Molecular basis of proteinopathies: Etiopathology of dementia and motor disorders

REVIEW ARTICLE

Molecular basis of proteinopathies: Etiopathology of dementia and motor disorders

Emilia Zgórzyńska 1 , Klaudia Krawczyk 1 , Patrycja Bełdzińska 1 , Anna Walczewska 1

1. Zakład Interakcji Międzykomórkowych, Uniwersytet Medyczny w Łodzi,

Published: 2021-06-18
DOI: 10.5604/01.3001.0014.9513
GICID: 01.3001.0014.9513
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2021; 75 : 456-473

 

Abstract

Neurodegenerative diseases are one of the most important medical and social problems affecting elderly people, the percentage of which is significantly increasing in the total world population. The cause of these diseases is the destruction of neurons by protein aggregates that form pathological deposits in neurons, glial cells and in the intercellular space. Proteins whose molecules are easily destabilized by point mutations or endogenous processes are alpha-synuclein (ASN), tau and TDP-43. Pathological forms of these proteins form characteristic aggregates, which accumulate in the neurons and are the cause of various forms of dementia and motor disorders. The most common causes of dementia are tauopathies. In primary tauopathies, which include progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Pick’s disease (PiD), and frontotemporal dementia (FTD), modified tau molecules disrupt axonal transport and protein distribution in neurons. Ultimately, the helical filaments and neurofibrillary tangles of tau lead to neuron death in various structures of the brain. In Alzheimer’s disease hyperphosphorylated tau tangles along with β amyloid plaques are responsible for the degeneration of the hippocampus, entorhinal cortex and amygdala. The most prevalent synucleinopathies are Parkinson’s disease, multiple system atrophy (MSA) and dementia with Lewy bodies, where there is a degeneration of neurons in the extrapyramidal tracts or, as in MSA, autonomic nerves. TDP-43 inclusions in the cytoplasm cause the degeneration of motor neurons in amyotrophic lateral sclerosis (ALS) and in one of the frontotemporal dementia variant (FTLD-TDP). In this work ASN, tau and TDP-43 structures are described, as well as the genetic and sporadic factors that lead to the destabilization of molecules, their aggregation and incorrect distribution in neurons, which are the causes of neurodegenerative diseases.

References

  • 1. Abner E.L., Kryscio R.J., Schmitt F.A., Santacruz K.S., Jicha G.A., LinY., Neltner J.M., Smith C.D., Van Eldik L.J., Nelson P.T.: “End-stage” neurofibrillarytangle pathology in preclinical Alzheimer’s disease: Fact orfiction? J. Alzheimers Dis., 2011; 25: 445 –453
    Google Scholar
  • 2. Ahmed T., Van der Jeugd A., Blum D., Galas M.C., D’Hooge R., BueeL., Balschun D.: Cognition and hippocampal synaptic plasticity in micewith a homozygous tau deletion. Neurobiol. Aging, 2014; 35: 2474 –2478
    Google Scholar
  • 3. Amadoro G., Corsetti V., Ciotti M.T., Florenzano F., Capsoni S., AmatoG., Calissano P.: Endogenous Aβ causes cell death via early tau hyperphosphorylation.Neurobiol. Aging, 2011; 32: 969 –990
    Google Scholar
  • 4. An W.L., Cowburn R.F., Li L., Braak H., Alafuzoff I., Iqbal K., Iqbal I.G.,Winblad B., Pei J.J.: Up-regulation of phosphorylated/activated p70 S6kinase and its relationship to neurofibrillary pathology in Alzheimer’sdisease. Am. J. Pathol., 2003; 163: 591 –607
    Google Scholar
  • 5. Arun P., Oguntayo S., Albert S.V., Gist I., Wang Y., Nambiar M.P., LongJ.B.: Acute decrease in alkaline phosphatase after brain injury: A potentialmechanism for tauopathy. Neurosci. Lett., 2015; 609: 152 –158
    Google Scholar
  • 6. Avila J., Jiménez J.S., Sayas C.L., Bolós M., Zabala J.C., Rivas G., HernándezF.: Tau structures. Front. Aging Neurosci., 2016; 8: 262
    Google Scholar
  • 7. Ayala Y.M., Zago P., D’Ambrogio A., Xu Y.F., Petrucelli L., Buratti E.,Baralle F.E.: Structural determinants of the cellular localization andshuttling of TDP-43. J. Cell Sci., 2008; 121: 3778–3785
