Advances in the development of new vaccines against tuberculosis. 100 years after the introduction of BCG

COMMENTARY ON THE LAW

Advances in the development of new vaccines against tuberculosis. 100 years after the introduction of BCG

Katarzyna Krysztopa-Grzybowska 1 , Anna Lutyńska 1

1. Zakład Badania Surowic i Szczepionek, Narodowy Instytut Zdrowia Publicznego – Państwowy Zakład Higieny w Warszawie

Published: 2014-06-09
DOI: 10.5604/17322693.1108381
GICID: 01.3001.0003.1251
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 768-776

 

Abstract

The BCG vaccine used in the world for nearly 100 years protects children against the most severe forms of tuberculosis, but its effectiveness in preventing the most commonly occurring tuberculosis and the one burdened with the highest risk of transmission in adults is very diverse. Contraindications for BCG vaccination include HIV infection and other conditions of immunosuppression. Tuberculosis is a global problem difficult to control because of three main reasons: poor diagnostics in developing countries, long-term therapy or discontinuation of treatment resulting in the emergence of drug-resistant mycobacteria, and the availability of a TB vaccine which only protects children from the most severe forms of tuberculosis. BCG has little to no efficacy in preventing the most common adult pulmonary TB. The development of a more effective vaccine against tuberculosis is undoubtedly still a public health priority in order to improve control of the disease throughout the world. Elimination of TB as a global public health goal by 2050 is particularly ambitious and its achievement depends on the development and application of new intervention measures and newly designed vaccines. Currently, 14 newly developed products are undergoing clinical trials. These include a prophylactic vaccine capable of replacing the current BCG, booster vaccines to increase the effects of BCG, and therapeutic vaccines. The aim of the study is to present the current state of knowledge on cutting-edge research into new vaccines against tuberculosis, their efficacy, immunogenicity and potential use in the future.

