The role of docosahexaenoic acid (DHA) in the prevention of cognitive impairment in the elderly
Agata Białecka-Dębek 1 , Dominika Granda 1 , Barbara Pietruszka 1Abstract
Aging is an inevitable and progressive biological process that leads to irreversible physiological and functional changes, also in the nervous system. Cognitive decline occurring with age can significantly affect the quality of life of older people. Docosahexaenoic acid (DHA) is necessary for the proper functioning of the nervous system; it can affect its action directly through its impact on neurogenesis and neuroplasticity, but also indirectly by affecting the functioning of the cardiovascular system or anti-inflammatory effect. Literature analysis shows that good nutritional status of n-3 fatty acids, determined on the basis of their level in blood plasma or erythrocytes, is associated with a lower risk of cognitive decline in selected cognitive domains, as well as a lower risk of dementia or Alzheimer’s disease, although studies are also available where the above relationship has not been confirmed. Apart from this, studies on DHA and EPA diet intake, as well as in the form of dietary supplements, show their beneficial effects in the context of cognitive functioning and the risk of dementia. Also, the results of intervention studies, although not explicit, suggest that high doses of DHA and EPA in the form of dietary supplements may slow down the process of deteriorating the cognitive functioning of the elderly within selected domains. Based on the review of the literature, it can be concluded that DHA and EPA play an essential role in the prevention of cognitive impairment.
References
- 1. Abubakari A.R., Naderali M.M., Naderali E.K.: Omega-3 fattyacid supplementation and cognitive function: Are smaller dosagesmore beneficial? Int. J. Gen. Med., 2014; 7: 463–473
Google Scholar - 2. AbuMweis S., Jew S., Tayyem R., Agraib L.: Eicosapentaenoicacid and docosahexaenoic acid containing supplementsmodulate risk factors for cardiovascular disease: Ameta-analysis of randomised placebo-control human clinicaltrials. J. Hum. Nutr. Diet., 2018; 31: 67–84
Google Scholar - 3. Aizawa K., Ageyama N., Yokoyama C., Hisatsune T.:Age-dependent alteration in hippocampal neurogenesiscorrelates with learning performance of macaque monkeys.Exp. Anim., 2009; 58: 403–407
Google Scholar - 4. Albanese E., Dangour A.D., Uauy R., Acosta D., GuerraM., Guerra S.S., Huang Y., Jacob K.S., de Rodriguez J.L.,Noriega L.H., Salas A., Sosa A.L., Sousa R.M., Williams J.,Ferri C.P., Prince M.J.: Dietary fish and meat intake anddementia in Latin America, China, and India: A 10/66Dementia Research Group population-based study. Am. J.Clin. Nutr., 2009; 90: 392–400
Google Scholar - 5. Alexander D.D., Miller P.E., Van Elswyk M.E., Kuratko C.N.,Bylsma L.C.: A meta-analysis of randomized controlled trialsand prospective cohort studies of eicosapentaenoic and docosahexaenoiclong-chain omega-3 fatty acids and coronaryheart disease risk. Mayo Clin. Proc., 2017; 92: 15–29
Google Scholar - 6. Ammann E.M., Pottala J.V., Robinson J.G., EspelandM.A., Harris W.S.: Erythrocyte omega-3 fatty acids areinversely associated with incident dementia: Secondaryanalyses of longitudinal data from the Women’s HealthInitiative Memory Study (WHIMS). Prostaglandins Leukot.Essent. Fatty Acids, 2017; 121: 68–75
Google Scholar - 7. Ansari Z.: Homocysteine and mild cognitive impairment:Are these the tools for early intervention in the dementiaspectrum? J. Nutr. Health Aging, 2016; 20: 155–160
Google Scholar - 8. Balachandar R., Soundararajan S., Bagepally B.S.: Docosahexaenoicacid supplementation in age-related cognitivedecline: A systematic review and meta-analysis. Eur.J. Clin. Pharmacol., 2020; 76: 639–648