    Google Scholar
  • 8. Bartels T., Choi J.G., Selkoe D.J.: α-Synuclein occurs physiologicallyas a helically folded tetramer that resists aggregation. Nature, 2011;477: 107 –110
    Google Scholar
  • 9. Berning B.A., Walker A.K.: The pathobiology of TDP-43 C-terminalfragments in ALS and FTLD. Front. Neurosci., 2019; 13: 335
    Google Scholar
  • 10. Brandt R., Léger J., Lee G.: Interaction of tau with the neural plasmamembrane mediated by tau’s amino-terminal projection domain. J. CellBiol., 1995; 131: 1327 –1340
    Google Scholar
  • 11. Burré J., Sharma M., Südhof T.C.: α-Synuclein assembles into higherordermultimers upon membrane binding to promote SNARE complexformation. Proc. Natl. Acad. Sci. USA, 2014; 111: E4274–E4283
    Google Scholar
  • 12. Bussell R.Jr., Eliezer D.: Effects of Parkinson’s disease-linked mutationson the structure of lipid-associated α-synuclein. Biochemistry,2004; 43: 4810–4818
    Google Scholar
  • 13. Chartier-Harlin M.C., Kachergus J., Roumier C., Mouroux V., DouayX., Lincoln S., Levecque C., Larvor L., Andrieux J., Hulihan M., WaucquierN., Defebvre L., Amouyel P., Farrer M., Destée A.: α-synucleinlocus duplication as a cause of familial Parkinson’s disease. Lancet,2004; 364: 1167–1169
    Google Scholar
  • 14. Chen R.H., Wislet-Gendebien S., Samuel F., Visanji N.P., Zhang G.,Marsilio D., Langman T., Fraser P.E., Tandon A.: α-Synuclein membraneassociation is regulated by the Rab3a recycling machinery and presynapticactivity. J. Biol. Chem., 2013; 288: 7438 –7449
    Google Scholar
  • 15. Cherry J.D., Tripodis Y., Alvarez V.E., Huber B., Kiernan P.T., DaneshvarD.H., Mez J., Montenigro P.H., Solomon T.M., Alosco M.L., Stern R.A.,McKee A.C., Stein T.D.: Microglial neuroinflammation contributes to tauaccumulation in chronic traumatic encephalopathy. Acta Neuropathol.Commun., 2016; 4: 112
    Google Scholar
  • 16. Chiang C.H., Grauffel C., Wu L.S., Kuo P.H., Doudeva L.G., Lim C., ShenC.K., Yuan H.S.: Structural analysis of disease-related TDP-43 D169Gmutation: Linking enhanced stability and caspase cleavage efficiencyto protein accumulation. Sci. Rep., 2016; 6: 21581
    Google Scholar
  • 17. Choi B.K., Choi M.G., Kim J.Y., Yang Y., Lai Y., Kweon D.H., Lee N.K.,Shin Y.K.: Large α-synuclein oligomers inhibit neuronal SNARE-mediatedvesicle docking. Proc. Natl. Acad. Sci. USA, 2013; 110: 4087 –4092
    Google Scholar
  • 18. Clavaguera F., Bolmont T., Crowther R.A., Abramowski D., Frank S.,Probst A., Fraser G., Stalder A.K., Beibel M., Staufenbiel M., Jucker M.,Goedert M., Tolnay M.: Transmission and spreading of tauopathy intransgenic mouse brain. Nat. Cell Biol., 2009; 11: 909 –913
    Google Scholar
  • 19. Cohen T.J., Hwang A.W., Restrepo C.R., Yuan C.X., Trojanowski J.Q.,Lee V.M.: An acetylation switch controls TDP-43 function and aggregationpropensity. Nat. Commun., 2015; 6: 5845
    Google Scholar
  • 20. Conway K.A., Harper J.D., Lansbury P.T.: Accelerated in vitro fibrilformation by a mutant α-synuclein linked to early-onset Parkinsondisease. Nat. Med., 1998; 4: 1318 –1320
    Google Scholar
  • 21. Coskuner O., Wise-Scira O.: Structures and free energy landscapes ofthe A53T mutant-type α-synuclein protein and impact of A53T mutationon the structures of the wild-type α-synuclein protein with dynamics.ACS Chem. Neurosci., 2013; 4: 1101 –1113
    Google Scholar
  • 22. Dawson H.N., Ferreira A., Eyster M.V., Ghoshal N., Binder L.I., VitekM.P.: Inhibition of neuronal maturation in primary hippocampal neuronsfrom tau deficient mice. J. Cell Sci., 2001; 114: 1179 –1187
    Google Scholar
  • 23. Dayanandan R., Van Slegtenhorst M., Mack T.G., Ko L., Yen S.H.,Leroy K., Brion J.P., Anderton B.H., Hutton M., Lovestone S.: Mutationsin tau reduce its microtubule binding properties in intact cells andaffect its phosphorylation. FEBS Lett., 1999; 446: 228 –232
    Google Scholar
  • 24. Dementia. https://www.who.int/en/news-room/fact-sheets/detail/dementia (17.04.2020)
    Google Scholar
