Alzheimer’s disease against peptides products of enzymatic cleavage APP protein: Biological, pathobiological and physico-chemical properties of fibrillating peptides

COMMENTARY ON THE LAW

Alzheimer’s disease against peptides products of enzymatic cleavage APP protein: Biological, pathobiological and physico-chemical properties of fibrillating peptides

Małgorzata Marszałek 1

1. Instytut Biofizyki, Uniwersytet Łódzki, rencistka

Published: 2017-05-17
DOI: 10.5604/01.3001.0010.3823
GICID: 01.3001.0010.3823
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 398-410

 

Abstract

Various peptides products of enzymatic cleavage of key for Alzheimer’s disease Amyloid Precursor Protein (APP) are well known, but still are matter of scientific debate. The Aβ type products are especially challenging for experimental and medical research. This paper outlines several, still poorly known, biological and medical processes such as peptides biology, i.e., formation, biodistribution, translocation, transport and finally removal from brain compartments and body fluids like Intracellular Fluid (ICF), Cerebrospinal Fluid (CSF), Interstitial Fluid (ISF), blood serum or urine. In addition, the following studies concerning AD patients might prove challenging and simultaneously promising: peptides translocation through Blood-Brain – Barrier (BBB) and Blood–Cerebrospinal Fluid Barrier (BCSFB) and their removal from the brain according to a new concept of glymphatic system; – diagnostic difficulties that stem from physico-chemical properties and the nature of proteins or fibrillating peptides itself like low concentration, short half-live and from experimental-technical problems as well like high adsorption or low solubility of Aβ, tau or amylin. The study of diagnostic parameters is very important, as it may better reflect early changes before the disease develops; one such parameter is the Aβ42/Aβ40 ratio, or the ratio with the total tau concentration combination and other new biomarkers like Aβ1-38; other factors include oxidative stress and inflammation process proteins, complement factor H, alpha-2-macroglobulin, or clusterin. The study of various forms of pathological amyloid deposits that emerge in different but specific brain regions AD patients seems to be crucial as well. The composition of the first initial pathological, pre-fibrillating monomers of fibrillating peptides and their role in AD development and disease progression have been described as well. They are even more challenging for science and simultaneously might be more promising in early diagnosis for AD patients. As always in science, research leads to endless discoveries and further inquiry. Fundamental problems in this field most probably are still far from being definitively comprehended, and multiple crucial questions await better answers. What we really need is to study more and deeper into this matter.