Google Scholar - 9. Bannenberg G., Serhan C.N.: Specialized pro-resolvinglipid mediators in the inflammatory response: An update.Biochim. Biophys. Acta, 2010; 1801: 1260–1273
Google Scholar - 10. Bayat P.D., Ghanbari A., Moradi M., Raoofi A.: Theeffects of age and sex on brain volume. Int. J. Morphol.,2014; 32: 1477–1483
Google Scholar - 11. Bazan N.G., Molina M.F., Gordon W.C.: Docosahexaenoicacid signalolipidomics in nutrition: Significance inaging, neuroinflammation, macular degeneration, Alzheimer’s,and other neurodegenerative diseases. Annu. Rev.Nutr., 2011; 31: 321–351
Google Scholar - 12. Bendlin B.B., Fitzgerald M.E., Ries M.L., Xu G., KastmanE.K., Thiel B.W., Rowley H.A., Lazar M., AlexanderA.L., Johnson S.C.: White matter in aging and cognition:A cross-sectional study of microstructure in adults agedeighteen to eighty-three. Dev. Neuropsychol., 2010; 35:257–277
Google Scholar - 13. Bennett I.J., Madden D.J.: Disconnected aging: Cerebralwhite matter integrity and age-related differences incognition. Neuroscience, 2014; 276: 187–205
Google Scholar - 14. Bettcher B.M., Kramer J.H.: Inflammation and clinicalpresentation in neurodegenerative disease: A volatilerelationship. Neurocase, 2013; 19: 182–200
Google Scholar - 15. Beydoun M.A., Kaufman J.S., Satia J.A., RosamondW., Folsom A.R.: Plasma n-3 fatty acids and the risk ofcognitive decline in older adults: The atherosclerosisrisk in communities study. Am. J. Clin. Nutr., 2007; 85:1103–1111
Google Scholar - 16. Biagi E., Nylund L., Candela M., Ostan R., Bucci L., PiniE., Nikkïla J., Monti D., Satokari R., Franceschi C., BrigidiP., De Vos W.: Through ageing, and beyond: Gut microbiotaand inflammatory status in seniors and centenarians.PLoS One, 2010; 5: e10667
Google Scholar - 17. Boneva N.B., Yamashima T.: New insights into“GPR40-CREB interaction in adult neurogenesis” specificfor primates. Hippocampus, 2012; 22: 896–905
Google Scholar - 18. Cai L., Chan J.S., Yan J.H., Peng K.: Brain plasticity andmotor practice in cognitive aging. Front. Aging. Neurosci.,2014; 6: 31
Google Scholar - 19. Calder P.C.: n-3 fatty acids, inflammation and immunity:new mechanisms to explain old actions. Proc. Nutr. Soc.,2013; 72: 326–336
Google Scholar - 20. Calder P.C.: Omega-3 fatty acids and inflammatory processes:From molecules to man. Biochem. Soc. Trans., 2017;45: 1105–1115
Google Scholar - 21. Cannon J.A., Moffitt P., Perez-Moreno A.C., Walters M.R.,Broomfield N.M., McMurray J.J., Quinn T.J.: Cognitive impairmentand heart failure: Systematic review and meta-analysis.J. Card. Fail., 2017; 23: 464–475
Google Scholar - 22. Cao D., Kevala K., Kim J., Moon H.S., Jun S.B., LovingerD., Kim H.Y.: Docosahexaenoic acid promotes hippocampalneuronal development and synaptic function. J. Neurochem.,2009; 111: 510–521
Google Scholar - 23. Cherubini A., Andres-Lacueva C., Martin A., Lauretani F.,Iorio A.D., Bartali B., Corsi A., Bandinelli S., Mattson M.P., FerrucciL.: Low plasma N-3 fatty acids and dementia in olderpersons: The InCHIANTI study. J. Gerontol. A Biol. Sci. Med.Sci., 2007; 62: 1120–1126
Google Scholar - 24. Chhetri J.K., de Souto Barreto P., Soriano G., Gennero I.,Cantet C., Vellas B.: Vitamin D, homocysteine and n-3PUFAstatus according to physical and cognitive functions inolder adults with subjective memory complaint: Resultsfrom cross-sectional study of the MAPT trial. Exp. Gerontol.,2018; 111: 71–77
Google Scholar - 25. Chin A.V., Robinson D.J., O’Connell H., Hamilton F., BruceI., Coen R., Walsh B., Coakley D., Molloy A., Scott J., LawlorB.A., Cunningham C.J.: Vascular biomarkers of cognitive performancein a community-based elderly population: TheDublin Healthy Ageing study. Age Ageing, 2008; 37: 559–564