  • 25. Derisbourg M., Leghay C., Chiappetta G., Fernandez-Gomez F.J.,Laurent C., Demeyer D., Carrier S., Buée-Scherrer V., Blum D., Vinh J.,Sergeant N., Verdier Y., Buée L., Hamdane M.: Role of the Tau N-terminalregion in microtubule stabilization revealed by new endogenoustruncated forms. Sci. Rep., 2015; 5: 9659
    Google Scholar
  • 26. Derkinderen P., Scales T.M., Hanger D.P., Leung K.Y., Byers H.L.,Ward M.A., Lenz C., Price C., Bird I.N., Perera T., Kellie S., Williamson R.,Noble W., Van Etten R.A., Leroy K. i wsp.: Tyrosine 394 is phosphorylatedin Alzheimer’s paired helical filament tau and in fetal tau with c-Abl as the candidate tyrosine kinase. J. Neurosci., 2005; 25: 6584 –6593
    Google Scholar
  • 27. Dixit R., Ross J.L., Goldman Y.E., Holzbaur E.L.: Differential regulationof dynein and kinesin motor proteins by tau. Science, 2008;319: 1086 –1089
    Google Scholar
  • 28. Doherty C.P.A., Ulamec S.M., Maya-Martinez R., Good S.C.,Makepeace J., Khan G.N., van Oosten-Hawle P., Radford S.E., BrockwellD.J.: A short motif in the N-terminal region of α-synuclein iscritical for both aggregation and function. Nat. Struct. Mol. Biol.,2020; 27: 249 –259
    Google Scholar
  • 29. Dugger B.N., Dickson D.W.: Pathology of neurodegenerative diseases.Cold Spring Harb. Perspect. Biol., 2017; 9: a028035
    Google Scholar
  • 30. Fares M.B., Ait-Bouziad N., Dikiy I., Mbefo M.K., Jovičić A., Kiely A.,Holton J.L., Lee S.J., Gitler A.D., Eliezer D., Lashuel H.A.: The novel Parkinson’sdisease linked mutation G51D attenuates in vitro aggregationand membrane binding of α-synuclein, and enhances its secretion andnuclear localization in cells. Hum. Mol. Genet., 2014; 23: 4491 –4509
    Google Scholar
  • 31. Fischer D., Mukrasch M.D., Biernat J., Bibow S., Blackledge M.,Griesinger C., Mandelkow E., Zweckstetter M.: Conformational changesspecific for pseudophosphorylation at serine 262 selectively impairbinding of tau to microtubules. Biochemistry, 2009; 48: 10047 –10055
    Google Scholar
  • 32. Flores B.N., Li X., Malik A.M., Martinez J., Beg A.A., Barmada S.J.:An intramolecular salt bridge linking TDP43 RNA binding, proteinstability, and TDP43-dependent neurodegeneration. Cell. Rep., 2019;27: 1133 –1150.e8
    Google Scholar
  • 33. François-Moutal L., Perez-Miller S., Scott D.D., Miranda V.G., MollasalehiN., Khanna M.: Structural insights into TDP-43 and effects ofpost-translational modifications. Front. Mol. Neurosci., 2019; 12: 301
    Google Scholar
  • 34. Fraser P.E., Yang D.S., Yu G., Lévesque L., Nishimura M., ArawakaS., Serpell L.C., Rogaeva E., St George-Hyslop P.: Presenilin structure,function and role in Alzheimer disease. Biochim. Biophys. Acta, 2000;1502: 1–15
    Google Scholar
  • 35. Frenkel-Pinter M., Stempler S., Tal-Mazaki S., Losev Y., Singh-Anand A., Escobar-Álvarez D., Lezmy J., Gazit E., Ruppin E., Segal D.:Altered protein glycosylation predicts Alzheimer’s disease and modulatesits pathology in disease model Drosophila. Neurobiol. Aging,2017; 56: 159 –171
    Google Scholar
  • 36. Fusco G., Chen S.W., Williamson P.T.F., Cascella R., Perni M., JarvisJ.A., Cecchi C., Vendruscolo M., Chiti F., Cremades N., Ying L., DobsonC.M., De Simone A.: Structural basis of membrane disruption and cellulartoxicity by α-synuclein oligomers. Science, 2017; 358: 1440 –1443
    Google Scholar
  • 37. Gámez-Valero A., Beyer K.: Alternative Splicing of alpha- andbeta-synuclein genes plays differential roles in synucleinopathies.Genes, 2018; 9: 63
    Google Scholar
  • 38. Garnier C., Devred F., Byrne D., Puppo R., Roman A.Y., MalesinskiS., Golovin A.V., Lebrun R., Ninkina N.N., Tsvetkov P.O.: Zinc binding toRNA recognition motif of TDP-43 induces the formation of amyloidlikeaggregates. Sci. Rep., 2017; 7: 6812
    Google Scholar
  • 39. Gauthier-Kemper A., Suárez Alonso M., Sündermann F., NiewidokB., Fernandez M.P., Bakota L., Heinisch J.J., Brandt R.: Annexins A2 andA6 interact with the extreme N terminus of tau and thereby contributeto tau’s axonal localization. J. Biol. Chem., 2018; 293: 8065 –8076
