Nanocząstki o wysokiej zawartości boru jako potencjalne nośniki w terapii borowo-neutronowej

REVIEW ARTICLE

Nanocząstki o wysokiej zawartości boru jako potencjalne nośniki w terapii borowo-neutronowej

Anna Wróblewska 1 , Bożena Szermer-Olearnik 1 , Elżbieta Pajtasz-Piasecka 1

1. Instytut Immunologii i Terapii Doświadczalnej im. Ludwika Hirszfelda Polskiej Akademii Nauk we Wrocławiu,

Published: 2021-02-26
DOI: 10.5604/01.3001.0014.7760
GICID: 01.3001.0014.7760
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2021; 75 : 122-132

 

Abstract

Podstawą terapii borowo-neutronowej (boron neutron capture therapy, BNCT) jest selektywne dostarczenie boru do komórek nowotworowych, a następnie napromienienie zmienionego chorobowo miejsca wiązką neutronów. W wyniku tego procesu dochodzi do rozszczepienia jądra izotopu 10B, co powoduje uwolnienie energii niszczącej komórki nowotworowe. Mimo że badania związane z BNCT trwają od lat 50. XX wieku, pozostaje ona wciąż terapią eksperymentalną. Jest to związane m.in. z brakiem nośników umożliwiających szybkie i skuteczne wprowadzanie 10B do środowiska nowotworu. Tak więc często podnoszonym zagadnieniem i jednym z głównych wyzwań dla rozwoju BNCT, jest poszukiwanie selektywnych związków dostarczających wymaganą ilość tego pierwiastka. Istotnym aspektem są badania nad nanometrycznymi strukturami, takimi jak liposomy zawierające związki bogate w bor lub nieorganiczne nanocząstki – węglik boru czy azotek boru. Ze względu na dużą zawartość boru oraz możliwość modyfikacji powierzchni tych nanocząstek, mogą się one okazać wyjątkowo atrakcyjnym narzędziem w celowanej BNCT. Równie ważnym problemem tej terapii jest opracowanie precyzyjnych powiązań między źródłem neutronów, specyfiką wiązki a rodzajem zastosowanego nośnika. W artykule wskazujemy na wysoki potencjał związków bogatych w bor jako nośników w celowanej terapii borowo-neutronowej.

References

  • 1. Al-Madhoun A.S., Johnsamuel J., Barth R.F., Tjarks W., Eriksson S.:Evaluation of human thymidine kinase 1 substrates as new candidatesfor boron neutron capture therapy. Cancer Res., 2004; 64: 6280–6286
    Google Scholar
  • 2. Archambeau J.O.: The effect of increasing exposures of the10B(n,α)7Li reaction on the skin of man. Radiology, 1970; 94: 178–187
    Google Scholar
  • 3. Barth R.F., Coderre J.A., Vicente M.G., Blue T.E.: Boron neutroncapture therapy of cancer: Current status and future prospects. Clin.Cancer. Res., 2005; 11: 3987–4002
    Google Scholar
  • 4. Barth R.F., Kabalka G.W., Yang W., Huo T., Nakkula R.J., Shaikh A.L.,Haider S.A., Chandra S.: Evaluation of unnatural cyclic amino acids asboron delivery agents for treatment of melanomas and gliomas. Appl.Radiat. Isot., 2014; 88: 38–42
    Google Scholar
  • 5. Barth R.F., Mi P., Yang W.: Boron delivery agents for neutron capturetherapy of cancer. Cancer Commun., 2018; 38: 35
    Google Scholar
  • 6. Barth R.F., Yang W., Nakkula R.J., Byun Y., Tjarks W., Wu L.C., BinnsP.J., Riley K.J.: Evaluation of TK1 targeting carboranyl thymidine analogsas potential delivery agents for neutron capture therapy of braintumors. Appl. Radiat. Isot., 2015; 106: 251–255