References

  • 1. Abel B., Tameris M., Mansoor N., Gelderbloem S., Hughes J., AbrahamsD., Makhethe L., Erasmus M., de Kock M., van der Merwe L.,Hawkridge A., Veldsman A., Hatherill M., Schirru G., Pau M.G. i wsp.:The novel tuberculosis vaccine, AERAS-402, induces robust and polyfunctionalCD4+ and CD8+ T cells in adults. Am. J. Respir. Crit. CareMed., 2010; 181: 1407-1417
    Google Scholar
  • 2. Behr M.A., Small P.M.: A historical and molecular phylogeny ofBCG strains. Vaccine, 1999; 17: 915-922
    Google Scholar
  • 3. Day C.L., Tameris M.., Mansoor N., van Rooyen M., de Kock M.,Geldenhuys H., Erasmus M., Makhethe L., Hughes E.J., GelderbloemS., Bollaerts A., Bourguignon P., Cohen J., Demoitié M.A, Mettens P.i wsp.: Induction and regulation of T cell immunity by the novel tuberculosisvaccine M72/AS01 in South African adults. Am. J. Respir.Crit. Care Med., 2013; 188: 492-502
    Google Scholar
  • 4. de Bruyn G., Garner P.: Mycobacterium vaccae immunotherapyfor treating tuberculosis. Cochrane Database Syst. Rev., 2003;CD001166
    Google Scholar
  • 5. Dlugovitzky D., Fiorenza G., Farroni M., Bogue C., Stanford C.,Stanford J: Immunological consequences of three doses of heatkilledMycobacterium vaccae in the immunotherapy of tuberculosis.Respir. Med., 2006; 100: 1079-1087
    Google Scholar
  • 6. Dorhoi A., Reece S.T., Kaufmann S.H.: For better or for worse: theimmune response against Mycobacterium tuberculosis balances pathologyand protection. Immunol. Rev., 2011; 240: 235-251
    Google Scholar
  • 7. Flynn J.L.: Immunology of tuberculosis and implications in vaccinedevelopment. Tuberculosis, 2004; 84: 93-101
    Google Scholar
  • 8. Fol M., Zawadzka K., Druszczyńska M., Kowalewicz-Kulbat M.,Rudnicka W.: Szczepienia przeciwprątkowe – BCG i co dalej? PostępyHig. Med. Dośw., 2011; 65: 93-103
    Google Scholar
  • 9. Frick M.: The TB Vaccines Pipeline. Where are we going, wherehave we been? W: 2013 Pipeline Report, red. T. Horn, S. Morgan. HIVi-Base/Treatment Action Group, 2013: 263-283 10 Gengenbacher M., Kaufmann S.H.: Mycobacterium tuberculosis:success through dormancy. FEMS Microbiol. Rev., 2012; 36: 514-532
    Google Scholar
  • 10. years later. Lancet Infect. Dis., 2011; 11: 633-640
    Google Scholar
  • 11. Gil D.P., León L.G., Correa L.I., Maya J.R., París S.C., García L.F.,Rojas M.: Differential induction of apoptosis and necrosis in monocytesfrom patients with tuberculosis and healthy control subjects.J. Infect. Dis., 2004; 189: 2120-2128
    Google Scholar
  • 12. Hoft D.F., Blazevic A., Abate G., Hanekom W.A., Kaplan G., SolerJ.H., Weichold F., Geiter L., Sadoff J.C., Horwitz M.A.: A new recombinantbacille Calmette-Guérin vaccine safely induces significantlyenhanced tuberculosis-specific immunity in human volunteers. J.Infect. Dis., 2008; 198: 1491-1501
    Google Scholar
  • 13. Instytut Gruźlicy i Chorób Płuc: Biuletyn Instytutu Gruźlicyi Chorób Płuc, http://www.igichp.edu.pl/ (15.01.2014)
    Google Scholar
  • 14. Johnson J.L., Kamya R.M., Okwera A., Loughlin A.M., Nyole S.,Hom D.L., Wallis R.S., Hirsch C.S., Wolski K., Foulds J., Mugerwa R.D.,Ellner J.J.: Randomized controlled trial of Mycobacterium vaccaeimmunotherapy in non-human immunodeficiency virus-infectedugandan adults with newly diagnosed pulmonary tuberculosis. TheUganda-Case Western Reserve University Research Collaboration. J.Infect. Dis., 2000; 181: 1304-1312
    Google Scholar
  • 15. Kaufmann S.H.: Fact and fiction in tuberculosis vaccine research:
    Google Scholar
  • 16. Kaufmann S.H., Hussey G., Lambert P.H.: New vaccines for tuberculosis.Lancet, 2010; 375: 2110-2119
    Google Scholar
  • 17. Keane J., Gershon S., Wise R.P., Mirabile-Levens E., Kasznica J.,Schwieterman W.D., Siegel J.N., Braun M.M.: Tuberculosis associatedwith infliximab, a tumor necrosis factor α-neutralizing agent.N. Engl. J. Med., 2001; 345: 1098-1104
    Google Scholar
  • 18. Kupferschmidt K.: Infectious disease. Taking a new shot at a TBvaccine. Science, 2011; 334: 1488-1490
    Google Scholar
  • 19. Lalvani A., Sridhar S., von Reyn C.F.: Tuberculosis vaccines: timeto reset the paradigm? Thorax, 2013; 68: 1092-1094
    Google Scholar
  • 20. Maglione P.J., Chan J.: How B cells shape the immune responseagainst Mycobacterium tuberculosis. Eur. J. Immunol., 2009; 39: 676-686
    Google Scholar
  • 21. Ottenhoff T.H., Kaufmann S.H.: Vaccines against tuberculosis: whereare we and where do we need to go? PLoS Pathog., 2012; 8: e1002607