    Google Scholar
  • 40. Gong C.X., Singh T.J., Grundke-Iqbal I., Iqbal K.: Phosphoproteinphosphatase activities in Alzheimer disease brain. J. Neurochem.,1993; 61: 921 –927
    Google Scholar
  • 41. Götz J., Probst A., Spillantini M.G., Schäfer T., Jakes R., Bürki K.,Goedert M.: Somatodendritic localization and hyperphosphorylationof tau protein in transgenic mice expressing the longest human braintau isoform. EMBO J., 1995; 14: 1304 –1313
    Google Scholar
  • 42. Gómez-Santos C., Ferrer I., Reiriz J., Viñals F., Barrachina M., AmbrosioS.: MPP+ increases alpha-synuclein expression and ERK/MAPkinasephosphorylation in human neuroblastoma SH-SY5Y cells. BrainRes., 2002; 935: 32 –39
    Google Scholar
  • 43. Hans F., Eckert M., von Zweydorf F., Gloeckner C.J., Kahle P.J.:Identification and characterization of ubiquitinylation sites in TARDNA-binding protein of 43 kDa (TDP-43). J. Biol. Chem., 2018; 293: 16083 –16099
    Google Scholar
  • 44. Heicklen-Klein A., Ginzburg I.: Tau promoter confers neuronalspecificity and binds Sp1 and AP-2. J. Neurochem., 2000; 75: 1408 –1418
    Google Scholar
  • 45. Highley J.R., Kirby J., Jansweijer J.A., Webb P.S., HewamaddumaC.A., Heath P.R., Higginbottom A., Raman R., Ferraiuolo L., Cooper-Knock J., McDermott C.J., Wharton S.B., Shaw P.J., Ince P.G.: Loss ofnuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes alteredexpression of splicing machinery and widespread dysregulation ofRNA splicing in motor neurones. Neuropathol. Appl. Neurobiol., 2014;40: 670 –685
    Google Scholar
  • 46. Hirokawa N., Shiomura Y., Okabe S.: Tau proteins: the molecularstructure and mode of binding on microtubules. J. Cell Biol., 1988;107: 1449–1459
    Google Scholar
  • 47. Hosokawa M., Kondo H., Serrano G.E., Beach T.G., Robinson A.C.,Mann D.M., Akiyama H., Hasegawa M., Arai T.: Accumulation of multipleneurodegenerative disease-related proteins in familial frontotemporallobar degeneration associated with granulin mutation. Sci.Rep., 2017; 7: 1513
    Google Scholar
  • 48. Huin V., Buée L., Behal H., Labreuche J., Sablonnière B., DhaenensC.M.: Alternative promoter usage generates novel shorter MAPTmRNA transcripts in Alzheimer’s disease and progressive supranuclearpalsy brains. Sci. Rep., 2017; 7: 12589
    Google Scholar
  • 49. Iguchi Y., Katsuno M., Ikenaka K., Ishigaki S., Sobue G.: Amyotrophiclateral sclerosis: An update on recent genetic insights. J Neurol.,2013; 260: 2917 –2927
    Google Scholar
  • 50. Ittner L.M., Götz J.: Amyloid-β and tau – a toxic pas de deux inAlzheimer’s disease. Nat. Rev. Neurosci., 2011; 12: 65 –72
    Google Scholar
  • 51. Ittner L.M., Ke Y.D., Delerue F., Bi M., Gladbach A., van Eersel J.,Wölfing H., Chieng B.C., Christie M.J., Napier I.A., Eckert A., Staufenbiel M., Hardeman E., Götz J.: Dendritic function of tau mediates amyloid-βtoxicity in Alzheimer’s disease mouse models. Cell, 2010; 142: 387 –397
    Google Scholar
  • 52. Jakes R., Spillantini M.G., Goedert M.: Identification of two distinctsynucleins from human brain. FEBS Lett., 1994; 345: 27 –32
    Google Scholar
  • 53. Jao C.C., Der-Sarkissian A., Chen J., Langen R.: Structure of membrane-bound alpha-synuclein studied by site-directed spin labeling.Proc. Natl. Acad. Sci. USA, 2004; 101: 8331 –8336
    Google Scholar
  • 54. Jiang L.L., Xue W., Hong J.Y., Zhang J.T., Li M.J., Yu S.N., He J.H.,Hu H.Y.: The N-terminal dimerization is required for TDP-43 splicingactivity. Sci. Rep., 2017; 7: 6196
    Google Scholar
  • 55. Jin H., Kanthasamy A., Ghosh A., Yang Y., Anantharam V., KanthasamyA.G.: α-Synuclein negatively regulates protein kinase Cδ expressionto suppress apoptosis in dopaminergic neurons by reducingp300 histone acetyltransferase activity. J. Neurosci., 2011; 31: 2035 –2051
    Google Scholar
  • 56. Johnson G.V., Seubert P., Cox T.M., Motter R., Brown J.P., GalaskoD.: The tau protein in human cerebrospinal fluid in Alzheimer’s diseaseconsists of proteolytically derived fragments. J. Neurochem., 1997; 68: 430 –433
