Gasdermin family proteins as a permeabilization factor of cell membrane in pyroptosis process

REVIEW ARTICLE

Gasdermin family proteins as a permeabilization factor of cell membrane in pyroptosis process

Dorota Kuc-Ciepluch 1 , Karol Ciepluch 1 , Michał Arabski 1

1. Zakład Biologii Medycznej, Instytut Biologii, Uniwersytet Jana Kochanowskiego w Kielcach,

Published: 2021-05-25
DOI: 10.5604/01.3001.0014.8985
GICID: 01.3001.0014.8985
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2021; 75 : 337-344

 

Abstract

The type of cell death, i.e. apoptosis, autophagy, necrosis or pyroptosis, depends on the inducing factor and the phase of the cell cycle. The main role in immunological response to microorganisms is played by a process called pyroptosis. Pyroptosis induces various types of inflammatory factors in response to molecular patterns associated with pathogens, e.g., bacterial lipopolysaccharide in the canonical or non-canonical pathway depending on the type of caspases involved. In pyroptosis, the gasdermin D protein belonging to the gasdermin protein family (A, B, C, D, E and DFNB59) plays an important role, which is characterized by specific tissue gene expression mainly in epithelial cells, skin and the digestive system and is responsible for regulating the proliferation and differentiation of cells and is responsible for inhibiting or developing cancers in various organs. The GSDM family is responsible for the formation of pores in the cell membrane, enabling the secretion of proinflammatory cytokines (IL-1β and IL-18) involved in initiating inflammatory response pathways by recruiting and activating immune cells at the site of infection. The gasdermin D protein plays an essential role in the non-canonical pyroptosis process, whose N-terminal forming pores in the cell membrane leads to edema, osmotic lysis and, consequently, to the death of the infected cell.