Google Scholar - 26. Chouinard-Watkins R., Rioux-Perreault C., Fortier M.,Tremblay-Mercier J., Zhang Y., Lawrence P., Vohl M.C., PerronP., Lorrain D., Brenna J.T., Cunnane S.C., Plourde M.:Disturbance in uniformly 13C-labelled DHA metabolismin elderly human subjects carrying the apoE ε4 allele. Br. J.Nutr., 2013; 110: 1751–1759
Google Scholar - 27. Ciappolino V., Mazzocchi A., Botturi A., Turolo S., DelvecchioG., Agostoni C., Brambilla P.: The role of docosahexaenoicacid (DHA) on cognitive functions in psychiatricdisorders. Nutrients, 2019; 11: 769
Google Scholar - 28. Cipollina C., Salvatore S.R., Muldoon M.F., Freeman B.A.,Schopfer F.J.: Generation and dietary modulation of antiinflammatoryelectrophilic omega-3 fatty acid derivatives.PLoS One, 2014; 9: e94836
Google Scholar - 29. Colin J., Gregory-Pauron L., Lanhers M.C., ClaudepierreT., Corbier C., Yen F.T., Malaplate-Armand C., Oster T.: Membraneraft domains and remodeling in aging brain. Biochimie,2016; 130: 178–187
Google Scholar - 30. Conklin S.M., Gianaros P.J., Brown S.M., Yao J.K., HaririA.R., Manuck S.B., Muldoon M.F.: Long-chain omega-3fatty acid intake is associated positively with corticolimbicgray matter volume in healthy adults. Neurosci. Lett.,2007; 421: 209–212
Google Scholar - 31. Cunnane S.C., Schneider J.A., Tangney C., Tremblay-Mercier J., Fortier M., Bennett D.A., Morris M.C.: Plasmaand brain fatty acid profiles in mild cognitive impairmentand Alzheimer’s disease. J. Alzheimers Dis., 2012; 29: 691–697
Google Scholar - 32. Daiello L.A., Gongvatana A., Dunsiger S., Cohen R.A.,Ott B.R., Alzheimer’s Disease Neuroimaging Initiative:Association of fish oil supplement use with preservationof brain volume and cognitive function. AlzheimersDement., 2015; 11: 226–235
Google Scholar - 33. Dangour A.D., Allen E., Elbourne D., Fletcher A.,Richards M., Uauy R.: Fish consumption and cognitivefunction among older people in the UK: Baseline datafrom the OPAL study. J. Nutr. Health Aging, 2009; 13:198–202
Google Scholar - 34. de Oliveira Otto M.C., Wu J.H., Thacker E.L., Lai H.,Lemaitre R.N., McKnight B., Padhye N., Song X., KingI.B., Lopez O., Siscovick D., Mozaffarian D.: Longitudinalassociations of omega-6 and omega-3 plasma phospholipidpolyunsaturated fatty acids with dementia in olderadults: The cardiovascular health study. Circulation, 2019;139: A046
Google Scholar - 35. Dullemeijer C., Durga J., Brouwer I.A., van de Rest O.,Kok F.J., Brummer R.J., van Boxtel M.P., Verhoef P.: n3 fattyacid proportions in plasma and cognitive performance inolder adults. Am. J. Clin. Nutr., 2007; 86: 1479–1485
Google Scholar - 36. Dyall S.C., Michael G.J., Michael-Titus A.T.: Omega-3fatty acids reverse age-related decreases in nuclear receptorsand increase neurogenesis in old rats. J. Neurosci.Res., 2010; 88: 2091–2102
Google Scholar - 37. Ehninger D., Kempermann G.: Neurogenesis in theadult hippocampus. Cell Tissue Res., 2008; 331: 243–250
Google Scholar - 38. Fairbairn P., Tsofliou F., Johnson A., Dyall S.C.: Effectsof a high-DHA multi-nutrient supplement and exerciseon mobility and cognition in older women (MOBILE): Arandomised semi-blinded placebo-controlled study. Br. J.Nutr., 2020; 124: 146–155
Google Scholar - 39. Faraco G., Brea D., Garcia-Bonilla L., Wang G., RacchumiG., Chang H., Buendia I., Santisteban M.M., SegarraS.G., Koizumi K., Sugiyama Y., Murphy M., Voss H.,Anrather J., Iadecola C.: Dietary salt promotes neurovascularand cognitive dysfunction through a gut-initiatedTH17 response. Nat. Neurosci., 2018; 21: 240–249
Google Scholar - 40. Fleischman D.A., Leurgans S., Arfanakis K., ArvanitakisZ., Barnes L.L., Boyle P.A., Han S.D., Bennett D.A.:Gray-matter macrostructure in cognitively healthy olderpersons: Associations with age and cognition. BrainStruct. Funct., 2014; 219: 2029–2049