    Google Scholar
  • 57. Kametani F., Nonaka T., Suzuki T., Arai T., Dohmae N., Akiyama H.,Hasegawa M.: Identification of casein kinase-1 phosphorylation sites onTDP-43. Biochem. Biophys. Res. Commun., 2009; 382: 405 –409
    Google Scholar
  • 58. Kanaan N.M., Morfini G.A., LaPointe N.E., Pigino G.F., Patterson K.R.,Song Y., Andreadis A., Fu Y., Brady S.T., Binder L.I.: Pathogenic forms oftau inhibit kinesin-dependent axonal transport through a mechanisminvolving activation of axonal phosphotransferases. J. Neurosci., 2011;31: 9858 –9868
    Google Scholar
  • 59. Kawahara M., Ohtsuka I., Yokoyama S., Kato-Negishi M., SadakaneY.: Membrane incorporation, channel formation, and disruption of calciumhomeostasis by Alzheimer’s β-amyloid protein. Int. J. AlzheimersDis., 2011; 2011: 304583
    Google Scholar
  • 60. Kenessey A., Nacharaju P., Ko L.W., Yen S.H.: Degradation of tau bylysosomal enzyme cathepsin D: Implication for Alzheimer neurofibrillarydegeneration. J. Neurochem., 1997; 69: 2026 –2038
    Google Scholar
  • 61. Khalaf O., Fauvet B., Oueslati A., Dikiy I., Mahul-Mellier A.L., RuggeriF.S., Mbefo M.K., Vercruysse F., Dietler G., Lee S.J., Eliezer D., LashuelH.A.: The H50Q mutation enhances α-synuclein aggregation, secretion,and toxicity. J. Biol. Chem., 2014; 289: 21856 –21876
    Google Scholar
  • 62. Kosik K.S., Orecchio L.D., Bakalis S., Neve R.L.: Developmentally regulatedexpression of specific tau sequences. Neuron, 1989; 2: 1389 –1397
    Google Scholar
  • 63. Kühnlein P., Sperfeld A.D., Vanmassenhove B., Van Deerlin V., LeeV.M., Trojanowski J.Q., Kretzschmar H.A., Ludolph A.C., Neumann M.:Two German kindreds with familial amyotrophic lateral sclerosis dueto TARDBP mutations. Arch. Neurol., 2008; 65: 1185 –1189
    Google Scholar
  • 64. Kumar S., Jangir D.K., Kumar R., Kumari M., Bhavesh N.S., MaitiT.K.: Role of sporadic Parkinson disease associated mutations A18Tand A29S in enhanced α-synuclein fibrillation and cytotoxicity. ACSChem. Neurosci., 2018; 9: 230 –240
    Google Scholar
  • 65. Lei P., Ayton S., Finkelstein D.I., Spoerri L., Ciccotosto G.D., WrightD.K., Wong B.X., Adlard P.A., Cherny R.A., Lam L.Q., Roberts B.R., VolitakisI., Egan G.F., McLean C.A., Cappai R. i wsp.: Tau deficiency inducesparkinsonism with dementia by impairing APP-mediated iron export.Nat. Med., 2012; 18: 291 –295
    Google Scholar
  • 66. Liu F., Grundke-Iqbal I., Iqbal K., Gong C.X.: Contributions of proteinphosphatases PP1, PP2A, PP2B and PP5 to the regulation of tauphosphorylation. Eur. J. Neurosci., 2005; 22: 1942 –1950
    Google Scholar
  • 67. Liu Y., Lv K., Li Z., Yu A.C., Chen J., Teng J.: PACSIN1, a Tau-interactingprotein, regulates axonal elongation and branching by facilitatingmicrotubule instability. J. Biol. Chem., 2012; 287: 39911 –39924
    Google Scholar
  • 68. Lu J., Duan W., Guo Y., Jiang H., Li Z., Huang J., Hong K., Li C.: Mitochondrialdysfunction in human TDP-43 transfected NSC34 celllines and the protective effect of dimethoxy curcumin. Brain Res.Bull., 2012; 89: 185 –190
    Google Scholar
  • 69. Lundblad M., Decressac M., Mattsson B., Björklund A.: Impairedneurotransmission caused by overexpression of α-synuclein in nigraldopamine neurons. Proc. Natl. Acad. Sci. USA, 2012; 109: 3213 –3219
    Google Scholar
  • 70. Maroteaux L., Campanelli J.T., Scheller R.H.: Synuclein: A neuronspecificprotein localized to the nucleus and presynaptic nerve terminal.J. Neurosci., 1988; 8: 2804 –2815
    Google Scholar
  • 71. Martin L., Latypova X., Terro F.: Post-translational modificationsof tau protein: Implications for Alzheimer’s disease. Neurochem. Int.,2011; 58: 458 –471
    Google Scholar
  • 72. Matsuoka Y., Picciano M., Malester B., LaFrancois J., Zehr C., DaeschnerJ.M., Olschowka J.A., Fonseca M.I., O’Banion M.K., Tenner A.J.,Lemere C.A., Duff K.: Inflammatory responses to amyloidosis in atransgenic mouse model of Alzheimer’s disease. Am. J. Pathol., 2001;158: 1345 –1354
