313–1319
    Google Scholar
  • 32. Kaidi A., Weinert B.T., Choudhary C., Jackson S.P.: Human SIRT6promotes DNA and resection through CtIP deacetylation. Science,2010; 329: 1348–1353
    Google Scholar
  • 33. Kaushik S., Singh R., Cuervo A.M.: Autophagic pathways andmetabolic stress. Diabetes Obes. Metab., 2010; 12: 4–14
    Google Scholar
  • 34. Kawahara T.L., Michishita E., Adler A.S., Damian M., Berber E.,Lin M., McCord R.A., Ongaigui K.C., Boxer L.D., Chang H.Y., Chua K.F.:SIRT6 links histone H3 lysine 9 deacetylation to NF-κB-dependentgene expression and organismal lifespan. Cell, 2009; 136: 62–74
    Google Scholar
  • 35. Kim C., Park J., Park J., Kang E., Ahn C., Cha B., Lim S., Kim K.,Lee H.: Comparison of body fat composition and serum adiponectinlevels in diabetic obesity and non-diabetic obesity. Obesity,2006; 14: 1164–1171
    Google Scholar
  • 36. Kim O.Y., Chung J.Y., Song J.: Effect of resveratrol on adipokinesand myokines involved in fat browning: Perspectives in healthyweight against obesity. Pharmacol. Res., 2019; 148: 104411
    Google Scholar
  • 37. Kisková T., Kassayová M.: Resveratrol action on lipid metabolismin cancer. Int. J. Mol. Sci., 2019; 20: 2704
    Google Scholar
  • 38. Kustatscher G., Hothorn M., Pugieux C., Scheffzek K., LadurnerA.G.: Splicing regulates NAD metabolite binding to histone macroH2A.Nat. Struct. Mol. Biol., 2005; 12: 624–625
    Google Scholar
  • 39. Lagouge M., Argmann C., Gerhart-Hines Z., Meziane H., LerinC., Daussin F., Messadeq N., Milne J., Lambert P., Elliott P., Geny B.,Laakso M., Puigserver P., Auwerx J.: Resveratrol improves mitochondrialfunction and protects against metabolic disease by activatingSIRT1 and PGC-1α. Cell, 2006; 127: 1109–1122
    Google Scholar
  • 40. Lançon A., Frazzi R., Latruffe N.: Anti-oxidant, anti-inflammatoryand anti-angiogenic properties of resveratrol in oculardiseases. Molecules, 2016; 21: 304
    Google Scholar
  • 41. Landry J., Sutton A., Tafrov S.T., Heller R.C., Stebbins J., PillusL., Sternglanz R.: The silencing protein SIR2 and its homologs areNAD-dependent protein deacetylases. Proc. Natl. Acad. Sci. USA,2000; 97: 5807–5811
    Google Scholar
  • 42. Lang A., Anand R., Altinoluk-Hambüchen S., Ezzahoini H., StefanskiA., Iram A., Bergmann L., Urbach J., Böhler P., Hänsel J.,Franke M., Stühler K., Krutmann J., Scheller J., Stork B., ReichertA.S., Piekorz R.P.: SIRT4 interacts with OPA1 and regulates mitochondrialquality control and mitophagy. Aging, 2017; 9: 2163–2189
    Google Scholar
  • 43. Lee I.H., Cao L., Mostoslavsky R., Lombard D.B., Liu J., BrunsN.E., Tsokos M., Alt F.W., Finkel T.: A role for the NAD-dependentdeacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad.Sci. USA, 2008; 105: 3374–3379
    Google Scholar
  • 44. Li Y., Zhou Y., Wang F., Chen X., Wang C., Wang J., Liu T., Li Y.,He B.: SIRT4 is the last puzzle of mitochondrial sirtuins. Bioorg.Med. Chem., 2018; 26: 3861–3865
    Google Scholar
  • 45. Liou G.G., Tanny J.C., Kruger R.G., Walz T., Moazed D.: Assemblyof the SIR complex and its regulation by O-acetyl-ADP-ribose,a product of NAD-dependent histone deacetylation. Cell, 2005;121: 515–527
    Google Scholar
  • 46. Liu K., Zhou R., Wang B., Mi M.T.: Effect of resveratrol on glucosecontrol and insulin sensitivity: A meta-analysis of 11 randomizedcontrolled trials. Am. J. Clin. Nutr., 2014: 99: 1510–1519
    Google Scholar
  • 47. Lombard D.B., Alt F.W., Cheng H.L., Bunkenborg J., StreeperR.S., Mostoslavsky R., Kim J., Yancopoulos G., Valenzuela D., MurphyA., Yang Y., Chen Y., Hirschey M.D., Bronson R.T., Haigis M., etal.: Mammalian Sir2 homolog SIRT3 regulates global mitochondriallysine acetylation. Mol. Cell. Biol., 2007; 27: 8807–8814