    Google Scholar
  • 7. Barth R.F., Yang W., Rotaru J.H., Moeschberger M.L., Joel D.D., NawrockyM.M., Goodman J.H., Soloway A.H..: Boron neutron capture therapyof brain tumors: Enhanced survival following intracarotid injectionof either sodium borocaptate or boronophenylalanine with or withoutblood–brain barrier disruption. Cancer Res., 1997; 57: 1129–1136
    Google Scholar
  • 8. Bertrand N., Wu J., Xu X., Kamaly N., Farokhzad O.C.: Cancer nanotechnology:The impact of passive and active targeting in the era ofmodern cancer biology. Adv. Drug Deliv. Rev. 2014; 66: 2–25
    Google Scholar
  • 9. Bhimanapati G.R., Glavin N.R. Robinson J.A.: 2D boron nitride:Synthesis and applications. Semicond. Semimet., 2016; 95: 101–147
    Google Scholar
  • 10. Bortolussi S., Bakeine J.G., Ballarini F., Bruschi P., Gadan M. A., ProttiN., Stella S., Clerici A., Ferrari C., Cansolino L., Zonta C., Zonta A., Nano R.,Altieri S.: Boron uptake measurements in a rat model for Boron NeutronCapture Therapy of lung tumours. Appl. Radiat. Isot., 2011; 69: 394–398
    Google Scholar
  • 11. Capuani S., Gili T., Bozzali M., Russo S., Porcari P., Cametti C., MuoloM., D’Amore E., Maraviglia B., Lazzarino G., Pastore F.S.: Boronophenylalanineuptake in C6 glioma model is dramatically increased byL-DOPA preloading. Appl. Radiat. Isot., 2009; 67: S34–S36
    Google Scholar
  • 12. Chen X., Wu P., Rousseas M., Okawa D., Gartner Z., Zettl A., BertozziC.R.: Boron nitride nanotubes are noncytotoxic and can be functionalizedfor interaction with proteins and cells. J. Am. Chem. Soc.,2009; 131: 890–891
    Google Scholar
  • 13. Ciofani G., Danti S., D’Alessandro D., Moscato S., Menciassi A.:Assessing cytotoxicity of boron nitride nanotubes: Interference withthe MTT assay. Biochem. Biophys. Res. Commun., 2010; 394: 405–411
    Google Scholar
  • 14. Ciofani G., Danti S., Genchi G.G., Mazzolai B., Mattoli V.: Boronnitride nanotubes: Biocompatibility and potential spill-over in nanomedicine.Small., 2013; 9: 1672–1685
    Google Scholar
  • 15. Ciofani G., Raffa V., Menciassi., Cuschieri A.: Cytocompatibility,interactions, and uptake of polyethyleneimine-coated boron nitridenanotubes by living cells: Confirmation of their potential for biomedicalapplications. Biotechnol. Bioeng., 2008; 101: 850–858
    Google Scholar
  • 16. Coderre J.A., Glass J.D., Fairchild R.G., Micca P.L., Fand I., JoelD.D.: Selective delivery of boron by the melanin precursor analogue p-boronophenylalanine to tumors other than melanoma. Cancer Res.,1990; 50: 138–141
    Google Scholar
  • 17. Cui D., Tian F., Ozkan C.S., Wang M., Gao H.: Effect of single wall carbonnanotubes on human HEK293 cells. Toxicol. Lett., 2005; 155: 73–85
    Google Scholar
  • 18. Dahlström M., Capala J., Lindström P., Wasteson Å., Lindström A.:Accumulation of boron in human malignant glioma cells in vitro iscell type dependent. J. Neuro-Oncol., 2004; 68: 199–205
    Google Scholar