    Google Scholar
  • 73. Meade R.M., Fairlie D.P., Mason J.M.: Alpha-synuclein structureand Parkinson’s disease – lessons and emerging principles. Mol. Neurodegener.,2019; 14: 29
    Google Scholar
  • 74. Mena R., Luna-Muñoz J.C.: Stages of pathological tau-proteinprocessing in Alzheimer’s disease: From soluble aggregations to polymerizationinto insoluble Tau-PHFs. W: Current Hypotheses andResearch Milestones in Alzheimer’s Disease, red.: R.B. Maccoini, G.Perry. Springer US, New York 2009, 79 –91
    Google Scholar
  • 75. Min S.W., Cho S.H., Zhou Y., Schroeder S., Haroutunian V., SeeleyW.W., Huang E.J., Shen Y., Masliah E., Mukherjee C., Meyers D., ColeP.A., Ott M., Gan L.: Acetylation of tau inhibits its degradation andcontributes to tauopathy. Neuron, 2010; 67: 953 –966
    Google Scholar
  • 76. Mohite G.M., Navalkar A., Kumar R., Mehra S., Das S., Gadhe L.G.,Ghosh D., Alias B., Chandrawanshi V., Ramakrishnan A., Mehra S., MajiS.K.: The familial α-synuclein A53E mutation enhances cell death inresponse to environmental toxins due to a larger population of oligomers.Biochemistry, 2018; 57: 5014 –5028
    Google Scholar
  • 77. Neumann M., Kwong L.K., Lee E.B., Kremmer E., Flatley A., Xu Y.,Forman M.S., Troost D., Kretzschmar H.A., Trojanowski J.Q., Lee V.M.:Phosphorylation of S409/410 of TDP-43 is a consistent feature in allsporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol.,2009; 117: 137 –149
    Google Scholar
  • 78. Neumann M., Sampathu D.M., Kwong L.K., Truax A.C., MicsenyiM.C., Chou T.T., Bruce J., Schuck T., Grossman M., Clark C.M., McCluskeyL.F., Miller B.L., Masliah E., Mackenzie I.R., Feldman H. i wsp.: UbiquitinatedTDP-43 in frontotemporal lobar degeneration and amyotrophiclateral sclerosis. Science, 2006; 314: 130 –133
    Google Scholar
  • 79. Neve R.L., Harris P., Kosik K.S., Kurnit D.M., Donlon T.A.: Identificationof cDNA clones for the human microtubule-associated protein tauand chromosomal localization of the genes for tau and microtubuleassociatedprotein 2. Brain. Res., 1986; 387: 271 –280
    Google Scholar
  • 80. Ou S.H., Wu F., Harrich D., García-Martínez L.F., Gaynor R.B.: Cloningand characterization of a novel cellular protein, TDP-43, that bindsto human immunodeficiency virus type 1 TAR DNA sequence motifs.J. Virol., 1995; 69: 3584 –3596
    Google Scholar
  • 81. Ozer R.S., Halpain S.: Phosphorylation-dependent localization ofmicrotubule-associated protein MAP2c to the actin cytoskeleton. Mol.Biol. Cell, 2000; 11: 3573 –3587
    Google Scholar
  • 82. Pandey N., Schmidt R.E., Galvin J.E.: The alpha-synuclein mutationE46K promotes aggregation in cultured cells. Exp. Neurol., 2006;197: 515 –520
    Google Scholar
  • 83. Pesiridis G.S., Lee V.M., Trojanowski J.Q.: Mutations in TDP-43 linkglycine-rich domain functions to amyotrophic lateral sclerosis. Hum.Mol. Genet., 2009; 18: R156 –R162
    Google Scholar
  • 84. Pinarbasi E.S., Cağatay T., Fung H.Y.J., Li Y.C., Chook Y.M., ThomasP.J.: Active nuclear import and passive nuclear export are the primarydeterminants of TDP-43 localization. Sci. Rep., 2018; 8: 7083
    Google Scholar
  • 85. Plotegher N., Kumar D., Tessari I., Brucale M., Munari F., TosattoL., Belluzzi E., Greggio E., Bisaglia M., Capaldi S., Aioanei D., MammiS., Monaco H.L., Samo B., Bubacco L.: The chaperone-like protein 14-3-3η interacts with human α-synuclein aggregation intermediatesrerouting the amyloidogenic pathway and reducing α-synuclein cellulartoxicity. Hum. Mol. Genet., 2014; 23: 5615 –5629
    Google Scholar
  • 86. Polymenidou M., Lagier-Tourenne C., Hutt K.R., Huelga S.C., MoranJ., Liang T.Y., Ling S.C., Sun E., Wancewicz E., Mazur C., KordasiewiczH., Sedaghat Y., Donohue J.P., Shiue L., Bennett C.F. i wsp.: Longpre-mRNA depletion and RNA missplicing contribute to neuronalvulnerability from loss of TDP-43. Nat. Neurosci., 2011; 14: 459 –468
    Google Scholar