    Google Scholar
  • 48. Madeo F., Carmona-Gutierrez D., Hofer S.J., Kroemer G.: Caloricrestriction mimetics against age-associated disease: Targets, mechanisms,and therapeutic potential. Cell Metab., 2019; 29: 592–610
    Google Scholar
  • 49. Mathias R.A., Greco T.M., Oberstein A., Budayeva H.G., ChakrabartiR., Rowland E.A., Kang Y., Shenk T., Cristea I.M.: Sirtuin 4 is alipoamidase regulating pyruvate dehydrogenase complex activity.Cell, 2014; 159: 1615–1625
    Google Scholar
  • 50. Mayack B.K., Sippl W., Ntie-Kang F.: Natural products as modulatorsof sirtuins. Molecules, 2020; 25: 3287
    Google Scholar
  • 51. Mendes K.L., de Farias Lelis D., Santos S.H.: Nuclear sirtuinsand inflammatory signing pathways. Cytokine Growth Factor Rev.,2017; 38: 98–105
    Google Scholar
  • 52. Michishita E., McCord R.A., Berber E., Kioi M., Padilla-Nash H.,Damian M., Cheung P., Kusumoto R., Kawahara T.L., Barrett J.C.,Chang H.Y., Bohr V.A., Ried T., Gozani O., Chua K.F.: SIRT6 is a histoneH3 lysine 9 deacetylase that modulates telomeric chromatin.Nature, 2008; 452: 492–496
    Google Scholar
  • 53. Michishita E., McCord R.A., Boxer L.D., Barber M.F., Hong T.,Gozani O., Chua K.F.: Cell cycle-dependent deacetylation of telomerichistone H3 lysine K56 by human SIRT6. Cell Cycle, 2009; 8:2664–2666
    Google Scholar
  • 54. Michishita E., Park J.Y., Burneskis J.M., Barrett J.C., HorikawaI.: Evolutionarily conserved and nonconserved cellular localizationsand functions of human SIRT proteins. Mol. Biol. Cell, 2005;16: 4623–4635
    Google Scholar
  • 55. Milne J.C., Lambert P.D., Schenk S., Carney D.P., Smith J.J.,Gagne D.J., Jin L., Boss O, Perni R.B., Vu C.B., Bemis J.E., Xie R.,Disch J.S., Ng P.Y., Nunes J.J., et al.: Small molecule activators ofSIRT1 as therapeutics for the treatment of type 2 diabetes. Nature,2007; 450: 712–716
    Google Scholar
  • 56. Nakagawa T., Lomb D.J., Haigis M.C, Guarente L.: SIRT5 deacetylatescarbamoyl phosphate synthetase 1 and regulates the ureacycle. Cell, 2009; 137: 560–570
    Google Scholar
  • 57. Nasiri A., Sadeghi M., Vaisi-Raygani A., Kiani S., Aghelan Z.,Khodarahmi R.: Emerging regulatory roles of mitochondrial sirtuinson pyruvate dehydrogenase complex and the related metabolicdiseases: Review. Biomed. Res. Ther., 2020; 7: 3645–3658
    Google Scholar
  • 58. Nasrin N., Wu X., Fortier E., Feng Y., Bare’ O.C., Chen S., Ren X.,Wu Z., Streeper R.S., Bordone L.: SIRT4 regulates fatty acid oxidationand mitochondrial gene expression in liver and muscle cells.J. Biol. Chem., 2010; 285: 31995–32002
    Google Scholar
  • 59. Nassir F., Ibdah J.A.: Sirtuins and nonalcoholic fatty liver disease.World J. Gastroenterol., 2016; 22: 10084–10092
    Google Scholar
  • 60. Nisoli E., Tonello C., Cardile A., Cozzi V., Bracale R., TedescoL., Falcone S., Valerio A., Cantoni O., Clementi E., Moncada S., CarrubaM.O.: Calorie restriction promotes mitochondrial biogenesisby inducing the expression of eNOS. Science, 2005; 310: 314–317
    Google Scholar
  • 61. North B.J., Marshall B.L., Borra M.T., Denu J.M., Verdin E.: Thehuman Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase.Mol. Cell, 2003; 11: 437–444
    Google Scholar
  • 62. Onyango P., Celic I., McCaffery J.M., Boeke J.D., Feinberg A.P.:SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylaselocalized to mitochondria. Proc. Natl. Acad. Sci. USA, 2002;99: 13653–13658
    Google Scholar
  • 63. Pacholec M., Bleasdale J.E., Chrunyk B., Cunningham D., FlynnD., Garofalo R.S., Griffith D., Griffor M., Loulakis P., Pabst B., Qiu X.,Stockman B., Thanabal V., Varghese A., Ward J., Withka J., Ahn K.:SRT1720, SRT2183, SRT1460, and resveratrol are not direct activatorsof SIRT1. J. Biol. Chem., 2010; 285: 8340–8351