    Google Scholar
  • 22. Parida S.K., Kaufmann S.H.: The quest for biomarkers in tuberculosis.Drug Discov. Today, 2010; 15: 148-157
    Google Scholar
  • 23. Park J.S., Tamayo M.H., Gonzalez-Juarrero M., Orme I.M., OrdwayD.J.: Virulent clinical isolates of Mycobacterium tuberculosis grow rapidlyand induce cellular necrosis but minimal apoptosis in murinemacrophages. J. Leukoc. Biol., 2006; 79: 80-86
    Google Scholar
  • 24. Rezolucja Parlamentu Europejskiego z dnia 3 lutego 2011 r.w  sprawie „Inicjatywy szczepienia przeciwko gruźlicy” (TBVI).http://www.europarl.europa.eu/sides/getDoc.do?type=TA&reference=P7-TA-2011-0039&language=PL&ring=B7-2011-0075(15.01.2014)
    Google Scholar
  • 25. Rowland R., McShane H.: Tuberculosis vaccines in clinical trials.Expert Rev. Vaccines, 2011; 10: 645-658
    Google Scholar
  • 26. Sakula A.: BCG: who were Calmette and Guérin? Thorax, 1983;38: 806-812
    Google Scholar
  • 27. Stop TB Partnership Working Group on New TB Vaccines. Tuberculosisvaccine candidates – 2011. http://www.tbvi.eu/about-us/downloads.html (15.01.2014)
    Google Scholar
  • 28. Sun R., Skeiky Y.A., Izzo A., Dheenadhayalan V., Imam Z., Penn E.,Stagliano K., Haddock S., Mueller S., Fulkerson J., Scanga C., GroverA., Derrick S.C., Morris S., Hone D.M., Horwitz M.A., Kaufmann S.H.,Sadoff J.C.: Novel recombinant BCG expressing perfringolysin O andthe over-expression of key immunodominant antigens; pre-clinicalcharacterization, safety and protection against challenge with Mycobacteriumtuberculosis. Vaccine, 2009; 27: 4412-4423
    Google Scholar
  • 29. Szczuka I.: Wakcynologia. W: Wakcynologia. II. Alfa Media Press,Bielsko-Biała 2007 365-390
    Google Scholar
  • 30. Teo S.S., Shingadia D.: BCG vaccine. Adv. Exp. Med. Biol., 2005;568: 117-134
    Google Scholar
  • 31. Urdahl K.B., Shafiani S., Ernst J.D.: Initiation and regulation ofT-cell responses in tuberculosis. Mucosal Immunol., 2011; 4: 288-293
    Google Scholar
  • 32. van Helden P.D., Hoal E.G.: A new TB vaccine: fact or fiction?Comp. Immunol. Microbiol. Infect. Dis., 2013; 36: 287-294
    Google Scholar
  • 33. Vilaplana C., Gil O., Cáceres N., Pinto S., Diaz J., Cardona P.J.:Prophylactic effect of a therapeutic vaccine against TB based onfragments of Mycobacterium tuberculosis. PLoS One, 2011; 6: e20404
    Google Scholar
  • 34. von Reyn C.F., Mtei L., Arbeit R.D., Waddell R., Cole B., MackenzieT., Matee M., Bakari M., Tvaroha S., Adams L.V., Horsburgh C.R., PallangyoK., DarDar Study Group: Prevention of tuberculosis in BacilleCalmette-Guérin-primed, HIV-infected adults boosted with an inactivatedwhole-cell mycobacterial vaccine. AIDS, 2010; 24: 675-685
    Google Scholar
  • 35. Vrba A., Kwiatkowska S.: Mycobacterium tuberculosis jako przykładpatogenu wewnątrzkomórkowego. Wzajemne relacje międzymikro- i makroorganizmem. Pol. Merkur. Lekarski, 2009; 27: 508-513
    Google Scholar
  • 36. Winau F., Weber S., Sad S., de Diego J., Hoops S.L., Breiden B.,Sandhoff K., Brinkmann V., Kaufmann S.H., Schaible U.E.: Apoptoticvesicles crossprime CD8 T cells and protect against tuberculosis. Immunity,2006; 24: 105-117
    Google Scholar
  • 37. World Health Organization and Stop TB Partnership: The GlobalPlan To Stop TB 2011-2015http://www.stoptb.org/global/plan/(15.01.2014)
    Google Scholar
  • 38. World Health Organization and Stop TB Partnership: TuberculosisVaccine hope for the future. http://www.stoptb.org/wg/new_vaccines/assets/documents/TB%20Vaccine%20brochure%20latest.pdf (15.01.2014)
    Google Scholar
  • 39. World Health Organization: Global Tuberculosis Control 2011.http://www.who.int/tb/publications/global_report/2011/en/(15.01.2014)
    Google Scholar
  • 40. World Health Organization: Global tuberculosis report 2012.http://www.who.int/tb/publications/global_report/2012/en/(15.01.2014)
    Google Scholar
  • 41. World Health Organization: Multidrug and extensively drugresistantTB (M/XDR-TB): 2010 Global report on surveillance and response.http://www.who.int/tb/publications/2010/978924599191/en/ (15.01.2014)
    Google Scholar
  • 42. Xing Z., McFarland C.T., Sallenave J.M., Izzo A., Wang J., McMurrayD.N.: Intranasal mucosal boosting with an adenovirus-vectoredvaccine markedly enhances the protection of BCG-primed guineapigs against pulmonary tuberculosis. PloS One, 2009; 4: e5856
    Google Scholar

Full text

Skip to content