COVID-19 vaccine candidates: A review

REVIEW ARTICLE

COVID-19 vaccine candidates: A review

Martyna Biała 1 , Edyta Lelonek 2 , Brygida Knysz 1

1. Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiences, Wroclaw Medical University, Poland,
2. Department and Clinic of Dermatology, Venereology and Allergology, Wroclaw Medical University, Poland,

Published: 2021-02-03
DOI: 10.5604/01.3001.0014.7051
GICID: 01.3001.0014.7051
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2021; 75 : 58-63

 

Abstract

In December 2019 the first cases of atypical pneumonia caused by a novel coronavirus SARS-CoV-2 were reported in Wuhan, China. This new infection was called coronavirus disease 2019 (COVID-19). SARS-CoV-2 is primarily transmitted human-to-human via direct contact and via the air-respiratory droplets and/or aerosols. The clinical manifestations of COVID-19 could range from asymptomatic or mild non-specific symptoms to severe pneumonia with multiple organ failure and death. The virus spread rapidly to almost all the countries in the world within a few months, and on the 11th of March 2020, the World Health Organization (WHO) announced the COVID-19 pandemic. Since then, a dynamic increase in the number of COVID-19 infections and deaths has been recorded worldwide. The COVID-19 pandemic is accelerating and causing annex tensive impact on the functioning of health care and is also leading to an economic crisis in the world. Today, it is difficult to ultimately assess the long-term effects of the pandemic, although it is known that they will be experienced for decades. Therefore, the most important goal is to stop the pandemic and develop an effective vaccine against SARS-CoV-2. Using the ClinicalTrials.gov and World Health Organization databases, we shed light on the current worldwide clinical and pre-clinical trials in search for a COVID-19 vaccine.