    Google Scholar
  • 64. Palacios O.M., Carmona J.J., Michan S., Chen K.Y., Manabe Y.,Ward J.L.3rd, Goodyear L.J., Tong Q.: Diet and exercise signals regulateSIRT3 and activate AMPK and PGC-1α in skeletal muscle. Aging,2009; 1: 771–783
    Google Scholar
  • 65. Park J., Chen Y., Tishkoff D.X., Peng C., Tan M., Dai L., Xie Z.,Zhang Y., Zwaans B.M., Skinner M.E., Lombard D.B., Zhao Y.: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways.Mol. Cell, 2013; 50: 919–930
    Google Scholar
  • 66. Park S.J., Ahmad F., Philp A., Baar K., Williams T., Luo H., KeH., Rehmann H., Taussig R., Brown A.L., Kim M.K., Beaven M.A.,Burgin A.B., Manganiello V., Chung J.H.: Resveratrol amelioratesaging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases.Cell, 2012; 148: 421–433
    Google Scholar
  • 67. Peng C., Lu Z., Xie Z., Cheng Z., Chen Y., Tan M., Luo H., ZhangY., He W., Yang K., Zwaans B.M., Tishkoff D., Ho L., Lombard D., HeT.C., Dai J., Verdin E., Ye Y., Zhao Y.: The first identification of lysinemalonylation substrates and its regulatory enzyme. Mol. Cell.Proteomics, 2011; 10: M111.012658
    Google Scholar
  • 68. Picard F., Kurtev M., Chung N., Topark-Ngarm A., SenawongT., Machado De Olivera R., Leid M., McBurney M.W., Guarente L.:Sirt 1 promotes fat mobilization in white adipocyte by repressingPPAR-γ. Nature, 2004; 429: 771–776
    Google Scholar
  • 69. Prozorovski T., Schulze-Topphoff U., Glumm R., Baumgart J.,Schröter F., Ninnemann O., Siegert E., Bendix I., Brüstle O., NitschR., Zipp F., Aktas O.: Sirt1 contributes critically to the redox-dependentfate of neural progenitors. Nat. Cell Biol., 2008; 10: 385–394
    Google Scholar
  • 70. Qiu X., Brown K., Hirschey M.D., Verdin E., Chen D.: Calorierestriction reduces oxidative stress by SIRT3-mediated SOD2 activation.Cell Metab., 2010; 12: 662–667
    Google Scholar
  • 71. Ramírez-Garza S.L., Laveriano-Santos E.P., Marhuenda-MuñozM., Storniolo C.E., Tresserra-Rimbau A., Vallverdú-Queralt A., Lamuela-Raventós R.M.: Health effects of resveratrol: Results fromhuman intervention trials. Nutrients, 2018; 10: 1892
    Google Scholar
  • 72. Rogina B., Helfand S.L.: Sir2 mediates longevity in the flythrough a pathway related to calorie restriction. Proc. Natl. Acad.Sci. USA, 2004; 101: 15998–16003
    Google Scholar
  • 73. Salminen A., Kaarniranta K.: Regulation of the aging processby autophagy. Trends Mol. Med., 2009; 15: 217–224
    Google Scholar
  • 74. Scher M.B., Vaquero A., Reinberg D.: SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondriaupon cellular stress. Genes Dev., 2007; 21: 920–928
    Google Scholar
  • 75. Schlicker C., Gertz M., Papatheodorou P., Kachholz B., BeckerC.F., Steegboorn C.: Substrates and regulation mechanisms for thehuman mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol., 2008;382: 790–801
    Google Scholar
  • 76. Schug T.T., Li X.: Sirtuin 1 in lipid metabolism and obesity.Ann. Med., 2011; 43: 198–211
    Google Scholar
  • 77. Schwer B., Bunkenborg J., Verdin R.O., Andersen J.S., VerdinE.: Reversible lysine acetylation controls the activity of the mitochondrialenzyme acetyl-CoA synthetase 2. Proc. Natl. Acad. Sci.USA, 2006; 103: 10224–10229
    Google Scholar
  • 78. Schwer B., North B.J., Frye R.A., Ott M., Verdin E.: The humansilent information regulator (Sir)2 homologue hSIRT3 is a mitochondrialnicotinamide adenine dinucleotide-dependent deacetylase.J. Cell. Biol., 2002; 158: 647–657
    Google Scholar
  • 79. Shimazu T., Hirschey M.D., Hua L., Dittenhafer-Reed K.E.,Schwer B., Lombard D.B., Li Y., Bunkenborg J., Alt F.W., Denu J.M.,Jacobson M.P., Verdin E.: SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone bodyproduction. Cell Metab., 2010; 12: 654–661