  • 19. Dobrzyński L.: Spowalnianie neutronów w moderatorze. W: PodstawyFizyki Reaktorów Jądrowych, red.: L. Dobrzyński. Świerk 2013,60–61
    Google Scholar
  • 20. Duong N.M., Glushkov E., Chernev A., Navikas V., Comtet J., NguyenM.A., Toth M., Radenovic A., Tran T.T., Aharonovich I.: Facile productionof hexagonal boron nitride nanoparticles by cryogenic exfoliation.Nano. Lett., 2019: 19: 5417–5422
    Google Scholar
  • 21. Feng B., Tomizawa K., Michiue H., Miyatake S., Han X.J., FujimuraA., Seno M., Kirihata M., Matsui H.: Delivery of sodium borocaptate toglioma cells using immunoliposome conjugated with anti-EGFR antibodiesby ZZ-His. Biomaterials, 2009; 30: 1746–1755
    Google Scholar
  • 22. Ferreira T.H., Miranda M.C., Rocha Z., Leal A.S., Gomes D.A., SousaE.M.: An assessment of the potential use of BNNTs for Boron NeutronCapture Therapy. Nanomaterials, 2017; 7: 82
    Google Scholar
  • 23. Gao Z., Horiguchi Y., Nakai K., Matsumura A., Suzuki M., Ono K.,Nagasaki Y:. Use of boron cluster-containing redox nanoparticles withROS scavenging ability in boron neutron capture therapy to achievehigh therapeutic efficiency and low adverse effects. Biomaterials,2016; 104: 201–212
    Google Scholar
  • 24. Gonzalez-Ortiz D., Salameh C., Bechelany M., Miele P.: Nanostructuredboron nitride – based materials: Synthesis and applications.Mater. Today Adv., 2020; 8: 100107
    Google Scholar
  • 25. Goodman J.H., Yang W., Barth R.F., Gao Z., Boesel C.P., StaubusA.E., Gupta N., Gahbauer R.A., Adams D.M., Gibson C.R., Ferketich A.K.,Moeschberger M.L., Soloway A.H., Carpenter D.E., Albertson B.J. i wsp.:Boron neutron capture therapy of brain tumors: Biodistribution, pharmacokinetics,and radiation dosimetry sodium borocaptate in patientswith gliomas. Neurosurgery, 2000; 47: 608–621
    Google Scholar
  • 26. Hatanaka H., Nakagawa Y.: Clinical results of long-surviving braintumor patients who underwent boron neutron capture therapy. Int.J. Radiat. Oncol. Biol. Phys., 1994; 28: 1061–1066
    Google Scholar
  • 27. Hiratsuka J., Kamitani N., Tanaka R., Tokiya R., Yoden E., SakuraiY., Suzuki M.: Long-term outcome of cutaneous melanoma patientstreated with boron neutron capture therapy (BNCT). J. Radiat. Res.,2020; 61: 945–951
    Google Scholar
  • 28. Horváth L., Magrez A., Golberg D., Zhi C., Bando Y., Smajda R.,Horváth E., Forró L., Schwaller B.: In vitro investigation of the cellulartoxicity of boron nitride nanotubes. ACS Nano, 2011; 5: 3800–3810
    Google Scholar
  • 29. Ichikawa H., Taniguchi E., Fujimoto T., Fukumori Y.: Biodistributionof BPA and BSH after single, repeated and simultaneous administrationsfor neutron-capture therapy of cancer. Appl. Radiat. Isot.,2009; 67: S111–S114
    Google Scholar
  • 30. Ishikawa Y., Shimizu Y., Sasaki T., Koshizaki N.: Boron carbidespherical particles encapsulated in graphite prepared by pulsed laserirradiation of boron in liquid medium. Appl. Phys. Lett., 2007;91: 161110
    Google Scholar