Google Scholar - 41. Fonteh A.N., Cipolla M., Chiang A.J., Edminster S.P.,Arakaki X., Harrington M.G.: Polyunsaturated fatty acidcomposition of cerebrospinal fluid fractions shows theircontribution to cognitive resilience of a pre-symptomaticAlzheimer’s disease cohort. Front. Physiol., 2020;11: 83
Google Scholar - 42. Goh J.O.: Functional dedifferentiation and alteredconnectivity in older adults: Neural accounts of cognitiveaging. Aging Dis., 2011; 2: 30–48
Google Scholar - 43. Gorelick P.B.: Role of inflammation in cognitive impairment:Results of observational epidemiological studies andclinical trials. Ann. N. Y. Acad. Sci., 2010; 1207: 155–162
Google Scholar - 44. Grande G., Qiu C., Fratiglioni L.: Prevention of dementiain an ageing world: Evidence and biological rationale.Ageing Res. Rev., 2020; 64: 101045
Google Scholar - 45. Green K.N., Martinez-Coria H., Khashwji H., Hall E.B.,Yurko-Mauro K.A., Ellis L., LaFerla F.M.: Dietary docosahexaenoicacid and docosapentaenoic acid ameliorateamyloid-β and tau pathology via a mechanism involvingpresenilin 1 levels. J. Neurosci., 2007; 27: 4385–4395
Google Scholar - 46. Grimm M.O., Kuchenbecker J., Grösgen S., Burg V.K.,Hundsdörfer B., Rothhaar T.L., Friess P., de Wilde M.C.,Broersen L.M., Penke B., Péter M., Vígh L., Grimm H.S.,Hartmann T.: Docosahexaenoic acid reduces amyloid βproduction via multiple pleiotropic mechanisms. J. Biol.Chem., 2011; 286: 14028–14039
Google Scholar - 47. Groeger A.L., Cipollina C., Cole M.P., Woodcock S.R.,Bonacci G., Rudolph T.K., Rudolph V., Freeman B.A.,Schopfer F.J.: Cyclooxygenase-2 generates anti-inflammatorymediators from omega-3 fatty acids. Nat. Chem. Biol.,2010; 6: 433–441
Google Scholar - 48. Gu Y., Schupf N., Cosentino S.A., Luchsinger J.A., ScarmeasN.: Nutrient intake and plasma β-amyloid. Neurology,2012; 78: 1832–1840
Google Scholar - 49. Hafkemeijer A., Altmann-Schneider I., de Craen A.J.,Slagboom P.E., van der Grond J., Rombouts S.A.: Associationsbetween age and gray matter volume in anatomicalbrain networks in middle-aged to older adults. Aging Cell,2014; 13: 1068–1074
Google Scholar - 50. Haller S., Montandon M.L., Rodriguez C., Garibotto V.,Lilja J., Herrmann F.R., Giannakopoulos P.: Amyloid load,hippocampal volume loss, and diffusion tensor imagingchanges in early phases of brain aging. Front. Neurosci.,2019; 13: 1228
Google Scholar - 51. Harrison S.L., de Craen A.J., Kerse N., Teh R., GranicA., Davies K., Wesnes K.A., den Elzen W.P., Gussekloo J.,Kirkwood T.B., Robinson L., Jagger C., Siervo M., StephanB.C.: Predicting risk of cognitive decline in very old adultsusing three models: The Framingham Stroke risk profile;the cardiovascular risk factors, aging, and dementiamodel; and oxi-inflammatory biomarkers. J. Am. Geriatr.Soc., 2017; 65: 381–389
Google Scholar - 52. Harrison S.L., Ding J., Tang E.Y., Siervo M., RobinsonL., Jagger C., Stephan B.C.: Cardiovascular disease riskmodels and longitudinal changes in cognition: A systematicreview. PLoS One, 2014; 9: e114431
Google Scholar - 53. He C., Qu X., Cui L., Wang J., Kang J.X.: Improvedspatial learning performance of fat-1 mice is associatedwith enhanced neurogenesis and neuritogenesis by docosahexaenoicacid. Proc. Natl. Acad. Sci. USA, 2009; 106:11370–11375
Google Scholar - 54. Hinterberger M., Fischer P.: Folate and Alzheimer:When time matters. J. Neural. Transm., 2013; 120: 211–224
Google Scholar - 55. Hjorth E., Zhu M., Toro V.C., Vedin I., Palmblad J.,Cederholm T., Freund-Levi Y., Faxen-Irving G., WahlundL.O., Basun H., Eriksdotter M., Schultzberg M.: Omega-3fatty acids enhance phagocytosis of Alzheimer’s diseaserelatedamyloid-β42 by human microglia and decreaseinflammatory markers. J. Alzheimers Dis., 2013; 35: 697–713
Google Scholar - 56. Holtzman D.M., Morris J.C., Goate A.M.: Alzheimer’sdisease: The challenge of the second century. Sci. Transl.Med., 2011; 3: 77sr1
