Gasdermin family proteins as a permeabilization factor of cell membrane in pyroptosis process
Dorota Kuc-Ciepluch 1 , Karol Ciepluch 1 , Michał Arabski 1Abstract
The type of cell death, i.e. apoptosis, autophagy, necrosis or pyroptosis, depends on the inducing factor and the phase of the cell cycle. The main role in immunological response to microorganisms is played by a process called pyroptosis. Pyroptosis induces various types of inflammatory factors in response to molecular patterns associated with pathogens, e.g., bacterial lipopolysaccharide in the canonical or non-canonical pathway depending on the type of caspases involved. In pyroptosis, the gasdermin D protein belonging to the gasdermin protein family (A, B, C, D, E and DFNB59) plays an important role, which is characterized by specific tissue gene expression mainly in epithelial cells, skin and the digestive system and is responsible for regulating the proliferation and differentiation of cells and is responsible for inhibiting or developing cancers in various organs. The GSDM family is responsible for the formation of pores in the cell membrane, enabling the secretion of proinflammatory cytokines (IL-1β and IL-18) involved in initiating inflammatory response pathways by recruiting and activating immune cells at the site of infection. The gasdermin D protein plays an essential role in the non-canonical pyroptosis process, whose N-terminal forming pores in the cell membrane leads to edema, osmotic lysis and, consequently, to the death of the infected cell.
References
- 1. Baker P.J., Boucher D., Bierschenk D., Tebartz C., Whitney P.G.,D’Silva D.B., Tanzer M.C., Monteleone M., Robertson A.A., Cooper M.A.,Alvarez-Diaz S., Herold M.J., Bedoui S., Schroder K., Masters S.L.: NLRP3inflammasome activation downstream of cytoplasmic LPS recognitionby both caspase-4 and caspase-5. Eur. J. Immunol., 2015; 45: 2918–2926
Google Scholar - 2. Banerjee I., Behl B., Mendonca M., Shrivastava G., Russo A.J., MenoretA., Ghosh A., Vella A.T., Vanaja S.K., Sarkar S.N., Fitzgerald K.A.,Rathinam V.A.: Gasdermin D restrains type I interferon response tocytosolic DNA by disrupting ionic homeostasis. Immunity, 2018; 49:413–426.e5
Google Scholar - 3. Bergsbaken T., Fink S.L., Cookson B.T.: Pyroptosis: Host cell deathand inflammation. Nat. Rev. Microbiol., 2009; 7: 99–109
Google Scholar - 4. Chao K.L., Kulakova L., Herzberg O.: Gene polymorphism linked toincreased asthma and IBD risk alters gasdermin-B structure, a sulfatideand phosphoinositide binding protein. Proc. Natl. Acad. Sci. USA,2017; 114: E1128–E1137
Google Scholar - 5. Chen Q., Shi P., Wang Y., Zou D., Wu X., Wang D., Hu Q., Zou Y., HuangZ., Ren J., Lin Z., Gao X.: GSDMB promotes non-canonical pyroptosisby enhancing caspase-4 activity. J. Mol. Cell Biol., 2019; 11: 496–508
Google Scholar - 6. De Beeck K.O., Van Laer L., Van Camp G.: DFNA5, a gene involvedin hearing loss and cancer: A review. Ann. Otol. Rhinol. Laryngol.,2012; 121: 197–207
Google Scholar - 7. Defourny J., Aghaie A., Perfettini I., Avan P., Delmaghani S., PetitC.: Pejvakin-mediated pexophagy protects auditory hair cells againstnoise-induced damage. Proc. Natl. Acad. Sci. USA, 2019; 116: 8010–8017
Google Scholar - 8. Evavold C.L., Kagan J.C.: Defying death: The (w)hole truth aboutthe fate of GSDMD pores. Immunity, 2019; 50: 15–17
Google Scholar - 9. Evavold C.L., Ruan J., Tan Y., Xia S., Wu H., Kagan J.C.: The poreformingprotein gasdermin D regulates interleukin-1 secretion fromliving macrophages. Immunity, 2018; 48: 35–44
Google Scholar - 10. Feng S., Fox D., Man S.M.: Mechanisms of gasdermin family membersin inflammasome signaling and cell death. J. Mol. Biol., 2018;430: 3068–3080
Google Scholar - 11. Gao J., Qiu X., Xi G., Liu H., Zhang F., Lv T., Song Y.: Downregulationof GSDMD attenuates tumor proliferation via the intrinsic mitochondrialapoptotic pathway and inhibition of EGFR/Akt signalingand predicts a good prognosis in non-small cell lung cancer. Oncol.Rep., 2018; 40: 1971–1984