  • 31. Itoh T., Tamura K., Ueda H., Tanaka T., Sato K., Kuroda R., Aoki S.:Design and synthesis of boron containing monosaccharides by thehydroboration of D-glucal for use in boron neutron capture therapy(BNCT). Bioorg. Med. Chem., 2018; 26: 5922–5933
    Google Scholar
  • 32. Iwagami T., IshikawaY., Koshizaki N., Yamamoto N., Tanaka H.,Masunaga S., Sakurai Y., Kato I., Iwai S., Suzuki M., Yura Y.: Boroncarbide particle as a boron compound for Boron Neutron CaptureTherapy. J. Nucl. Med. Radiat. Ther., 2014; 5: 2
    Google Scholar
  • 33. Kabalka G.W., Shaikh A.L., Barth R.F., Huo T., Yang W., GordnierP.M., Chandra S.: Boronated unnatural cyclic amino acids as potentialdelivery agents for neutron capture therapy. Appl. Radiat. Isot.,2011; 69: 1778–1781
    Google Scholar
  • 34. Kabalka G.W., Yao M.L., Marepally S.R., Chandra S.: Biologicalevaluation of boronated unnatural amino acids as new boron carriers.Appl. Radiat. Isot., 2009; 67: S374–S379
    Google Scholar
  • 35. Kageji T., Nagahiro S., Mizobuchi Y., Matsuzaki K., Nakagawa Y., KumadaH.: Boron neutron capture therapy (BNCT) for newly-diagnosedglioblastoma: Comparison of clinical results obtained with BNCT andconventional treatment. J. Med. Invest., 2014; 61: 254–263
    Google Scholar
  • 36. Kato I., Fujita Y., Maruhashi A., Kumada H., Ohmae M., KirihataM., Imahori Y., Suzuki M., Sakrai Y., Sumi T., Iwai S., Nakazawa M.,Murata I., Miyamaru H., Ono K.: Effectiveness of boron neutron capturetherapy for recurrent head and neck malignancies. Appl. Radiat.Isot., 2009; 67: S37–S42
    Google Scholar
  • 37. Kato T., Hirose K., Tanaka H., Mitsumoto T., Motoyanagi T.,Arai K., Harada T., Takeuchi A., Kato R., Yajima S., Takai Y.: Designand construction of an accelerator-based boron neutron capturetherapy (AB-BNCT) facility with multiple treatment rooms at theSouthern Tohoku BNCT Research Center. Appl. Radiat. Isot., 2020;156: 108961
    Google Scholar
  • 38. Kaur M., Singh P., Singh K., Gaharwar U.S., Meena R., Kumar M.,Nakagawa F., Wu S., Suzuki M., Nakamura H., Kumar A.: Boron nitride(10BN) a prospective material for treatment of cancer by boron neutroncapture therapy (BNCT). Mater. Lett., 2020; 259: 126832
    Google Scholar
  • 39. Kawabata S., Yang W., Barth R.F., Wu G., Huo T., Binns P.J., RileyK.J., Ongayi O., Gottumukkala V., Vicente M.G.: Convection enhanceddelivery of carboranylporphyrins for neutron capture therapy of braintumors. J. Neuro-Oncol., 2011; 103: 175–185
    Google Scholar
  • 40. Kimura Y., Ariyoshi Y., Shimahara M., Miyatake S., Kawabata S.,Ono K., Suzuki M., Maruhashi A.: Boron neutron capture therapy forrecurrent oral cancer and metastasis of cervical lymph node. Appl.Radiat. Isot., 2009; 67: S47–S49
    Google Scholar
  • 41. Kiyanagi Y., Sakurai Y., Kumada H., Tanaka H.: Status of accelerator-based BNCT projects worldwide. AIP Conf. Proc., 2019; 2160: 050012
    Google Scholar
  • 42. Kullberg E.B., Wei Q., Capala J., Giusti V., Malmström P.U., GeddaL.: EGF-receptor targeted liposomes with boronatedacridine: Growthinhibition of cultured glioma cells after neutron irradiation. Int. J.Radiat. Biol., 2005; 81: 621–629
    Google Scholar