Google Scholar - 57. Hooijmans C.R., Pasker-de Jong P.C., de Vries R.B., Ritskes-Hoitinga M.: The effects of long-term omega-3 fatty acidsupplementation on cognition and Alzheimer’s pathology inanimal models of Alzheimer’s disease: A systematic reviewand meta-analysis. J. Alzheimers Dis., 2012; 28: 191–209
Google Scholar - 58. Howe P.R., Evans H.M., Kuszewski J.C., Wong R.H.:Effects of long chain omega-3 polyunsaturated fatty acidson brain function in mildly hypertensive older adults.Nutrients, 2018; 10: 1413
Google Scholar - 59. Huang T., Wahlqvist M.L., Li D.: Effect of n-3 polyunsaturatedfatty acid on gene expression of the critical enzymesinvolved in homocysteine metabolism. Nutr. J., 2012; 11: 6
Google Scholar - 60. Huang T., Zheng J., Chen Y., Yang B., Wahlqvist M.L., Li D.:High consumption of Ω-3 polyunsaturated fatty acids decreaseplasma homocysteine: A meta-analysis of randomized, placebo-controlled trials. Nutrition, 2011; 27: 863–867
Google Scholar - 61. Jiao J., Li Q., Chu J., Zeng W., Yang M., Zhu S.: Effectof n-3 PUFA supplementation on cognitive functionthroughout the life span from infancy to old age: A systematicreview and meta-analysis of randomized controlledtrials. Am. J. Clin. Nutr., 2014; 100: 1422–1436
Google Scholar - 62. Kawakita E., Hashimoto M., Shido O.: Docosahexaenoicacid promotes neurogenesis in vitro and in vivo.Neuroscience, 2006; 139: 991–997
Google Scholar - 63. Kempermann G., Gage F.H., Aigner L., Song H., CurtisM.A., Thuret S., Kuhn H.G., Jessberger S., FranklandP.W., Cameron H.A., Gould E., Hen R., Abrous D.N., ToniN., Schinder A.F. i wsp.: Human adult neurogenesis: Evidenceand remaining questions. Cell Stem Cell, 2018; 23:25–30
Google Scholar - 64. Kim H.L., Kim D.K., Kang S.W., Park Y.K.: Association ofnutrient intakes with cognitive function in Koreans aged 50 years and older. Clin. Nutr. Res., 2018; 7: 199–212
Google Scholar - 65. Kim J., Park M.H., Kim E., Han C., Jo S.A., Jo I.: Plasmahomocysteine is associated with the risk of mild cognitiveimpairment in an elderly Korean population. J. Nutr.,2007; 137: 2093–2097
Google Scholar - 66. Klempin F., Kempermann G.: Adult hippocampal neurogenesisand aging. Eur. Arch. Psychiatry Clin. Neurosci.,2007; 257: 271–280
Google Scholar - 67. Kolan M.: Zaburzenia funkcji poznawczycha choroby niedokrwienne mózgu. W: Neurokognitywistykaw patologii i zdrowiu 2009–2011, red.: I. Kojder.Wydawnictwo Pomorskiego Uniwersytetu Medycznego,Szczecin 2011, 94–105
Google Scholar - 68. Kotwal S., Jun M., Sullivan D., Perkovic V., Neal B.:Omega 3 fatty acids and cardiovascular outcomes: Systematicreview and meta-analysis. Circ. Cardiovasc. Qual.Outcomes, 2012; 5: 808–818
Google Scholar - 69. Kröger E., Verreault R., Carmichael P.H., Lindsay J.,Julien P., Dewailly E., Ayotte P., Laurin D.: Omega-3 fattyacids and risk of dementia: The Canadian study of healthand aging. Am. J. Clin. Nutr., 2009; 90: 184–192
Google Scholar - 70. Kume A., Kurotani K., Sato M., Ejima Y., Pham N.M.,Nanri A., Kuwahara K., Mizoue T.: Polyunsaturated fattyacids in serum and homocysteine concentrations in Japanesemen and women: A cross-sectional study. Nutr.Metab., 2013; 10: 41
Google Scholar - 71. Ledesma M.D., Martin M.G., Dotti C.G.: Lipid changesin the aged brain: Effect on synaptic function and neuronalsurvival. Prog. Lipid. Res., 2012; 51: 23–35
Google Scholar - 72. Lopez L.B., Kritz-Silverstein D., Barrett Connor E.:High dietary and plasma levels of the omega-3 fatty aciddocosahexaenoic acid are associated with decreaseddementia risk: The Rancho Bernardo study. J. Nutr. HealthAging, 2011; 15: 25–31
Google Scholar - 73. Lord S.R., Delbaere K., Sturnieks D.L.: Chapter 10 –Aging. W: Handbook of Clinical Neurology, Volume 159,red.: B.L. Day, S.R. Lord. Elsevier, 2018, 157–171