References

  • 1. Amanat F., Stadlbauer D., Strohmeier S., Nguyen T.H., ChromikovaV., McMahon M., Jiang K., Arunkumar G.A., Jurczyszak D.,Polanco J., Bermudez-Gonzalez M., Kleiner G., Aydillo T., Miorin L.,Fierer D., et al.: A serological assay to detect SARS-CoV-2 seroconversionin humans. Nat. Med., 2020; 26: 1033–1036
    Google Scholar
  • 2. AZD1222 vaccine met primary efficacy endpoint in preventingCOVID-19. https://www.astrazeneca.com/media-centre/press-releases/2020/azd1222hlr.html (13.01.2021) 3 Baharoon S., Memish Z.A.: MERS-CoV as an emerging respiratoryillness: A review of prevention methods. Travel. Med. Infect.Dis., 2019; 32: 101520
    Google Scholar
  • 3. Baharoon S., Memish Z.A.: MERS-CoV as an emerging respiratory illness: A review of prevention methods. Travel. Med. Infect. Dis., 2019; 32: 101520
    Google Scholar
  • 4. Booth C.M., Matukas L.M., Tomlinson G.A., Rachlis A.R., RoseD.B., Dwosh H.A., Walmsley S.L., Mazzulli T., Avendano M., DerkachP., Ephtimios I.E., Kitai I., Mederski B.D., Shadowitz S.B., Gold W.L.,et al.: Clinical features and short-term outcomes of 144 patientswith SARS in the greater Toronto area. JAMA, 2003; 289: 2801–2809
    Google Scholar
  • 5. Calina D., Docea A.O., Petrakis D., Egorow A.M., IshmukhametovA.A., Gabibov A.G., Shtilman M.I., Kostoff R., Carvalho F.,Vinceti M., Spandidos D.A., Tsatsakis A.: Towards effective COVID- 19 vaccines: Updates, perspectives and challenges (review). Int.J. Mol. Med., 2020; 46: 3–16
    Google Scholar
  • 6. Calina D., Sarkar C., Arsene A.L., Salehi B., Docea A.O., MondalM., Islam M.T., Zali A., Sharifi-Rad J.: Recent advances, approachesand challenges in targeting pathways for potential COVID-19 vaccinesdevelopment. Immunol. Res., 2020; 68: 315–324
    Google Scholar
  • 7. Callow K.A., Parry H.F., Sergeant M., Tyrrell D.A.: The timecourse of the immune response to experimental coronavirus infectionof man. Epidemiol. Infect., 1990; 105: 435–446
    Google Scholar
  • 8. Cao W.C., Liu W., Zhang P.H., Zhang F., Richardus J.H.: Disappearanceof antibodies to SARS-associated coronavirus after recovery.N. Engl. J. Med., 2007; 357: 1162–1163
    Google Scholar
  • 9. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/results?cond=Covid19&term=vaccine&cntry=&state=&city=&dist= (15.10.2020)
    Google Scholar
  • 10. Corey L., Mascola J.R., Fauci A.S., Collins F.S.: A strategic approachto COVID-19 vaccine R&D. Science, 2020; 368: 948–950
    Google Scholar
  • 11. Coronavirus. https://www.cdc.gov/coronavirus/types.html(15.10.2020)
    Google Scholar
  • 12. DNA vaccines. https://www.who.int/teams/health-productand-policy-standards/standards-and-specifications/vaccinesquality/dna (10.11.2020)
    Google Scholar
  • 13. Draft landscape of COVID-19 candidate vaccines. WHO. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (15.10.2020)
    Google Scholar
  • 14. Du Toit A.: Outbreak of a novel coronavirus. Nat. Rev. Microbiol.,2020; 18: 123
    Google Scholar
  • 15. EMA recommends COVID-19 vaccine Moderna for authorisationin the EU. https://www.ema.europa.eu/en/news/ema-recommends-covid-19-vaccine-moderna-authorisation-eu (13.01.2021)
    Google Scholar
  • 16. Explaining operation warp speed. https://www.hhs.gov/coronavirus/explaining-operation-warp-speed/index.html (13.01.2021)
    Google Scholar
  • 17. Folegatti P.M., Ewer K.J., Aley P.K., Angus B., Becker S., Belij-Rammerstorfer S., Bellamy D., Bibi S., Bittaye M., Clutterbuck E.A.,Dold C., Faust S.N., Finn A., Flaxman A.L., Hallis B., et al.: Safetyand immunogenicity of the ChAdOx1 nCoV-19 vaccine againstSARS-CoV-2: A preliminary report of a phase 1/2, single-blind,randomised controlled trial. Lancet, 2020; 396: 467–478
    Google Scholar