  • 43. Kumada H., Naito F., Hasegawa K., Kobayashi H., Kurihara T., TakadaK., Onishi T., Sakurai H., Matsumura A., Sakae T.: Development ofLINAC-based neutron source for Boron Neutron Capture Therapy inUniversity of Tsukuba. Plasma Fusion Res., 2018; 13: 2406006
    Google Scholar
  • 44. Lai C.H., Lin Y.C., Chou F.I., Liang C.F., Lin E.W., Chuang Y.J., LinC.C.: Design of multivalent galactosyl carborane as a targeting specificagent for potential application to boron neutron capture therapy.Chem. Commun., 2012; 48: 612–614
    Google Scholar
  • 45. Lam C.W., James J.T., McCluskey R., Hunter R.L.: Pulmonary toxicityof single-wall carbon nanotubes in mice 7 and 90 days after intratrachealinstillation. Toxicol. Sci., 2004; 77: 126–134
    Google Scholar
  • 46. Lee C.H., Zhang D., Yap Y.K.: Functionalization, dispersion, andcutting of boron nitride nanotubes in water. J. Phys. Chem. C, 2012;116: 1798–1804
    Google Scholar
  • 47. Luderer M.J., de la Puente P., Azab A.K.: Advancements in tumortargeting strategies for Boron Neutron Capture Therapy. Pharm. Res.,2015; 32: 2824–2836
    Google Scholar
  • 48. Luderer M.J., Muz B., Alhallak K., Sun J., Wasden K., Guenthner N.,de la Puente P., Federico C., Azab A.K.: Thermal sensitive liposomesimprove delivery of boronated agents for Boron Neutron CaptureTherapy. Pharm. Res., 2019; 36: 144
    Google Scholar
  • 49. Masunaga S., Kasaoka S., Maruyama K., Nigg D., Sakurai Y., NagataK., Suzuki M., Kinashi Y., Maruhashi A., Ono K.: The potential of transferrin-pendant-type polyethyleneglycol liposomes encapsulatingdecahydrodecaborate-10B (GB-10) as 10B-carriers for boron neutroncapture therapy. Int. J. Radiat. Oncol. Biol. Phys., 2006; 66: 1515–1522
    Google Scholar
  • 50. Mattson M.P., Haddon R.C., Rao A.M.: Molecular functionalizationof carbon nanotubes and use as substrates for neuronal growth.J. Mol. Neurosci., 2000; 14: 175–182
    Google Scholar
  • 51. Mi P., Yanagie H., Dewi N., Yen H.C., Liu X., Suzuki M., Sakurai Y.,Ono K., Takahashi H., Cabral H., Kataoka K., Nishiyama N.: Block copolymerboron cluster conjugate for effective boron neutron capturetherapy of solid tumors. J. Control. Release, 2017; 254: 1–9
    Google Scholar
  • 52. Michiue H., Sakurai Y., Kondo N., Kitamatsu M., Bin F., Nakajima K.,Hirota Y., Kawabata S., Nishiki T., Ohmori I., Tomizawa K., Miyatake S.,Ono K., Matsui H.: The acceleration of boron neutron capture therapyusing multi-linked mercaptoundecahydrododecaborate (BSH) fusedcell-penetrating peptide. Biomaterials, 2014; 35: 3396–3405
    Google Scholar
  • 53. Mirzaei H.R., Sahebkar A., Salehi R., Nahand J.S., Karimi E., JaafariM.R., Mirzaei H.: Boron neutron capture therapy: Moving toward targetedcancer therapy. J. Cancer Res. Ther., 2016; 12: 520–525
    Google Scholar
  • 54. Mishima Y., Honda C., Ichihashi M., Obara H., Hiratsuka J., FukudaH., Karashima H., Kobayashi T., Kanda K., Yoshino K.: Treatment ofmalignant melanoma by single thermal neutron capture therapy withmelanoma-seeking 10B-compound. Lancet, 1989; 2: 388–389