Google Scholar - 74. Lu Z.H., Li J., Li X.L., Ding M., Mao C.J., Zhu X.Y.,Liu C.F.: Hypertension with hyperhomocysteinemiaincreases the risk of early cognitive impairment afterfirst-ever ischemic stroke. Eur. Neurol., 2019; 82: 75–85
Google Scholar - 75. Ma F., Zhou X., Li Q., Zhao J., Song A., An P., Du Y.,Xu W., Huang G.: Effects of folic acid and vitamin B12,alone and in combination on cognitive function andinflammatory factors in the elderly with mild cognitiveimpairment: A single-blind experimental design. Curr.Alzheimer Res., 2019; 16: 622–632
Google Scholar - 76. Manders M., Vasse E., de Groot L.C., van StaverenW.A., Bindels J.G., Blom H.J., Hoefnagels W.H.: Homocysteineand cognitive function in institutionalised elderlyA cross-sectional analysis. Eur. J. Nutr., 2006; 45: 70–78
Google Scholar - 77. Marciniak-Łukasik K.: Rola i znaczenie kwasówtłuszczowych omega-3. Żywn. Nauka Technol. Jakość,2011; 18: 24–35
Google Scholar - 78. McNamara R.K., Kalt W., Shidler M.D., McDonald J.,Summer S.S., Stein A.L., Stover A.N., Krikorian R.: Cognitiveresponse to fish oil, blueberry, and combined supplementationin older adults with subjective cognitiveimpairment. Neurobiol. Aging, 2018; 64: 147–156
Google Scholar - 79. Middleton L.E., Yaffe K.: Promising strategies for theprevention of dementia. Arch. Neurol., 2009; 66: 1210–1215
Google Scholar - 80. Mora F., Segovia G., del Arco A.: Aging, plasticityand environmental enrichment: Structural changes andneurotransmitter dynamics in several areas of the brain.Brain Res. Rev., 2007; 55: 78–88
Google Scholar - 81. Noble J.M., Manly J.J., Schupf N., Tang M.X., MayeuxR., Luchsinger J.A.: Association of C-reactive protein withcognitive impairment. Arch. Neurol., 2010; 67: 87–92
Google Scholar - 82. Nyberg L., Lövdén M., Riklund K., LindenbergerU., Bäckman L.: Memory aging and brain maintenance.Trends Cogn. Sci., 2012; 16: 292–305
Google Scholar - 83. Otsuka R., Tange C., Nishita Y., Kato Y., Imai T., Ando F.,Shimokata H.: Serum docosahexaenoic and eicosapentaenoicacid and risk of cognitive decline over 10 years amongelderly Japanese. Eur. J. Clin. Nutr., 2014; 68: 503–509
Google Scholar - 84. Park D.C., Reuter-Lorenz P.: The adaptive brain:Aging and neurocognitive scaffolding. Annu. Rev. Psychol.,2009; 60: 173–196
Google Scholar - 85. Peng H.Y., Man C.F., Xu J., Fan Y.: Elevated homocysteinelevels and risk of cardiovascular and all-cause mortality:A meta-analysis of prospective studies. J. ZhejiangUniv. Sci. B, 2015; 16: 78–86
Google Scholar - 86. Pobrotyn P., Susło R., Witczak I.T., Rypicz L., DrobnikJ.: An analysis of the costs of treating aged patients in a large clinical hospital in Poland under the pressureof recent demographic trends. Arch. Med. Sci., 2020; 16:666–671
Google Scholar - 87. Qin B., Plassman B.L., Edwards L.J., Popkin B.M., AdairL.S., Mendez M.A.: Fish intake is associated with slowercognitive decline in Chinese older adults. J. Nutr., 2014;144: 1579–1585
Google Scholar - 88. Raji C.A., Erickson K.I., Lopez O.L., Kuller L.H., GachH.M., Thompson P.M., Riverol M., Becker J.T.: Regular fishconsumption and age-related brain gray matter loss. Am.J. Prev. Med., 2014; 47: 444–451
Google Scholar - 89. Rao J.S., Ertley R.N., Lee H.J., DeMar J.C. Jr., Arnold J.T.,Rapoport S.I., Bazinet R.P.: n-3 polyunsaturated fatty aciddeprivation in rats decreases frontal cortex BDNF via ap38 MAPK-dependent mechanism. Mol. Psychiatry, 2007;12: 36–46
Google Scholar - 90. Reitz C., Tang M.X., Miller J., Green R., Luchsinger J.A.:Plasma homocysteine and risk of mild cognitive impairment.Dement. Geriatr. Cogn. Disord., 2009; 27: 11–17