References

  • 1. Ballard C., Gauthier S., Corbett A., Brayne C., Aarsland D., JonesE.: Alzheimer’s disease. Lancet, 2011; 377: 1019-1031
    Google Scholar
  • 2. Bell R.D., Zlokovic B.V.: Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol.,2009; 118: 103-113
    Google Scholar
  • 3. Blennow K., Dubois B., Fagan A.M., Lewczuk P., de Leon M.J., HampelH.: Clinical utility of cerebrospinal fluid biomarkers in the diagnosisof early Alzheimer’s disease. Alzheimers Dement., 2015; 11: 58-69
    Google Scholar
  • 4. Blennow K., Hampel H., Weiner M., Zetterberg H.: Cerebrospinalfluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol.,2010; 6: 131-144
    Google Scholar
  • 5. Brinker T., Stopa E., Morrison J., Klinge P.: A new look at cerebrospinalfluid circulation. Fluids Barriers CNS, 2014; 11: 10
    Google Scholar
  • 6. Brinkmalm G., Brinkmalm A., Bourgeois P., Persson R., HanssonO., Portelius E., Mercken M., Andreasson U., Parent S., Lipari F.,Ohrfelt A., Bjerke M., Minthon L., Zetterberg H., Blennow K., NutuM.: Soluble amyloid precursor protein α and β in CSF in Alzheimer’sdisease. Brain Res., 2013; 1513: 117-126
    Google Scholar
  • 7. Brody D.L., Magnoni S., Schwetye K.E., Spinner M.L., Esparza T.J.,Stocchetti N., Zipfel G.J., Holtzman D.M.:Amyloid-b dynamics correlatewith neurological status in the injured human brain. Science,2008; 321: 1221-1224
    Google Scholar
  • 8. Chow V.W., Mattson M.P., Wong P.C., Gleichmann M.: An overviewof APP processing enzymes and products. Neuromol. Med.,2010; 12: 1-12
    Google Scholar
  • 9. Cirrito J.R., Holtzman D.M.: Amyloid β and Alzheimer diseasetherapeutics: the devil may be in the details. J. Clin. Invest., 2003;112: 321-323
    Google Scholar
  • 10. Cuchillo-Ibañez I., Lopez-Font I., Boix-Amorós A., BrinkmalmG., Blennow K., Molinuevo J.L., Sáez-Valero J.: Heteromers of amyloidprecursor protein in cerebrospinal fluid. Mol. Neurodegener.,2015; 10: 2
    Google Scholar
  • 11. Di Fede G., Catania M., Morbin M., Giaccone G., Moro M.L., GhidoniR., Colombo L., Messa M., Cagnotto A., Romeo M., Stravalaci M.,Diomede L., Gobbi M., Salmona M., Tagliavini F.: Good gene, bad gene:New APP variant may be both. Prog. Neurobiol., 2012; 99: 281-292
    Google Scholar
  • 12. Do T.M., Alata W., Dodacki A., Traversy M.T., Chacun H., PradierL., Scherrmann J.M., Farinotti R., Calon F., Bourasset F.: Altered cerebralvascular volumes and solute transport at the blood-brainbarriers of two transgenic mouse models of Alzheimer’s disease.Neuropharmacology, 2014; 81: 311-317
    Google Scholar
  • 13. Duits F.H., Teunissen C.E., Bouwman F.H., Visser P.J., MattssonN., Zetterberg H., Blennow K., Hansson O., Minthon L., Andreasen N.,Marcusson J., Wallin A., Rikkert M.O., Tsolaki M., Parnetti L. i wsp.:The cerebrospinal fluid “Alzheimer profile”: easily said, but whatdoes it mean? Alzheimers Dement., 2014; 10: 713-723
    Google Scholar
  • 14. Engelhard B., Sorokin L.: The blood-brain and the blood-cerebrospinalfluid barriers: function and dysfunction. Semin. Immunopathol.,2009; 31: 497-511
    Google Scholar
  • 15. Erickson M.A., Banks W.A.: Blood-brain barrier dysfunction asa cause and consequence of Alzheimer’s disease. J. Cereb. Blood Flow.Metab., 2013; 33; 1500-1513
    Google Scholar
  • 16. Fändrich M., Schmidt M., Grigorieff N.: Recent progress in understandingAlzheimer’s β-amyloid structures. Trends Biochem.Sci., 2011; 36: 338-345
    Google Scholar
  • 17. Gouras G.K.: Convergence of synapses, endosomes, and prionsin the biology of neurodegenerative diseases. Int. J. Cell Biol., 2013;2013: 141083