    Google Scholar
  • 55. Miyatake S.I., Kawabata S., Hiramatsu R., Kuroiwa T., Suzuki M.,Ono K.: Boron Neutron Capture Therapy of malignant gliomas. Prog.Neurol. Surg., 2018; 32: 48–56
    Google Scholar
  • 56. Miyatake S.I., Kawabata S., Kajimoto Y., Aoki A., Yokoyama K.,Yamada M., Kuroiwa T., Tsuji M., Imahori Y., Kirihata M., Sakurai Y.,Masunaga S.I., Nagata K., Maruhashi A., Ono K.: Modified boron neutroncapture therapy for malignant gliomas performed using epithermalneutron and two boron compounds with different accumulationmechanisms: An efficacy study based on findings on neuroimages. J.Neurosurg., 2005; 103: 1000–1009
    Google Scholar
  • 57. Mortensen M.W., Sørensen P.G., Björkdahl O., Jensen M.R., GundersenH.J., Bjørnholm T.: Preparation and characterization of boroncarbide nanoparticles for use as a novel agent in T cell-guided boronneutron capture therapy. Appl. Radiat. Isot., 2006; 64: 315–324
    Google Scholar
  • 58. Moss R.L.: Critical review, with an optimistic outlook, on BoronNeutron Capture Therapy (BNCT). Appl. Radiat. Isot., 2014; 88: 2–11
    Google Scholar
  • 59. Naito F.: Introduction to accelerators for boron neutron capturetherapy. Ther. Radiol. Oncol., 2018; 2: 54
    Google Scholar
  • 60. Nakagawa Y., Pooh K., Kobayashi T., Kageji T., Uyama S., MatsumuraA., Kumada H.: Clinical review of the Japanese experiencewith boron neutron capture therapy and a proposed strategy usingepithermal neutron beams. J. Neuro-Oncol., 2003; 62: 87–99
    Google Scholar
  • 61. Nakamura H., Koganei H., Miyoshi T., Sakurai Y., Ono K., Suzuki M.:Antitumor effect of boron nitride nanotubes in combination with thermalneutron irradiation on BNCT. Bioorg. Med. Chem. Lett., 2015; 25: 172–174
    Google Scholar
  • 62. Nakamura S., Imamichi S., Masumoto K., Ito M., Wakita A., OkamotoH., Nishioka S., Iijima K., Kobayashi K., Abe Y., Igaki H., Kurita K., Nishio T., Masutani M., Itami J.: Evaluation of radioactivity in the bodiesof mice induced by neutron exposure from an epi-thermal neutronsource of an accelerator-based boron neutron capture therapy system.Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 2017; 93: 821–831
    Google Scholar
  • 63. Nedunchezhian K., Aswath N., Thiruppathy M., ThirugnanamurthyS.: Boron Neutron Capture Therapy – A literature review. J. Clin.Diagn. Res., 2016; 10: ZE01–ZE04
    Google Scholar
  • 64. Nemoto H., Cai J., Asao N., Iwamoto S., Yamamoto Y.: Synthesisand biological properties of water-soluble p-boronophenylalaninederivatives. Relationship between water solubility, cytotoxicity, andcellular uptake. J. Med. Chem., 1995; 38: 1673–1678
    Google Scholar
  • 65. Petersen M.S., Petersen C.C., Agger R., Sutmuller M., Jensen M.R.,Sørensen P.G., Mortensen M.W., Hansen T., Bjørnholm T., GundersenH.J., Huiskamp R., Hokland M.: Boron nanoparticles inhibit tumourgrowth by boron neutron capture therapy in the murine B16‐OVAmodel. Anticancer Res., 2008; 28: 571–576
    Google Scholar
  • 66. Radomski J., Rećko W.M., Ketling-Szemley M.: Własności azotkuboru i metody jego otrzymywania. Wydawnictwa PrzemysłuMaszynowego “WEMA”. Warszawa 1980