  • 87. Prasad A., Sivalingam V., Bharathi V., Girdhar A., Patel B.K.: Theamyloidogenicity of a C-terminal region of TDP-43 implicated inamyotrophic lateral sclerosis can be affected by anions, acetylationand homodimerization. Biochimie, 2018; 150: 76 –87
    Google Scholar
  • 88. Qureshi H.Y., Paudel H.K.: Parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and α-synuclein mutationspromote Tau protein phosphorylation at Ser262 and destabilizemicrotubule cytoskeleton in vitro. J. Biol. Chem., 2011; 286: 5055 –5068
    Google Scholar
  • 89. Ramaswami M., Taylor J.P., Parker R.: Altered ribostasis: RNAproteingranules in degenerative disorders. Cell, 2013; 154: 727 –736
    Google Scholar
  • 90. Rocca W.A.: The burden of Parkinson’s disease: A worldwide perspective.Lancet Neurol., 2018; 17: 928 –929
    Google Scholar
  • 91. Russo M.A., Tomino C., Vernucci E., Limana F., Sansone L., FrustaciA., Tafani M.: Hypoxia and inflammation as a consequence of β-fibrilaccumulation: A perspective view for new potential therapeutic targets.Oxid. Med. Cell. Longev., 2019; 2019: 7935310
    Google Scholar
  • 92. Salvatori I., Ferri A., Scaricamazza S., Giovannelli I., Serrano A.,Rossi S., D’Ambrosi N., Cozzolino M., Giulio A.D., Moreno S., Valle C.,Carrì M.T.: Differential toxicity of TAR DNA-binding protein 43 isoformsdepends on their submitochondrial localization in neuronalcells. J. Neurochem., 2018; 146: 585 –597
    Google Scholar
  • 93. Saman S., Kim W., Raya M., Visnick Y., Miro S., Saman S., JacksonB., McKee A.C., Alvarez V.E., Lee N.C., Hall G.F.: Exosome-associatedtau is secreted in tauopathy models and is selectively phosphorylatedin cerebrospinal fluid in early Alzheimer disease. J. Biol. Chem.,2012; 287: 3842 –3849
    Google Scholar
  • 94. Siddiqui I.J., Pervaiz N., Abbasi A.A.: The Parkinson Disease geneSNCA: Evolutionary and structural insights with pathological implication.Sci. Rep., 2016; 6: 24475
    Google Scholar
  • 95. Singleton A.B., Farrer M., Johnson J., Singleton A., Hague S., KachergusJ., Hulihan M., Peuralinna T., Dutra A., Nussbaum R., Lincoln S.,Crawley A., Hanson M., Maraganore D., Adler C. i wsp.: α-synucleinlocus triplication causes Parkinson’s disease. Science, 2003; 302: 841
    Google Scholar
  • 96. Spillantini M.G., Divane A., Goedert M.: Assignment of humanα-synuclein (SNCA) and β-synuclein (SNCB) genes to chromosomes4q21 and 5q35. Genomics, 1995; 27: 379 –381
    Google Scholar
  • 97. Sprovieri T., Ungaro C., Perrone B., Naimo G.D., Spataro R., CavallaroS., La Bella V., Conforti F.L.: A novel S379A TARDBP mutation associatedto late-onset sporadic ALS. Neurol. Sci., 2019; 40: 2111 –2118
    Google Scholar
  • 98. Stefanoska K., Volkerling A., Bertz J., Poljak A., Ke Y.D., Ittner L.M.,Ittner A.: An N-terminal motif unique to primate tau enables differentialprotein-protein interactions. J. Biol. Chem., 2018; 293: 3710 –3719
    Google Scholar
  • 99. Strang K.H., Golde T.E., Giasson B.I.: MAPT mutations, tauopathy,and mechanisms of neurodegeneration. Lab. Invest., 2019; 99: 912 –928
    Google Scholar
  • 100. Sultan A., Nesslany F., Violet M., Bégard S., Loyens A., TalahariS., Mansuroglu Z., Marzin D., Sergeant N., Humez S., Colin M., BonnefoyE., Buée L., Galas M.C.: Nuclear tau, a key player in neuronal DNAprotection. J. Biol. Chem., 2011; 286: 4566 –4575
    Google Scholar
  • 101. Takeda T.: Possible concurrence of TDP-43, tau and other proteinsin amyotrophic lateral sclerosis/frontotemporal lobar degeneration.Neuropathology, 2018; 38: 72 –81
    Google Scholar
  • 102. TARDBP TAR DNA binding protein [Homo sapiens (human)] –Gene – NCBI. https://www.ncbi.nlm.nih.gov/gene/23435 (02.06.2020)
    Google Scholar
  • 103. Turner B.J., Bäumer D., Parkinson N.J., Scaber J., Ansorge O.,Talbot K.: TDP-43 expression in mouse models of amyotrophic lateralsclerosis and spinal muscular atrophy. BMC Neurosci., 2008; 9: 104
    Google Scholar
  • 104. van Swieten J., Spillantini M.G.: Hereditary frontotemporal dementiacaused by Tau gene mutations. Brain Pathol., 2007; 17: 63 –73
    Google Scholar