    Google Scholar
  • 18. Gouras G.K., Olsson T.T., Hansson O.: β-amyloid peptides and amyloid plaques in Alzheimer’s disease. Neurotherapeutics, 2015;12: 3-11
    Google Scholar
  • 19. Gouras G.K., Tampellini D., Takahashi R.H., Capetillo-Zarate E.:Intraneuronal β-amyloid accumulation and synapse pathology inAlzheimer’s disease. Acta Neuropathol., 2010; 119: 523-541
    Google Scholar
  • 20. Gouras G.K., Willén K., Faideau M.: The inside-out amyloid hypothesisand synapse pathology in Alzheimer’s disease. Neurodegener.Dis., 2014; 13: 142-146
    Google Scholar
  • 21. Gouras G.K., Willén K., Tampellini D.: Critical role of intraneuronalAβ in Alzheimer’s disease: technical challenges in studyingintracellular Aβ. Life Sci., 2012; 91: 1153-1158
    Google Scholar
  • 22. Haass C., Kaether C., Thinakaran G., Sisodia S.: Trafficking andproteolytic processing of APP. Cold Spring Harb. Perspect. Med.,2012; 2: a006270
    Google Scholar
  • 23. Hansson O., Stomrud E., Vanmechelen E., Östling S., GustafsonD.R., Zetterberg H., Blennow K., Skoog I.: Evaluation of plasma Aβ aspredictor of Alzheimer’s disease in older individuals without dementia:a population-based study. J. Alzheimers Dis., 2012; 28: 231-238
    Google Scholar
  • 24. Hansson O., Zetterberg H., Buchhave P., Londos E., BlennowK., Minthon L.: Association between CSF biomarkers and incipientAlzheimer’s disease in patients with mild cognitive impairment:a follow-up study. Lancet Neurol., 2006; 5: 228-234
    Google Scholar
  • 25. Iliff J.J., Wang M., Liao Y., Plogg B.A., Peng W., Gudersen G.A.,Benveniste H., Vates G.E., Deane R., Goldman S.A., Nagelhus E.A.,Nedergaard M.: A paravascular pathway facilitates CSF flow throughthe brain parenchyma and the clearance of interstitial solutes, includingamyloid β. Sci. Transl. Med., 2012; 4: 147ra111
    Google Scholar
  • 26. Kang J.E., Lim M.M., Bateman R.J., Lee J.J., Smyth L.P., Cirrito J.R.,Fujiki N., Nishino S., Holtzman D.M.: Amyloid-β dynamics are regulatedby orexin and the sleep-wake cycle. Science, 2009; 326: 1005-1007
    Google Scholar
  • 27. Karczewska-Kupczewska M., Lelental N., Adamska A., NikołajukA., Kowalska I., Górska M., Zimmermann R., Kornhuber J., StrączkowskiM., Lewczuk P.: The influence of insulin infusion on the metabolismof amyloid β peptides in plasma. Alzheimers Dement., 2013;9: 400-405
    Google Scholar
  • 28. Kress B.T., Iliff J.J., Xia M., Wang M., Wei H.S., Zeppenfeld D., XieL., Kang H., Xu Q, Liew J.A., Plog B.A., Ding F., Deane R., NedergaardM.: Impairment of paravascular clearance pathways in the agingbrain. Ann. Neurol., 2014; 76: 845-861
    Google Scholar
  • 29. Kumar V.B., Farr S.A., Flood J.F., Kamlesh V., Franko M., BanksW.A., Morley J.E.:, Site-directed antisense oligonucleotide decreasesthe expression of amyloid precursor protein and reverses deficitsin learning and memory in aged SAMP8 mice. Peptides, 2000; 21:1769-1775
    Google Scholar
  • 30. Kyrtos C.R., Baras J.S.: The glymphatic system and Alzheimer’sdisease: possible connection? BIOTECHNO: The Sixth InternationalConference on Bioinformatics, Biocomputational Systems and Biotechnologies,2014; 15; 19
    Google Scholar
  • 31. Lewczuk P.: Neurochemiczna diagnostyka chorób otępiennych.W: Choroby otępienne. Teoria i praktyka. red. J. Leszek, Wyd. II, Continuo,Wrocław 2011, 371-385
    Google Scholar
  • 32. Lewczuk P., Lelental N., Spitzer P., Maler J.M., Kornhuber J.:Amyloid-β 42/40 cerebrospinal fluid concentration ratio in the diagnosticsof Alzheimer’s disease: validation of two novel assays. J.Alzheimers Dis., 2015; 43: 183-191
    Google Scholar