    Google Scholar
  • 67. Ryashentsev D.S., Belenkov E.A.: New BN polymorphs with two-dimensionalstructure. IOP Conf. Ser.: Mater. Sci. Eng., 2019; 537: 022060
    Google Scholar
  • 68. Seki R., Wakisaka Y., Morimoto N., Takashina M., Koizumi M., TokiH., Fukuda M.: Physics of epi-thermal boron neutron capture therapy(epi-thermal BNCT). Radiol. Phys. Technol., 2017; 10: 387–408
    Google Scholar
  • 69. Şen Ö., Emanet M., Çulha M.: One-step synthesis of hexagonalboron nitrides, their crystallinity and biodegradation. Front. Bioeng.Biotechnol., 2018; 6: 83
    Google Scholar
  • 70. Shvedova A.A., Castranova V., Kisin E.R., Schwegler-Berry D., MurrayA.R., Gandelsman V.Z., Maynard A., Baron P.: Exposure to carbonnanotube material: Assessment of nanotube cytotoxicity using humankeratinocyte cells. J. Toxicol. Environ. Health A, 2003; 66: 1909–1926
    Google Scholar
  • 71. Singh B., Kaur G., Singh P., Singh K. Kumar B., Vij A., Kumar M.,Bala R., Meena R., Singh A., Thakur A., Kumar A.: Nanostructured boronnitride with high water dispersibility for Boron Neutron CaptureTherapy. Sci. Rep., 2016; 6: 35535
    Google Scholar
  • 72. Slatkin D.N.: A history of boron neutron capture therapy of braintumours. Postulation of a brain radiation dose tolerance limit. Brain,1991; 114: 1609–1629
    Google Scholar
  • 73. Suzuki M.: Boron neutron capture therapy (BNCT): A unique rolein radiotherapy with a view to entering the accelerator-based BNCTera. Int. J. Clin. Oncol., 2020; 25: 43–50
    Google Scholar
  • 74. Suzuki M., Masunaga S.I., Kinashi Y., Takagaki M., Sakurai Y., KobayashiT., Ono K.: The effects of boron neutron capture therapy onliver tumors and normal hepatocytes in mice. Jpn. J. Cancer Res.,2000; 91: 1058–1064
    Google Scholar
  • 75. Tajes M., Ramos-Fernández E., Weng-Jiang X., Bosch-Morató M.,Guivernau B., Eraso-Pichot A., Salvador B., Fernàndez-Busquets X.,Roquer J., Muñoz F.J.: The blood-brain barrier: Structure, function andtherapeutic approaches to cross it. Mol. Membr. Biol., 2014; 31: 152–167
    Google Scholar
  • 76. Tsuji T., Yoshitomi H., Ishikawa Y., Koshizaki N., Suzuki M., UsukuraJ.: A method to selectively internalize submicrometer boron carbideparticles into cancer cells using surface transferrin conjugationfor developing a new boron neutron capture therapy agent. J. Exp.Nanosci., 2020; 15: 1–11
    Google Scholar
  • 77. Türkez H., Arslan M.E., Sönmez E., Geyikoğlu F., Açıkyıldız M., TatarA.: Microarray assisted toxicological investigations of boron carbidenanoparticles on human primary alveolar epithelial cells. Chem. Biol.Interact., 2019; 300: 131–137
    Google Scholar
  • 78. Vos M.J., Turowski B., Zanella F.E., Paquis P., Siefert A., HideghétyK., Haselsberger K., Grochulla F., Postma T.J., Wittig A., Heimans J.J.,Slotman B.J., Vandertop W.P., Sauerwein W.: Radiologic findings inpatients treated with boron neutron capture therapy for glioblastomamultiforme within EORTC trial 11961. Int. J. Radiat. Oncol. Biol.Phys., 2005; 61: 392–399