Google Scholar - 12. Gonzalez Ramirez M.L., Poreba M., Snipas S.J., Groborz K., Drag M.,Salvesen G.S.: Extensive peptide and natural protein substrate screensreveal that mouse caspase-11 has much narrower substrate specificitythan caspase-1. J. Biol. Chem., 2018; 293: 7058–7067
Google Scholar - 13. Guo H., Xu S., Liu Y., Yang Y., Deng F., Xing Y., Lian X., Li Y.: Gsdma3is required for mammary gland development in mice. Histochem. CellBiol., 2017; 147: 575–583
Google Scholar - 14. Harris S.L., Kazmierczak M., Pangršič T., Shah P., Chuchvara N.,Barrantes-Freer A., Moser T., Schwander M.: Conditional deletion ofpejvakin in adult outer hair cells causes progressive hearing loss inmice. Neuroscience, 2017; 344: 380–393
Google Scholar - 15. Hayward J.A., Mathur A., Ngo C., Man S.M.: Cytosolic recognitionof microbes and pathogens: Inflammasomes in action. Microbiol. Mol.Biol. Rev., 2018; 82: e00015–18
Google Scholar - 16. He Y., Hara H., Arbor A.: HHS Public Access. 2017; 41: 1012–1021
Google Scholar - 17. Heilig R., Dick M.S., Sborgi L., Meunier E., Hiller S., Broz P.: Thegasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur. J.Immunol., 2018; 48: 584–592
Google Scholar - 18. Huang X., Feng Y., Xiong G., Whyte S., Duan J., Yang Y., Wang K.,Yang S., Geng Y., Ou Y., Chen D.: Caspase-11, a specific sensor for intracellularlipopolysaccharide recognition, mediates the non-canonicalinflammatory pathway of pyroptosis. Cell Biosci., 2019; 9: 31
Google Scholar - 19. Kayagaki N., Stowe I.B., Lee B.L., O’Rourke K., Anderson K., WarmingS., Cuellar T., Haley B., Roose-Girma M., Phung Q.T., Liu P.S., Lill J.R.,Li H., Wu J., Kummerfeld S. i wsp.: Caspase-11 cleaves gasdermin D fornon-canonical inflammasome signalling. Nature, 2015; 526: 666–671
Google Scholar - 20. Kazmierczak M., Kazmierczak P., Peng A.W., Harris S.L., Shah P.,Puel J.L., Lenoir M., Franco S.J., Schwander M.: Pejvakin, a candidatestereociliary rootlet protein, regulates hair cell function in a cellautonomousmanner. J. Neurosci., 2017; 37: 3447–3464
Google Scholar - 21. Kovacs S.B., Miao E.A.: Gasdermins: Effectors of pyroptosis. TrendsCell Biol., 2017; 27: 673–684
Google Scholar - 22. Lin H.Y., Lin P.H., Wu S.H., Yang L.T.: Inducible expression of gasderminA3 in the epidermis causes epidermal hyperplasia and skininflammation. Exp. Dermatol., 2015; 24: 897–899
Google Scholar - 23. Liu X., Zhang Z., Ruan J., Pan Y., Magupalli V.G., Wu H., LiebermanJ.: Inflammasome-activated gasdermin D causes pyroptosis by formingmembrane pores. Nature, 2016; 535: 153–158
Google Scholar - 24. Lu H., Zhang S., Wu J., Chen M., Cai M.C., Fu Y., Li W., Wang J.,Zhao X., Yu Z., Ma P., Zhuang G.: Molecular targeted therapies elicitconcurrent apoptotic and GSDME-dependent pyroptotic tumor celldeath. Clin. Cancer Res., 2018; 24: 6066–6077
Google Scholar - 25. Miguchi M., Hinoi T., Shimomura M., Adachi T., Saito Y., Niitsu H.,Kochi M., Sada H., Sotomaru Y., Ikenoue T., Shigeyasu K., Tanakaya K.,Kitadai Y., Sentani K., Oue N. i wsp.: Gasdermin C is upregulated byinactivation of transforming growth factor β receptor type II in the presence of mutated Apc, promoting colorectal cancer proliferation.PLoS One, 2016; 11: e0166422
Google Scholar - 26. Moossavi M., Parsamanesh N., Bahrami A., Atkin S.L., Sahebkar A.:Role of the NLRP3 inflammasome in cancer. Mol. Cancer, 2018; 17: 158
Google Scholar - 27. Mulvihill E., Sborgi L., Mari S.A., Pfreundschuh M., Hiller S., MüllerD.J.: Mechanism of membrane pore formation by human gasdermin‐D. EMBO J., 2018; 37: e98321
Google Scholar - 28. Panganiban R.A., Sun M., Dahlin A., Park H.R., Kan M., Himes B.E.,Mitchel J.A., Iribarren C., Jorgenson E., Randell S.H., Israel E., TantisiraK., Shore S., Park J.A, Weiss S.T. i wsp.: A functional splicing variantassociated with decreased asthma risk abolishes the ability of gasderminB to induce epithelial cell pyroptosis. J. Allergy Clin. Immunol.,2018; 142: 1469–1478.e2
Google Scholar - 29. Pfalzgraff A., Weindl G.: Intracellular lipopolysaccharide sensingas a potential therapeutic target for sepsis. Trends Pharmacol. Sci.,2019; 40: 187–197