References

  • 1. Baker P.J., Boucher D., Bierschenk D., Tebartz C., Whitney P.G.,D’Silva D.B., Tanzer M.C., Monteleone M., Robertson A.A., Cooper M.A.,Alvarez-Diaz S., Herold M.J., Bedoui S., Schroder K., Masters S.L.: NLRP3inflammasome activation downstream of cytoplasmic LPS recognitionby both caspase-4 and caspase-5. Eur. J. Immunol., 2015; 45: 2918–2926
    Google Scholar
  • 2. Banerjee I., Behl B., Mendonca M., Shrivastava G., Russo A.J., MenoretA., Ghosh A., Vella A.T., Vanaja S.K., Sarkar S.N., Fitzgerald K.A.,Rathinam V.A.: Gasdermin D restrains type I interferon response tocytosolic DNA by disrupting ionic homeostasis. Immunity, 2018; 49:413–426.e5
    Google Scholar
  • 3. Bergsbaken T., Fink S.L., Cookson B.T.: Pyroptosis: Host cell deathand inflammation. Nat. Rev. Microbiol., 2009; 7: 99–109
    Google Scholar
  • 4. Chao K.L., Kulakova L., Herzberg O.: Gene polymorphism linked toincreased asthma and IBD risk alters gasdermin-B structure, a sulfatideand phosphoinositide binding protein. Proc. Natl. Acad. Sci. USA,2017; 114: E1128–E1137
    Google Scholar
  • 5. Chen Q., Shi P., Wang Y., Zou D., Wu X., Wang D., Hu Q., Zou Y., HuangZ., Ren J., Lin Z., Gao X.: GSDMB promotes non-canonical pyroptosisby enhancing caspase-4 activity. J. Mol. Cell Biol., 2019; 11: 496–508
    Google Scholar
  • 6. De Beeck K.O., Van Laer L., Van Camp G.: DFNA5, a gene involvedin hearing loss and cancer: A review. Ann. Otol. Rhinol. Laryngol.,2012; 121: 197–207
    Google Scholar
  • 7. Defourny J., Aghaie A., Perfettini I., Avan P., Delmaghani S., PetitC.: Pejvakin-mediated pexophagy protects auditory hair cells againstnoise-induced damage. Proc. Natl. Acad. Sci. USA, 2019; 116: 8010–8017
    Google Scholar
  • 8. Evavold C.L., Kagan J.C.: Defying death: The (w)hole truth aboutthe fate of GSDMD pores. Immunity, 2019; 50: 15–17
    Google Scholar
  • 9. Evavold C.L., Ruan J., Tan Y., Xia S., Wu H., Kagan J.C.: The poreformingprotein gasdermin D regulates interleukin-1 secretion fromliving macrophages. Immunity, 2018; 48: 35–44
    Google Scholar
  • 10. Feng S., Fox D., Man S.M.: Mechanisms of gasdermin family membersin inflammasome signaling and cell death. J. Mol. Biol., 2018;430: 3068–3080
    Google Scholar
  • 11. Gao J., Qiu X., Xi G., Liu H., Zhang F., Lv T., Song Y.: Downregulationof GSDMD attenuates tumor proliferation via the intrinsic mitochondrialapoptotic pathway and inhibition of EGFR/Akt signalingand predicts a good prognosis in non-small cell lung cancer. Oncol.Rep., 2018; 40: 1971–1984
    Google Scholar
  • 12. Gonzalez Ramirez M.L., Poreba M., Snipas S.J., Groborz K., Drag M.,Salvesen G.S.: Extensive peptide and natural protein substrate screensreveal that mouse caspase-11 has much narrower substrate specificitythan caspase-1. J. Biol. Chem., 2018; 293: 7058–7067
    Google Scholar
  • 13. Guo H., Xu S., Liu Y., Yang Y., Deng F., Xing Y., Lian X., Li Y.: Gsdma3is required for mammary gland development in mice. Histochem. CellBiol., 2017; 147: 575–583
    Google Scholar
  • 14. Harris S.L., Kazmierczak M., Pangršič T., Shah P., Chuchvara N.,Barrantes-Freer A., Moser T., Schwander M.: Conditional deletion ofpejvakin in adult outer hair cells causes progressive hearing loss inmice. Neuroscience, 2017; 344: 380–393
    Google Scholar
  • 15. Hayward J.A., Mathur A., Ngo C., Man S.M.: Cytosolic recognitionof microbes and pathogens: Inflammasomes in action. Microbiol. Mol.Biol. Rev., 2018; 82: e00015–18
    Google Scholar
  • 16. He Y., Hara H., Arbor A.: HHS Public Access. 2017; 41: 1012–1021
    Google Scholar