Google Scholar - 91. Roberts R.O., Geda Y.E., Knopman D.S., Boeve B.F.,Christianson T.J., Pankratz V.S., Kullo I.J., Tangalos E.G.,Ivnik R.J., Petersen R.C.: Association of C-reactive proteinwith mild cognitive impairment. Alzheimers Dement.,2009; 5: 398–405
Google Scholar - 92. Robson L.G., Dyall S., Sidloff D., Michael-Titus A.T.:Omega-3 polyunsaturated fatty acids increase the neuriteoutgrowth of rat sensory neurones throughout developmentand in aged animals. Neurobiol. Aging, 2010; 31:678–687
Google Scholar - 93. Sachdev P.S., Blacker D., Blazer D.G., Ganguli M., JesteD.V., Paulsen J.S., Petersen R.C.: Classifying neurocognitivedisorders: The DSM-5 approach. Nat. Rev. Neurol., 2014;10: 634–642
Google Scholar - 94. Samieri C., Lorrain S., Buaud B., Vaysse C., Berr C.,Peuchant E., Cunnane S.C., Barberger-Gateau P.: Relationshipbetween diet and plasma long-chain n-3 PUFAsin older people: Impact of apolipoprotein E genotype. J.Lipid. Res., 2013; 54: 2559–2567
Google Scholar - 95. Santangeli P., Di Biase L., Bai R., Mohanty S., PumpA., Cereceda Brantes M., Horton R., Burkhardt J.D., LakkireddyD., Reddy Y.M., Casella M., Dello Russo A., TondoC., Natale A.: Atrial fibrillation and the risk of incidentdementia: A meta-analysis. Heart Rhythm, 2012; 9: 1761–1768
Google Scholar - 96. Schaefer E.J., Bongard V., Beiser A.S., Lamon-Fava S.,Robins S.J., Au R., Tucker K.L., Kyle D.J., Wilson P.W., WolfP.A.: Plasma phosphatidylcholine docosahexaenoic acidcontent and risk of dementia and Alzheimer disease: TheFramingham Heart Study. Arch. Neurol., 2006; 63: 1545–1550
Google Scholar - 97. Serhan C.N., Dalli J., Colas R.A., Winkler J.W., ChiangN.: Protectins and maresins: New pro-resolving families ofmediators in acute inflammation and resolution bioactivemetabolome. Biochim. Biophys. Acta, 2015; 1851: 397–413
Google Scholar - 98. Serini S., Bizzarro A., Piccioni E., Fasano E., RossiC., Lauria A., Cittadini A.R., Masullo C., Calviello G.: EPAand DHA differentially affect in vitro inflammatorycytokine release by peripheral blood mononuclear cellsfrom Alzheimer’s patients. Curr. Alzheimer Res., 2012;9: 913–923
Google Scholar - 99. Stephan B.C.M., Harrison S.L., Keage H.A.D., BabateenA., Robinson L., Siervo M.: Cardiovascular disease, thenitric oxide pathway and risk of cognitive impairmentand dementia. Curr. Cardiol. Rep., 2017; 19: 87
Google Scholar - 100. Stillwell W., Shaikh S.R., Zerouga M., Siddiqui R.,Wassall S.R.: Docosahexaenoic acid affects cell signalingby altering lipid rafts. Reprod. Nutr. Dev., 2005; 45: 559–579
Google Scholar - 101. Sun G.Y., Simonyi A., Fritsche K.L., Chuang D.Y., HanninkM., Gu Z., Greenlief C.M., Yao J.K., Lee J.C., BeversdorfD.Q.: Docosahexaenoic acid (DHA): An essential nutrientand a nutraceutical for brain health and diseases. ProstaglandinsLeukot. Essent. Fatty Acids, 2018; 136: 3–13
Google Scholar - 102. Szponar L., Mojska H., Ołtarzewski Ł., Piotrowska K.:Tłuszcze. W: Normy żywienia dla populacji Polski, red.:M. Jarosz. Instytut Żywności i Żywienia, Warszawa 2017,56–75
Google Scholar - 103. Szwed A., Miłowska K.: Rola białek w chorobach neurodegeneracyjnych.Postępy Hig. Med. Dośw., 2012; 66:187–195
Google Scholar - 104. Takao H., Hayashi N., Ohtomo K.: A longitudinalstudy of brain volume changes in normal aging. Eur. J.Radiol., 2012; 81: 2801–2804
Google Scholar - 105. Tan J.H., Abdin E., Shahwan S., Zhang Y., SambasivamR., Vaingankar J.A., Mahendran R., Chua H.C., Chong S.A.,Subramaniam M.: Happiness and cognitive impairmentamong older adults: Investigating the mediational roles ofdisability, depression, social contact frequency, and loneliness.Int. J. Environ. Res. Public Health, 2019; 16: 4954
Google Scholar - 106. Tan Z.S., Harris W.S., Beiser A.S., Au R., Himali J.J.,Debette S., Pikula A., Decarli C., Wolf P.A., Vasan R.S., RobinsS.J., Seshadri S.: Red blood cell ω-3 fatty acid levels andmarkers of accelerated brain aging. Neurology, 2012; 78:658–664