    Google Scholar
  • 79. Warheit D.B., Laurence B.R., Reed K.L., Roach D.H., Reynolds G.A.,Webb T.R.: Comparative pulmonary toxicity assessment of single-wallcarbon nanotubes in rats. Toxicol. Sci., 2004; 77: 117–125
    Google Scholar
  • 80. Weng Q., Wang B., Wang X., Hanagata N., Li X., Liu D., Wang X.,Jiang X., Bando Y., Golberg D.: Highly water-soluble, porous, and biocompatibleboron nitrides for anticancer drug delivery. ACS Nano,2014; 8: 6123–6130
    Google Scholar
  • 81. Wittig A., Sauerwein W.A., Coderre J.A.: Mechanisms of transportof p-borono-phenylalanine through the cell membrane in vitro. Radiat.Res., 2000; 153: 173–180
    Google Scholar
  • 82. Wittig A., Stecher-Rasmussen F., Hilger R.A., Rassow J., Mauri P.,Sauerwein W.: Sodium mercaptoundecahydro-closo-dodecaborate(BSH), a boron carrier that merits more attention. Appl. Radiat. Isot.,2011; 69: 1760–1764
    Google Scholar
  • 83. Wu G., Yang W., Barth R.F., Kawabata S., Swindall M., BandyopadhyayaA.K., Tjarks W., Khorsandi B., Blue T.E., Ferketich A.K., Yang M.,Christoforidis G.A., Sferra T.J., Binns P.J., Riley K.J. i wsp.: Moleculartargeting and treatment of an epidermal growth factor receptorpositiveglioma using boronated cetuximab. Clin. Cancer Res., 2007;13: 1260–1268
    Google Scholar
  • 84. Yanagië H., Tomita T., Kobayashi H., Fujii Y., Takahashi T., HasumiK., Nariuchi H., Sekiguchi M.: Application of boronated anti-CEA im munoliposome to tumour cell growth inhibition in in vitro boronneutron capture therapy model. Br. J. Cancer, 1991; 63: 522–526
    Google Scholar
  • 85. Yang W., Barth R.F., Wu G., Tjarks W., Binns P., Riley K.: Boronneutron capture therapy of EGFR or EGFRvIII positive gliomas usingeither boronated monoclonal antibodies or epidermal growthfactor as molecular targeting agents. Appl. Radiat. Isot., 2009; 67:S328–S331
    Google Scholar
  • 86. Yang W., Wu G., Barth R.F., Swindall M.R., Bandyopadhyaya A.K.,Tjarks W., Tordoff K., Moeschberger M., Sferra T.J., Binns P.J., RileyK.J., Ciesielski M.J., Fenstermaker R.A., Wikstrand C.J.: Moleculartargeting and treatment of composite EGFR and EGFRvIII-positivegliomas using boronated monoclonal antibodies. Clin. Cancer Res.,2008; 14: 883–891
    Google Scholar
  • 87. Yinghuai Z., Peng A.T., Carpenter K., Maguire J.A., Hosmane N.S.,Takagaki M.: Substituted carborane-appended water-soluble singlewallcarbon nanotubes: New approach to Boron Neutron CaptureTherapy drug delivery. J. Am. Chem. Soc., 2005; 127: 9875–9880
    Google Scholar
  • 88. Yokoyama K., Miyatake S., Kajimoto Y., Kawabata S., Doi A., YoshidaT., Asano T., Kirihata M., Ono K., Kuroiwa T.: Pharmacokinetic studyof BSH and BPA in simultaneous use for BNCT. J. Neuro-Oncol., 2006;78: 227–232
    Google Scholar
  • 89. Zhuo J.C., Cai J., Soloway A.H., Barth R.F., Adams D.M., Ji W., TjarksW.: Synthesis and biological evaluation of boron-containing polyaminesas potential agents for neutron capture therapy of brain tumors.J. Med. Chem., 1999; 42: 1282–1292
    Google Scholar

Full text

Skip to content