  • 33. Lewczuk P., Mroczko B., Fagan A., Kornhuber J.: Biomarkers ofAlzheimer’s disease and mild cognitive impairment: a current perspective.Adv. Med. Sci., 2015; 60:76-82
    Google Scholar
  • 34. Lopez O.L., Kuller L.H., Mehta P.D., Becker J.T., Gach H.M., SweetR.A., Chang Y.F., Tracy R., DeKosky S.T.: Plasma amyloid levels and the risk of AD in normal subjects in the Cardiovascular Health Study.Neurology, 2008; 70: 1664-1671
    Google Scholar
  • 35. Magnoni S., Esparza T.J., Conte V., Carbonara M., Carrabba G.,Holtzman D.M., Zipfel G.J., Stocchetti N., Brody D.L.: Tau elevationsin the brain extracellular space correlate with reduced amyloid-βlevels and predict adverse clinical outcomes after severe traumaticbrain injury. Brain, 2012; 135: 1268-1280
    Google Scholar
  • 36. Marklund N., Farrokhnia N., Hånell A., Vanmechelen E., EnbladP., Zetterberg H., Blennow K., Hillered L.: Monitoring of β-amyloiddynamics after human traumatic brain injury. J. Neurotrauma, 2014;31: 42-55
    Google Scholar
  • 37. Marszałek M.: Amylina w badaniach eksperymentalnych. Fibrylacja– cytotoksyczna agregacja polipeptydu trzustki. Postępy Hig.Med. Dośw., 2015; 69: 309-319
    Google Scholar
  • 38. Marszałek M.: Amylina w badaniach eksperymentalnych. Fibrylotwórczypolipeptyd amyloidu trzustkowego. Postępy Hig. Med.Dośw., 2015; 69: 14-24
    Google Scholar
  • 39. Marszałek M.: Amylina w badaniach eksperymentalnych. Fibrylotwórczypolipeptydowy hormon trzustki. Postępy Hig. Med.Dośw., 2014; 68: 29-41
    Google Scholar
  • 40. Marszałek M.: Amylina. Nowe mechanizmy regulacyjne fibrylującegohormonu trzustki – wybrane aspekty. Post. Biol. Kom., 2015; 1: 1-23
    Google Scholar
  • 41. Marszałek M.: Cukrzyca typu 2 a choroba Alzheimera – jednaczy dwie choroby? Mechanizmy asocjacji. Postępy Hig. Med. Dośw.,2013; 67: 653-671
    Google Scholar
  • 42. Mehta P.D., Pirttilä T., Mehta S.P., Sersen E.A., Aisen P.S., WisniewskiH.M.: Plasma and cerebrospinal fluid levels of amyloid βproteins 1-40 and 1-42 in Alzheimer disease. Arch. Neurol., 2000;57: 100-105
    Google Scholar
  • 43. Mehta P.D., Pirttila T., Patrick B.A., Barshatzky M., Mehta S.P.:Amyloid β protein 1-40 and 1-42 levels in matched cerebrospinalfluid and plasma from patients with Alzheimer disease. Neurosci.Lett., 2001; 304: 102-106
    Google Scholar
  • 44. Moghekar A., O’Brien R.J.: Con: Alzheimer’s disease and circadiandysfunction: chicken or egg? Alzheimers Res. Ther., 2012; 4: 26
    Google Scholar
  • 45. Oberstein T.J., Spitzer P., Klafki H.W., Linning P., Neff F., KnölkerH.J., Lewczuk P., Wiltfang J., Kornhuber J., Maler J.M.: Astrocytesand microglia but not neurons preferentially generate N-terminallytruncated Aβ peptides. Neurobiol. Dis., 2015; 73: 24-35
    Google Scholar
  • 46. Pahnke J., Langer O., Krohn M.: Alzheimer’s and ABC transporters– new opportunities for diagnostics and treatment. Neurobiol.Dis., 2014; 72: 54-60
    Google Scholar
  • 47. Pannee J., Törnqvist U., Westerlund A., Ingelsson M., LannfeltL., Brinkmalm G., Persson R., Gobom J., Svensson J., Johansson P.,Zetterberg H., Blennow K., Portelius E.: The amyloid-β degradationpattern in plasma – a possible tool for clinical trials in Alzheimer’sdisease. Neurosci. Lett., 2014; 573: 7-12
    Google Scholar
  • 48. Portelius E., Lashley T., Westerlund A., Persson R., Fox N.C.,Blennow K., Revesz T., Zetterberg H.: Brain amyloid-beta fragmentsignatures in pathological ageing and Alzheimer’s disease by hybridimmunoprecipitation mass spectrometry. Neurodegener. Dis.,2015; 15: 50-57
    Google Scholar