    Google Scholar
  • 80. Sinclair D.A., Oberdoerffer P.: The ageing epigenome: Damagedbeyond repair? Ageing Res. Rev., 2009; 8: 189–198
    Google Scholar
  • 81. Smith J.S., Brachmann C.B., Celic I., Kenna M.A., MuhammadS., Starai V.J., Avalos J.L., Escalante-Semerena J.C., Grubmeyer C.,Wolberger C., Boeke J.D.: A phylogenetically conserved NAD+-dependentprotein deacetylase activity in the Sir2 protein family.Proc. Natl. Acad. Sci. USA, 2000; 97: 6658–6663
    Google Scholar
  • 82. Someya S., Yu W., Hallows W.C., Xu J., Vann J.M., LeeuwenburghC., Tanokura M., Denu J.M., Prolla T.A.: Sirt3 mediates reduction ofoxidative damage and prevention of age-related hearing loss undercaloric restriction. Cell, 2010; 143: 802–812
    Google Scholar
  • 83. Tanny J.C., Dowd G.J., Huang J., Hilz H., Moazed D.: An enzymaticactivity in the yeast Sir2 protein that is essential for genesilencing. Cell, 1999; 99: 735–745
    Google Scholar
  • 84. Tao R., Coleman M.C., Pennington J.D., Ozden O., Park S.H.,Jiang H., Kim H.S., Flynn C.R., Hill S., Hayes McDonald W., OlivierA.K., Spitz D.R., Gius D.: Sirt3-mediated deacetylation of evolutionarilyconserved lysine 122 regulates MnSOD activity in responseto stress. Mol. Cell, 2010; 40: 893–904
    Google Scholar
  • 85. Timmers S., Konings E., Bilet L., Houtkooper R.H., van de WeijerT., Goossens G.H., Hoeks J., van der Krieken S., Ryu D., Kersten S.,Moonen-Kornips E., Hesselink M.K., Kunz I., Schrauwen-HinderlingV.B., Blaak E., Auwerx J., Schrauwen P.: Calorie restrictionlikeeffects of 30 days of resveratrol supplementation on energymetabolism and metabolic profile in obese humans. Cell Metab.,2011; 14: 612–622
    Google Scholar
  • 86. Vakhrusheva O., Smolka C., Gajawada P., Kostin S., BoettgerT., Kubin T., Braun T., Bober E.: Sirt7 increases stress resistance ofcardiomyocytes and prevents apoptosis and inflammatory cardiomyopathyin mice. Circ. Res., 2008; 102: 703–710
    Google Scholar
  • 87. van de Ven R.A., Santos D., Haigis M.C.: Mitochondrial sirtuinsand molecular mechanisms of aging. Trends Mol. Med., 2017; 23:320–331
    Google Scholar
  • 88. Vaquero A., Scher M., Lee D., Erdjument-Bromage H., TempstP., Reinberg D.: Human SirT1 interacts with histone H1 and promotesformation of facultative heterochromatin. Mol. Cell, 2004;16: 93–105
    Google Scholar
  • 89. Vaquero A., Scher M.B., Lee D.H., Sutton A., Cheng H.L., Alt F.W.,Serrano L., Sternglanz R., Reinberg D.: SirT2 is a histone deacetylasewith preference for histone H4 Lys 16 during mitosis. GenesDev., 2006; 20: 1256–1261
    Google Scholar
  • 90. Verdin E., Hirschey M.D., Finley L.W., Haigis M.C.: Sirtuin regulationof mitochondria: Energy production, apoptosis, and signaling.Trends Biochem. Sci., 2010; 35: 669–675
    Google Scholar
  • 91. Wang F., Nguyen M., Qin F.X., Tong Q.: SIRT2 deacetylates FOXO3ain response to oxidative stress and caloric restriction. AgingCell, 2007; 6: 505–514
    Google Scholar
  • 92. Wątroba M., Dudek I., Skoda M., Stangret A., Rzodkiewicz P.,Szukiewicz D.: Sirtuins, epigenetics and longevity. Ageing Res.Rev., 2017; 40: 11–19
    Google Scholar
  • 93. Yamamoto H., Schoonjans K., Auwerx J.: Sirtuin functions inhealth and disease. Mol. Endocrinol., 2007; 21: 1745–1755
    Google Scholar
  • 94. Yang B., Zwaans B.M., Eckersdorff M., Lombard D.B.: The sirtuinSIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability.Cell Cycle, 2009; 8: 2662–2663
    Google Scholar
  • 95. Yu J., Sadhukhan S., Noriega L.G., Moullan N., He B., Weiss R.S.,Lin H., Schoonjans K., Auwerx J.: Metabolic characterization of aSirt5 deficient mouse model. Sci. Rep., 2013; 3: 2806
    Google Scholar

Full text

Skip to content