  • 17. Heilig R., Dick M.S., Sborgi L., Meunier E., Hiller S., Broz P.: Thegasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur. J.Immunol., 2018; 48: 584–592
    Google Scholar
  • 18. Huang X., Feng Y., Xiong G., Whyte S., Duan J., Yang Y., Wang K.,Yang S., Geng Y., Ou Y., Chen D.: Caspase-11, a specific sensor for intracellularlipopolysaccharide recognition, mediates the non-canonicalinflammatory pathway of pyroptosis. Cell Biosci., 2019; 9: 31
    Google Scholar
  • 19. Kayagaki N., Stowe I.B., Lee B.L., O’Rourke K., Anderson K., WarmingS., Cuellar T., Haley B., Roose-Girma M., Phung Q.T., Liu P.S., Lill J.R.,Li H., Wu J., Kummerfeld S. i wsp.: Caspase-11 cleaves gasdermin D fornon-canonical inflammasome signalling. Nature, 2015; 526: 666–671
    Google Scholar
  • 20. Kazmierczak M., Kazmierczak P., Peng A.W., Harris S.L., Shah P.,Puel J.L., Lenoir M., Franco S.J., Schwander M.: Pejvakin, a candidatestereociliary rootlet protein, regulates hair cell function in a cellautonomousmanner. J. Neurosci., 2017; 37: 3447–3464
    Google Scholar
  • 21. Kovacs S.B., Miao E.A.: Gasdermins: Effectors of pyroptosis. TrendsCell Biol., 2017; 27: 673–684
    Google Scholar
  • 22. Lin H.Y., Lin P.H., Wu S.H., Yang L.T.: Inducible expression of gasderminA3 in the epidermis causes epidermal hyperplasia and skininflammation. Exp. Dermatol., 2015; 24: 897–899
    Google Scholar
  • 23. Liu X., Zhang Z., Ruan J., Pan Y., Magupalli V.G., Wu H., LiebermanJ.: Inflammasome-activated gasdermin D causes pyroptosis by formingmembrane pores. Nature, 2016; 535: 153–158
    Google Scholar
  • 24. Lu H., Zhang S., Wu J., Chen M., Cai M.C., Fu Y., Li W., Wang J.,Zhao X., Yu Z., Ma P., Zhuang G.: Molecular targeted therapies elicitconcurrent apoptotic and GSDME-dependent pyroptotic tumor celldeath. Clin. Cancer Res., 2018; 24: 6066–6077
    Google Scholar
  • 25. Miguchi M., Hinoi T., Shimomura M., Adachi T., Saito Y., Niitsu H.,Kochi M., Sada H., Sotomaru Y., Ikenoue T., Shigeyasu K., Tanakaya K.,Kitadai Y., Sentani K., Oue N. i wsp.: Gasdermin C is upregulated byinactivation of transforming growth factor β receptor type II in the presence of mutated Apc, promoting colorectal cancer proliferation.PLoS One, 2016; 11: e0166422
    Google Scholar
  • 26. Moossavi M., Parsamanesh N., Bahrami A., Atkin S.L., Sahebkar A.:Role of the NLRP3 inflammasome in cancer. Mol. Cancer, 2018; 17: 158
    Google Scholar
  • 27. Mulvihill E., Sborgi L., Mari S.A., Pfreundschuh M., Hiller S., MüllerD.J.: Mechanism of membrane pore formation by human gasdermin‐D. EMBO J., 2018; 37: e98321
    Google Scholar
  • 28. Panganiban R.A., Sun M., Dahlin A., Park H.R., Kan M., Himes B.E.,Mitchel J.A., Iribarren C., Jorgenson E., Randell S.H., Israel E., TantisiraK., Shore S., Park J.A, Weiss S.T. i wsp.: A functional splicing variantassociated with decreased asthma risk abolishes the ability of gasderminB to induce epithelial cell pyroptosis. J. Allergy Clin. Immunol.,2018; 142: 1469–1478.e2
    Google Scholar
  • 29. Pfalzgraff A., Weindl G.: Intracellular lipopolysaccharide sensingas a potential therapeutic target for sepsis. Trends Pharmacol. Sci.,2019; 40: 187–197
    Google Scholar
  • 30. Platnich J.M., Chung H., Lau A., Sandall C.F., Bondzi-Simpson A.,Chen H.M., Komada T., Trotman-Grant A.C., Brandelli J.R., Chun J.,Beck P.L., Philpott D.J., Girardin S.E., Ho M., Johnson R.P., MacDonaldJ.A., Armstrong G.D., Muruve D.A.: Shiga toxin/lipopolysaccharideactivates caspase-4 and gasdermin D to trigger mitochondrial reactiveoxygen species upstream of the NLRP3 inflammasome. Cell Rep.,2018; 25: 1525–1536.e7
    Google Scholar