  • 49. Ransohoff R.M.: Physiology. Good barriers make good neighbors.Science, 2014; 346: 36-37
    Google Scholar
  • 50. Sakka L., Coll G., Chazal J.: Anatomy and physiology of cerebrospinalfluid. Eur. Ann. Otorhinolaryngol. Head Neck Dis., 2011;128: 309-316
    Google Scholar
  • 51. Shinohara M., Fujioka S., Murray M.E., Wojtas A., Baker M., Rovelet-LecruxA., Rademakers R., Das P., Parisi J.E., Graff-Radford N.R.,Petersen R.C., Dickson D.W., Bu G.: Regional distribution of synapticmarkers and APP correlate with distinct clinicopathologicalfeatures in sporadic and familial Alzheimer’s disease. Brain, 2014;137: 1533-1549
    Google Scholar
  • 52. Takeda S., Sato N., Morishita R.: Systemic inflammation, blood–brain barrier vulnerability and cognitive/non-cognitive symptomsin Alzheimer disease: relevance to pathogenesis and therapy. Front.Aging Neurosci., 2014; 6: 171
    Google Scholar
  • 53. Takeda S., Sato N., Rakugi H., Morishita R.: Plasma β-amyloid aspotential biomarker of Alzheimer disease: possibility of diagnostictool for Alzheimer disease. Mol. Biosyst., 2010; 6: 1760-1766
    Google Scholar
  • 54. Tampellini D., Gouras G.K.: Synapses, synaptic activity and intraneuronalAβ in Alzheimer’s disease. Front. Aging Neurosci., 2010;21: 2
    Google Scholar
  • 55. Tampellini D., Rahman N., Lin M.T., Capetillo-Zarate E., GourasG.K.: Impaired β-amyloid secretion in Alzheimer’s disease pathogenesis.J. Neurosci., 2011; 31: 15384-15390
    Google Scholar
  • 56. Thrane A.S., Rappld P.M., Fujita T., Torres A., Bekar L.K., TakanoT., Peng W., Wang F., Thrane V., Eneger R., Haj-Yasein N.N., SkareØ., Holen T., Klungland A., Ottersen O.P., Nedergaard M., NagelhusE.A.: Critical role of aquaporin-4 (AQP4) in astrocytic Ca2+ signalingevents elicited by cerebral edema. Proc. Natl. Acad. Sci. USA, 2011;108: 846-851
    Google Scholar
  • 57. Thrane A.S., Rangroo Thrane V., Nedergaard M.: Drowning stars:reassessing the role of astrocytes in brain edema. Trends. Neurosci.,2014; 37: 620-628
    Google Scholar
  • 58. Tsitsopoulos P.P., Marklund N.: Amyloid-β peptides and tau proteinas biomarkers in cerebrospinal and interstitial fluid followingtraumatic brain injury: a review of experimental and clinical studies.Front. Neurol., 2013; 4: 79
    Google Scholar
  • 59. Umeda T., Tomiyama T., Sakama N., Tanaka S., Lambert M.P.,Klein W.L., Mori H.: Intraneuronal amyloid β oligomers cause celldeath via endoplasmic reticulum stress, endosomal/lysosomal leakage,and mitochondrial dysfunction in vivo. J. Neurosci. Res., 2011;89: 1031-1042
    Google Scholar
  • 60. van Gool W.A., Kuiper M.A., Walstra G.J., Wolters E.C., BolhuisP.A.: Concentrations of amyloid β protein in cerebrospinal fluid ofpatients with Alzheimer’s disease. Ann. Neurol., 1995; 37: 277-279
    Google Scholar
  • 61. Veening J.G., Barendregt H.P.: The regulation of brain statesby neuroactive substances distributed via the cerebrospinal fluid;a review. Cerebrospinal. Fluid Res., 2010; 7: 1
    Google Scholar
  • 62. Weller R.O., Djuanda E.,·Yow H.Y., Carare R.O:. Lymphatic drainageof the brain and the pathophysiology of neurological disease.Acta Neuropathol., 2009; 117: 1-14
    Google Scholar
  • 63. Weller R.O., Subash M., Preston S.D., Mazanti I., Carare R.O.:Perivascular drainage of amyloid-beta peptides from the brain andits failure in cerebral amyloid angiopathy and Alzheimer’s disease.Brain. Pathol., 2008: 18: 253-266
    Google Scholar
  • 64. Wirths O., Bayer T.A.: Intraneuronal Aβ accumulation and neurodegeneration:lessons from transgenic models. Life Sci., 2012;91: 1148-1152
    Google Scholar

Full text

Skip to content