  • 18. Ge H., Wang X., Yuan X., Xiao G., Wang C., Deng T., Yuan Q., XiaoX.: The epidemiology and clinical information about COVID-19. Eur.J. Clin. Microbiol. Infect. Dis., 2020; 39: 1011–1019
    Google Scholar
  • 19. Graham B.S.: Rapid COVID-19 vaccine development. Science,2020; 368: 945–946
    Google Scholar
  • 20. Guarner J.: Three emerging coronaviruses in two decades.The story of SARS, MERS, and now COVID-19. Am. J. Clin. Pathol.,2020; 153: 420–421
    Google Scholar
  • 21. Hasson S.S., Al-Busaidi J.K., Sallam T.A.: The past, current andfuture trends in DNA vaccine immunisations. Asian Pac. J. Trop.Biomed., 2015; 5: 344–353
    Google Scholar
  • 22. Hsu L.Y., Lee C.C., Green J.A., Ang B., Paton N.I., Lee L., VillacianJ.S., Lim P.L., Earnest A., Leo Y.S.: Severe acute respiratorysyndrome (SARS) in Singapore: Clinical features of index patientand initial contacts. Emerg. Infect. Dis., 2003; 9: 713–717
    Google Scholar
  • 23. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., FanG., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., et al.: Clinicalfeatures of patients infected with 2019 novel coronavirus in Wuhan,China. Lancet, 2020; 395: 497–506
    Google Scholar
  • 24. Huang L., Rong Y., Pan Q., Yi K., Tang X., Zhang Q., Wang W.,Wu J., Wanga F.: SARS-CoV-2 vaccine research and development:conventional vaccines and biomimetic nanotechnology strategies.Asian J. Pharm. Sci., 2020; doi: 10.1016/j.ajps.2020.08.001
    Google Scholar
  • 25. Hui D.S., Zumla A.: Severe acute respiratory syndrome (SARS):Epidemiology and clinical features. Postgrad. Med. J., 2004; 80:373–381
    Google Scholar
  • 26. Interim clinical considerations for use of mRNA COVID-19 vaccinescurrently authorized in the United States. https://www.cdc.gov/vaccines/covid-19/info-by-product/clinical-considerations.html (13.01.2021)
    Google Scholar
  • 27. Jackson L.A., Anderson E.J., Rouphael N.G., Roberts P.C.,Makhene M., Coler R.N., McCullough M.P., Chappell J.D., DenisonM.R., Stevens L.J., Pruijssers A.J., McDermott A., Flach B., Doria-RoseN.A., et al.: An mRNA vaccine against SARS-CoV-2 – preliminaryreport. N. Engl. J. Med., 2020; 383: 1920–1931
    Google Scholar
  • 28. Jeyanathan M., Afkhami S., Smaill F., Miller M.S., Lichty B.D.,Xing Z.: Immunological considerations for COVID-19 vaccine strategies.Nat. Rev. Immunol., 2020; 20: 615–632
    Google Scholar
  • 29. Ki M.: 2015 MERS outbreak in Korea: Hospital-to-hospitaltransmission. Epidemiol. Health, 2015; 37: e2015033
    Google Scholar
  • 30. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., SongH., Huang B., Zhu N., Bi Y., Ma X., Zhan F., Wang L., Hu T., et al.:Genomic characterization and epidemiology of 2019 novel coronavirus:Implications for virus origins and receptor binding. Lancet,2020; 395: 565–574
    Google Scholar
  • 31. Mao R., Qiu Y., He J.S., Tan J.Y., Li X.H., Liang J., Shen J., ZhuL.R., Chen Y., Iacucci M., Ng S.C., Ghosh S., Chen M.H.: Manifestationsand prognosis of gastrointestinal and liver involvement inpatients with COVID-19: A systematic review and meta-analysis.Lancet Gastroenterol. Hepatol., 2020; 5: 667–678
    Google Scholar
  • 32. Masters P.S.: The molecular biology of coronaviruses. Adv.Virus Res., 2006; 66: 193–292
    Google Scholar
  • 33. McBride R., van Zyl M., Fielding B.C.: The coronavirus nucleocapsidis a multifunctional protein. Viruses, 2014; 6: 2991–3018
    Google Scholar
  • 34. Middle East respiratory syndrome coronavirus (MERS-CoV).https://www.who.int/emergencies/mers-cov/en/ (15.10.2020)
    Google Scholar
  • 35. Moderna COVID-19 vaccine. https://www.fda.gov/emergencypreparedness-and-response/coronavirus-disease-2019-covid-19/moderna-covid-19-vaccine (13.01.2021)
    Google Scholar
  • 36. Mullard A.: COVID-19 vaccine development pipeline gears up.Lancet, 2020; 395: 1751–1752
    Google Scholar