  • 31. Qiu S., Liu J., Xing F.: „Hints” in the killer protein gasdermin D:Unveiling the secrets of gasdermins driving cell death. Cell DeathDiffer., 2017; 24: 588–596
    Google Scholar
  • 32. Ramos-Junior E.S., Morandini A.C.: Gasdermin: A new player tothe inflammasome game. Biomed. J., 2017; 40: 313–316
    Google Scholar
  • 33. Rogers C., Erkes D.A., Nardone A., Aplin A.E., Fernandes-AlnemriT., Alnemri E.S.: Gasdermin pores permeabilize mitochondria to augmentcaspase-3 activation during apoptosis and inflammasome activation.Nat. Commun., 2019; 10: 1689
    Google Scholar
  • 34. Rogers C., Fernandes-Alnemri T., Mayes L., Alnemri D., CingolaniG., Alnemri E.S.: Cleavage of DFNA5 by caspase-3 during apoptosismediates progression to secondary necrotic/pyroptotic cell death.Nat. Commun., 2017; 8: 14128
    Google Scholar
  • 35. Ruan J., Xia S., Liu X., Lieberman J., Wu H.: Cryo-EM structure ofthe gasdermin A3 membrane pore. Nature, 2018; 557: 62–67
    Google Scholar
  • 36. Saeki N., Usui T., Aoyagi K., Kim D.H., Sato M., Mabuchi T., YanagiharaK., Ogawa K., Sakamoto H., Yoshida T., Sasaki H.: Distinctiveexpression and function of four GSDM family genes (GSDMA-D) innormal and malignant upper gastrointestinal epithelium. Genes ChromosomesCancer, 2009; 48: 261–271
    Google Scholar
  • 37. Samali A., Zhivotovsky B., Jones D., Nagata S., Orrenius S.: Apoptosis:Cell death defined by caspase activation. Cell Death Differ.,1999; 6: 495–496
    Google Scholar
  • 38. Sborgi L., Rühl S., Mulvihill E., Pipercevic J., Heilig R., StahlbergH., Farady C.J., Müller D.J., Broz P., Hiller S.: GSDMD membrane poreformation constitutes the mechanism of pyroptotic cell death. EMBOJ., 2016; 35: 1766–1778
    Google Scholar
  • 39. Shi J., Zhao Y., Wang K., Shi X., Wang Y., Huang H., Zhuang Y., CaiT., Wang F., Shao F.: Cleavage of GSDMD by inflammatory caspases determinespyroptotic cell death. Nature, 2015; 526: 660–665
    Google Scholar
  • 40. Song N., Li T.: Regulation of NLRP3 inflammasome by phosphorylation.Front. Immunol., 2018; 9: 2305
    Google Scholar
  • 41. Tamura M., Tanaka S., Fujii T., Aoki A., Komiyama H., Ezawa K.,Sumiyama K., Sagai T., Shiroishi T.: Members of a novel gene family,Gsdm, are expressed exclusively in the epithelium of the skin andgastrointestinal tract in a highly tissue-specific manner. Genomics,2007; 89: 618–629
    Google Scholar
  • 42. Tixeira R., Shi B., Parkes M.A., Hodge A.L., Caruso S., Hulett M.D.,Baxter A.A., Phan T.K., Poon I.K.: Gasdermin E does not limit apoptoticcell disassembly by promoting early onset of secondary necrosis inJurkat T cells and THP-1 monocytes. Front. Immunol., 2018; 9: 2842
    Google Scholar
  • 43. Xia S., Ruan J., Wu H.: Monitoring gasdermin pore formation invitro. Methods Enzymol, 2019; 625: 95–107
    Google Scholar
  • 44. Xiao J., Wang C., Yao J.C., Alippe Y., Xu C., Kress D., Civitelli R.,Abu-Amer Y., Kanneganti T.D., Link D.C., Mbalaviele G.: Gasdermin Dmediates the pathogenesis of neonatal-onset multisystem inflammatorydisease in mice. PLoS Biol., 2018; 16: e3000047
    Google Scholar
  • 45. Yi Y.S.: Regulatory roles of the caspase-11 non-canonical inflammasomein inflammatory diseases. Immune Netw. 2018; 18: e41
    Google Scholar
  • 46. Yu J., Kang M.J., Kim B.J., Kwon J.W., Song Y.H., Choi W.A., ShinY.J., Hong S.J.: Polymorphisms in GSDMA and GSDMB are associatedwith asthma susceptibility, atopy and BHR. Pediatr. Pulmonol., 2011;46: 701–708
    Google Scholar
  • 47. Yuan Y.Y., Xie K.X., Wang S.L., Yuan L.W.: Inflammatory caspaserelatedpyroptosis: Mechanism, regulation and therapeutic potentialfor inflammatory bowel disease. Gastroenterol. Rep., 2018; 6: 167–176
    Google Scholar

Full text

Skip to content