Google Scholar - 30. Platnich J.M., Chung H., Lau A., Sandall C.F., Bondzi-Simpson A.,Chen H.M., Komada T., Trotman-Grant A.C., Brandelli J.R., Chun J.,Beck P.L., Philpott D.J., Girardin S.E., Ho M., Johnson R.P., MacDonaldJ.A., Armstrong G.D., Muruve D.A.: Shiga toxin/lipopolysaccharideactivates caspase-4 and gasdermin D to trigger mitochondrial reactiveoxygen species upstream of the NLRP3 inflammasome. Cell Rep.,2018; 25: 1525–1536.e7
Google Scholar - 31. Qiu S., Liu J., Xing F.: „Hints” in the killer protein gasdermin D:Unveiling the secrets of gasdermins driving cell death. Cell DeathDiffer., 2017; 24: 588–596
Google Scholar - 32. Ramos-Junior E.S., Morandini A.C.: Gasdermin: A new player tothe inflammasome game. Biomed. J., 2017; 40: 313–316
Google Scholar - 33. Rogers C., Erkes D.A., Nardone A., Aplin A.E., Fernandes-AlnemriT., Alnemri E.S.: Gasdermin pores permeabilize mitochondria to augmentcaspase-3 activation during apoptosis and inflammasome activation.Nat. Commun., 2019; 10: 1689
Google Scholar - 34. Rogers C., Fernandes-Alnemri T., Mayes L., Alnemri D., CingolaniG., Alnemri E.S.: Cleavage of DFNA5 by caspase-3 during apoptosismediates progression to secondary necrotic/pyroptotic cell death.Nat. Commun., 2017; 8: 14128
Google Scholar - 35. Ruan J., Xia S., Liu X., Lieberman J., Wu H.: Cryo-EM structure ofthe gasdermin A3 membrane pore. Nature, 2018; 557: 62–67
Google Scholar - 36. Saeki N., Usui T., Aoyagi K., Kim D.H., Sato M., Mabuchi T., YanagiharaK., Ogawa K., Sakamoto H., Yoshida T., Sasaki H.: Distinctiveexpression and function of four GSDM family genes (GSDMA-D) innormal and malignant upper gastrointestinal epithelium. Genes ChromosomesCancer, 2009; 48: 261–271
Google Scholar - 37. Samali A., Zhivotovsky B., Jones D., Nagata S., Orrenius S.: Apoptosis:Cell death defined by caspase activation. Cell Death Differ.,1999; 6: 495–496
Google Scholar - 38. Sborgi L., Rühl S., Mulvihill E., Pipercevic J., Heilig R., StahlbergH., Farady C.J., Müller D.J., Broz P., Hiller S.: GSDMD membrane poreformation constitutes the mechanism of pyroptotic cell death. EMBOJ., 2016; 35: 1766–1778
Google Scholar - 39. Shi J., Zhao Y., Wang K., Shi X., Wang Y., Huang H., Zhuang Y., CaiT., Wang F., Shao F.: Cleavage of GSDMD by inflammatory caspases determinespyroptotic cell death. Nature, 2015; 526: 660–665
Google Scholar - 40. Song N., Li T.: Regulation of NLRP3 inflammasome by phosphorylation.Front. Immunol., 2018; 9: 2305
Google Scholar - 41. Tamura M., Tanaka S., Fujii T., Aoki A., Komiyama H., Ezawa K.,Sumiyama K., Sagai T., Shiroishi T.: Members of a novel gene family,Gsdm, are expressed exclusively in the epithelium of the skin andgastrointestinal tract in a highly tissue-specific manner. Genomics,2007; 89: 618–629
Google Scholar - 42. Tixeira R., Shi B., Parkes M.A., Hodge A.L., Caruso S., Hulett M.D.,Baxter A.A., Phan T.K., Poon I.K.: Gasdermin E does not limit apoptoticcell disassembly by promoting early onset of secondary necrosis inJurkat T cells and THP-1 monocytes. Front. Immunol., 2018; 9: 2842
Google Scholar - 43. Xia S., Ruan J., Wu H.: Monitoring gasdermin pore formation invitro. Methods Enzymol, 2019; 625: 95–107
Google Scholar - 44. Xiao J., Wang C., Yao J.C., Alippe Y., Xu C., Kress D., Civitelli R.,Abu-Amer Y., Kanneganti T.D., Link D.C., Mbalaviele G.: Gasdermin Dmediates the pathogenesis of neonatal-onset multisystem inflammatorydisease in mice. PLoS Biol., 2018; 16: e3000047
Google Scholar - 45. Yi Y.S.: Regulatory roles of the caspase-11 non-canonical inflammasomein inflammatory diseases. Immune Netw. 2018; 18: e41
Google Scholar - 46. Yu J., Kang M.J., Kim B.J., Kwon J.W., Song Y.H., Choi W.A., ShinY.J., Hong S.J.: Polymorphisms in GSDMA and GSDMB are associatedwith asthma susceptibility, atopy and BHR. Pediatr. Pulmonol., 2011;46: 701–708
Google Scholar - 47. Yuan Y.Y., Xie K.X., Wang S.L., Yuan L.W.: Inflammatory caspaserelatedpyroptosis: Mechanism, regulation and therapeutic potentialfor inflammatory bowel disease. Gastroenterol. Rep., 2018; 6: 167–176
Google Scholar