  • 37. Mullol J., Alobid I., Mariño-Sánchez F., Izquierdo-DomínguezA., Marin C., Klimek L., Wang D.Y., Liu Z.: The loss of smell and tastein the COVID-19 outbreak: A tale of many countries. Curr. AllergyAsthma Rep., 2020; 20: 61
    Google Scholar
  • 38. Neuman B.W., Kiss G., Kunding A.H., Bhella D., Baksh M.F., ConnellyS., Droese B., Klaus J.P., Makino S., Sawicki S.G., Siddell S.G.,Stamou D.G., Wilson I.A., Kuhn P., Buchmeier M.J.: A structuralanalysis of M protein in coronavirus assembly and morphology. J.Struct. Biol., 2011; 174: 11–22
    Google Scholar
  • 39. Padron-Regalado E.: Vaccines for SARS-CoV-2: Lessons fromother coronavirus strains. Infect. Dis. Ther., 2020; 9: 255–274
    Google Scholar
  • 40. Pardi N., Hogan M.J., Porter F.W., Weissman D.: mRNA vaccines– a new era in vaccinology. Nat. Rev. Drug Discov., 2018; 17: 261–279
    Google Scholar
  • 41. Peeples L.: News feature: Avoiding pitfalls in the pursuit ofa COVID-19 vaccine. Proc. Natl. Acad. Sci. USA, 2020; 117: 8218–8221
    Google Scholar
  • 42. Peiris J.S.: Coronaviruses. In: Medical microbiology, ed.:D. Greenwood, M. Barer, R. Slack, W. Irving. Churchill Livingstone,Edinburgh 2012, 587–593
    Google Scholar
  • 43. Pfizer and BioNTech announce vaccine candidate againstCOVID-19 achieved success in first interim analysis from phase
    Google Scholar
  • 44. Project Lightspeed. https://biontech.de/covid-19-portal/project-lightspeed (13.01.2021)
    Google Scholar
  • 45. Romano M., Ruggiero A., Squeglia F., Maga G., Berisio R.:A structural view of SARS-CoV-2 RNA replication machinery: RNAsynthesis, proofreading and final capping. Cells, 2020; 9: 1267
    Google Scholar
  • 46. Ruch T.R., Machamer C.E.: The hydrophobic domain of infectiousbronchitis virus E protein alters the host secretory pathwayand is important for release of infectious virus. J. Virol., 2011; 85:675–685
    Google Scholar
  • 47. SARS (Severe acute respiratory syndrome). https://www.who.int/ith/diseases/sars/en/ (15.10.2020)
    Google Scholar
  • 48. Satarker S., Nampoothiri M.: Structural proteins in severeacute respiratory syndrome coronavirus-2. Arch. Med. Res., 2020;51: 482–491
    Google Scholar
  • 49. Schoeman D., Fielding B.C.: Coronavirus envelope protein:Current knowledge. Virol. J., 2019; 16: 69
    Google Scholar
  • 50. Sorbello M., El-Boghdadly K., Di Giacinto I., Cataldo R., EspositoC., Falcetta S., Merli G., Cortese G., Corso R.M., Bressan F.,Pintaudi S., Greif R., Donati A., Petrini F.: The Italian coronavirusdisease 2019 outbreak: Recommendations from clinical practice.Anaesthesia, 2020; 75: 724–732
    Google Scholar
  • 51. Sternberg A., Naujokat C.: Structural features of coronavirusSARS-CoV-2 spike protein: Targets for vaccination. Life Sci., 2020;257: 118056
    Google Scholar
  • 52. Su S., Wong G., Shi W., Liu J., Lai A.C., Zhou J., Liu W., Bi Y., GaoG.F.: Epidemiology, genetic recombination, and pathogenesis ofcoronaviruses. Trends Microbiol., 2016; 24: 490–502
    Google Scholar
  • 53. Tao Y., Shi M., Chommanard C., Queen K., Zhang J., MarkotterW., Kuzmin I.V., Holmes E.C., Tong S.: Surveillance of bat coronavirusesin Kenya identifies relatives of human coronavirusesNL63 and 229E and their recombination history. J. Virol., 2017;91: e01953–16
    Google Scholar
  • 54. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H.,Cheng Z., Xiong Y., Zhao Y., Li Y., Wang X., Peng Z.: Clinical characteristicsof 138 hospitalized patients with 2019 novel coronavirusinfectedpneumonia in Wuhan, China. JAMA, 2020; 323: 1061–1069
    Google Scholar
  • 55. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R.,Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., JiangR.D., et al.: A pneumonia outbreak associated with a new coronavirusof probable bat origin. Nature, 2020; 579: 270–273
    Google Scholar

Full text

Skip to content