  • 105. Vicente Miranda H., Cássio R., Correia-Guedes L., Gomes M.A.,Chegão A., Miranda E., Soares T., Coelho M., Rosa M.M., Ferreira J.J.,Outeiro T.F.: Posttranslational modifications of blood-derived alphasynucleinas biochemical markers for Parkinson’s disease. Sci. Rep.,2017; 7: 13713
    Google Scholar
  • 106. von Bergen M., Barghorn S., Biernat J., Mandelkow E.M., MandelkowE.: Tau aggregation is driven by a transition from random coilto beta sheet structure. Biochim. Biophys. Acta, 2005; 1739: 158 –166
    Google Scholar
  • 107. Wang Y.T., Kuo P.H., Chiang C.H., Liang J.R., Chen Y.R., Wang S.,Shen J.C., Yuan H.S.: The truncated C-terminal RNA recognition motifof TDP-43 protein plays a key role in forming proteinaceous aggregates.J. Biol. Chem., 2013; 288: 9049 –9057
    Google Scholar
  • 108. Watanabe A., Hasegawa M., Suzuki M., Takio K., Morishima-Kawashima M., Titani K., Arai T., Kosik K.S., Ihara Y.: In vivo phosphorylationsites in fetal and adult rat tau. J. Biol. Chem., 1993; 268: 25712 –25717
    Google Scholar
  • 109. Wilhelmsen K.C., Lynch T., Pavlou E., Higgins M., Nygaard T.G.:Localization of disinhibition-dementia-parkinsonism-amyotrophycomplex to 17q21-22. Am. J. Hum. Genet., 1994; 55: 1159 –1165
    Google Scholar
  • 110. Wong Y.C., Krainc D.: α-synuclein toxicity in neurodegeneration:mechanism and therapeutic strategies. Nat. Med., 2017; 23: 1 –13
    Google Scholar
  • 111. Yamada K., Holth J.K., Liao F., Stewart F.R., Mahan T.E., Jiang H.,Cirrito J.R., Patel T.K., Hochgräfe K., Mandelkow E.M., Holtzman D.M.:Neuronal activity regulates extracellular tau in vivo. J. Exp. Med.,2014; 211: 387 –393
    Google Scholar
  • 112. Yang W., Wang X., Duan C., Lu L., Yang H.: Alpha-synuclein overexpressionincreases phosphoprotein phosphatase 2A levels via formationof calmodulin/Src complex. Neurochem. Int., 2013; 63: 180–194
    Google Scholar
  • 113. Yarchoan M., Toledo J.B., Lee E.B., Arvanitakis Z., Kazi H., HanL.Y., Louneva N., Lee V.M., Kim S.F., Trojanowski J.Q., Arnold S.E.: Abnormalserine phosphorylation of insulin receptor substrate 1 is associatedwith tau pathology in Alzheimer’s disease and tauopathies.Acta Neuropathol., 2014; 128: 679 –689
    Google Scholar
  • 114. Yuan A., Kumar A., Peterhoff C., Duff K., Nixon R.A.: Axonal transportrates in vivo are unaffected by tau deletion or overexpression inmice. J. Neurosci., 2008; 28: 1682 –1687
    Google Scholar
  • 115. Yuzwa S.A., Macauley M.S., Heinonen J.E., Shan X., Dennis R.J.,He Y., Whitworth G.E., Stubbs K.A., McEachern E.J., Davies G.J., VocadloD.J.: A potent mechanism-inspired O-GlcNAcase inhibitor that blocksphosphorylation of tau in vivo. Nat. Chem. Biol., 2008; 4: 483 –490
    Google Scholar
  • 116. Zarranz J.J., Alegre J., Gómez-Esteban J.C., Lezcano E., Ros R.,Ampuero I., Vidal L., Hoenicka J., Rodriguez O., Atarés B., Llorens V.,Gomez Tortosa E., del Ser T., Muñoz D.G., de Yebenes J.G.: The newmutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia.Ann. Neurol., 2004; 55: 164 –173
    Google Scholar
  • 117. Zempel H., Thies E., Mandelkow E., Mandelkow E.M.: Aβ oligomerscause localized Ca2+ elevation, missorting of endogenous Tau intodendrites, Tau phosphorylation, and destruction of microtubules andspines. J. Neurosci., 2010; 30: 11938 –11950
    Google Scholar
  • 118. Zhang Y., Chen K., Sloan S.A., Bennett M.L., Scholze A.R., O’KeeffeS., Phatnani H.P., Guarnieri P., Caneda C., Ruderisch N., Deng S., Liddelow S.A., Zhang C., Daneman R., Maniatis T. i wsp.: An RNA-sequencingtranscriptome and splicing database of glia, neurons, andvascular cells of the cerebral cortex. J. Neurosci., 2014; 34: 11929 –11947
    Google Scholar
  • 119. Zhang Y.W., Thompson R., Zhang H., Xu H.: APP processing inAlzheimer’s disease. Mol. Brain., 2011; 4: 3
    Google Scholar
  • 120. Zheng W.H., Bastianetto S., Mennicken F., Ma W., Kar S.: Amyloidbeta peptide induces tau phosphorylation and loss of cholinergic neuronsin rat primary septal cultures. Neuroscience, 2002; 115: 201 –211
    Google Scholar

Full text

Skip to content