Google Scholar - 107. Titova O.E., Sjögren P., Brooks S.J., Kullberg J., AxE., Kilander L., Riserus U., Cederholm T., Larsson E.M.,Johansson L., Ahlström H., Lind L., Schiöth H.B., Benedict C.: Dietary intake of eicosapentaenoic and docosahexaenoicacids is linked to gray matter volume and cognitivefunction in elderly. Age, 2013; 35: 1495–1505
Google Scholar - 108. Treder N., Jodzio K.: Heterogeniczność funkcjonowaniapoznawczego i jego zaburzeń u osób starszych.Psychiatria i Psychoterapia, 2013; 9: 3–13
Google Scholar - 109. van de Rest O., Spiro A. 3rd, Krall-Kaye E., GeleijnseJ.M., de Groot L.C., Tucker K.L.: Intakes of (n-3)fatty acids and fatty fish are not associated with cognitiveperformance and 6-year cognitive change inmen participating in the Veterans Affairs NormativeAging Study. J. Nutr., 2009; 139: 2329–2336
Google Scholar - 110. van Gelder B.M., Tijhuis M., Kalmijn S., KromhoutD.: Fish consumption, n-3 fatty acids, and subsequent5-y cognitive decline in elderly men: The ZutphenElderly Study. Am. J. Clin. Nutr., 2007; 85: 1142–1147
Google Scholar - 111. Vedin I., Cederholm T., Freund Levi Y., Basun H.,Garlind A., Faxén Irving G., Jönhagen M.E., Vessby B.,Wahlund L.O., Palmblad J.: Effects of docosahexaenoicacid-rich n-3 fatty acid supplementation on cytokinerelease from blood mononuclear leukocytes: TheOmegAD study. Am. J. Clin. Nutr., 2008; 87: 1616–1622
Google Scholar - 112. Vela S., Sainz N., Moreno-Aliaga M.J., Solas M.,Ramirez M.J.: DHA selectively protects SAMP-8-associatedcognitive deficits through inhibition of JNK. Mol.Neurobiol., 2019; 56: 1618–1627
Google Scholar - 113. Virtanen J.K., Siscovick D.S., Lemaitre R.N., LongstrethW.T., Spiegelman D., Rimm E.B., King I.B., Mozaffarian D.: Circulatingomega-3 polyunsaturated fatty acids and subclinicalbrain abnormalities on MRI in older adults: The CardiovascularHealth Study. J. Am. Heart Assoc., 2013; 2: e000305
Google Scholar - 114. Vogels R.L., Scheltens P., Schroeder-Tanka J.M.,Weinstein H.C.: Cognitive impairment in heart failure:A systematic review of the literature. Eur. J. HeartFail., 2007; 9: 440–449
Google Scholar - 115. Wandell B.A.: Clarifying human white matter.Annu. Rev. Neurosci., 2016; 39: 103–128
Google Scholar - 116. Weiser M.J., Butt C.M., Mohajeri M.H.: Docosahexaenoicacid and cognition throughout the lifespan.Nutrients, 2016; 8: 99
Google Scholar - 117. Wróblewska I., Zborowska I., Dąbek A., Susło R.,Wróblewska Z., Drobnik J.: Health status, health behaviors,and the ability to perform everyday activities inPoles aged ≥65 years staying in their home environment.Clin. Interv. Aging, 2018; 13: 355–363
Google Scholar - 118. Wu A., Ying Z., Gomez-Pinilla F.: Docosahexaenoicacid dietary supplementation enhances theeffects of exercise on synaptic plasticity and cognition.Neuroscience, 2008; 155: 751–759
Google Scholar - 119. Wu S., Ding Y., Wu F., Li R., Hou J., Mao P.: Omega-3fatty acids intake and risks of dementia and Alzheimer’sdisease: A meta-analysis. Neurosci. Biobehav. Rev., 2015;48: 1–9
Google Scholar - 120. Yassine H.N., Rawat V., Mack W.J., Quinn J.F., Yurko-Mauro K., Bailey-Hall E., Aisen P.S., Chui H.C., SchneiderL.S.: The effect of APOE genotype on the delivery of DHAto cerebrospinal fluid in Alzheimer’s disease. AlzheimersRes. Ther., 2016; 8: 25
Google Scholar - 121. Yurko-Mauro K., Alexander D.D., Van Elswyk M.E.:Docosahexaenoic acid and adult memory: A systematicreview and meta-analysis. PLoS One, 2015; 10: e0120391
Google Scholar - 122. Zhang Y., Chen J., Qiu J., Li Y., Wang J., Jiao J.: Intakesof fish and polyunsaturated fatty acids and mild-to-severecognitive impairment risks: A dose-response meta-analysisof 21 cohort studies. Am. J. Clin. Nutr., 2016; 103: 330–340
Google Scholar