Alzheimer’s disease against peptides products of enzymatic cleavage of APP protein. Forming and variety of fibrillating peptides – some aspects

COMMENTARY ON THE LAW

Alzheimer’s disease against peptides products of enzymatic cleavage of APP protein. Forming and variety of fibrillating peptides – some aspects

Małgorzata Marszałek 1

1. Instytut Biofizyki, Uniwersytet Łódzki

Published: 2016-07-07
DOI: 10.5604/17322693.1209210
GICID: 01.3001.0009.6856
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 787-796

 

Abstract

Various and different peptides products resulting from enzymatic protein cleavage of Amyloid Precursor Proteins (APP) are the main agents in the pathophysiology of Alzheimer’s disease (AD). Although relatively well-known, they still arouse interest leading to further intense and wide-ranging research. Their biology and physico-chemical properties still are challenging for basic, experimental research and are matter of scientific debate. The APP itself and its functions are still somewhat enigmatic and therefore it is also called the All Purpose Protein. Apart from well known amyloidogenic and antiamyloidogenic (non-amyloidogenic) enzymatic cleavage pathways of APP protein this paper deals with issues connected with other, alternative pathways that seem to be interesting and important as well. They lead to other than Aβ forms of peptide products such as: N-APP, N-terminally cleavage products of APP (N-terminally truncated ) Aβ’, γ- secretase-independent pathway products that involve concerted cleavages of APP by α- and β-secretase or products that emerge after caspase activity. Presence of all these peptides in CSF, ISF, blood serum and urine of the AD patients is crucial for successful diagnosis, giving rise to hope of their better detection and potentially better treatment of AD. Therefore, newly discovered products of the AβT domain cleavage (Aβ total i.e. full fibrillating domain of APP), Aβ type products and other peptides because of their biology and physico-chemical properties are very intriguing and deserve further experimental research. On the other hand after better recognition and better understanding their biology they might be enormously useful in the future for diagnosis and therapy for example Alzheimer’s disease.

References

  • 1. Barrett P.J., Song Y., Van Horn W.D., Hustedt E.J., Schafer J.M.,Hadziselimovic A., Beel A.J., Sanders C.R.: The amyloid precursorprotein has a flexible transmembrane domain and binds cholesterol.Science, 2012; 336: 1168-1171
    Google Scholar
  • 2. Chow V.W., Mattson M.P., Wong P.C., Gleichmann M.: An overviewof APP processing enzymes and products. Neuromolecular.Med., 2010; 12: 1-12
    Google Scholar
  • 3. Cirrito J.R., Holtzman D.M.: Amyloid β and Alzheimer diseasetherapeutics: the devil may be in the details. J. Clin. Invest., 2003;112: 321-323
    Google Scholar
  • 4. Cuchillo-Ibañez I., Lopez-Font I., Boix-Amorós A., Brinkmalm G.,Blennow K., Molinuevo J.L., Sáez-Valero J.: Heteromers of amyloid precursorprotein in cerebrospinal fluid. Mol. Neurodegener., 2015;10: 2
    Google Scholar
  • 5. Dawkins E., Gasperini R., Hu Y., Cui H., Vincent A.J., Bolós M.,Young K.M., Foa L., Small D.H.: The N-terminal fragment of theβ-amyloid precursor protein of Alzheimer’s disease (N-APP) bindsto phosphoinositide-rich domains on the surface of hippocampalneurons. J. Neurosci. Res., 2014; 92: 1478-1489
    Google Scholar
  • 6. Dawkins E., Small D.H.: Insights into the physiological functionof the β-amyloid precursor protein: beyond Alzheimer’s disease. J.Neurochem., 2014; 129: 756-769
    Google Scholar
  • 7. DeToma A.S., Salamekh S., Ramamoorthy A., Lim M.H.: Misfoldedproteins in Alzheimer’s disease and type II diabetes. Chem. Soc. Rev.,2012; 41: 608-621
    Google Scholar
  • 8. Di Fede G., Catania M., Morbin M., Giaccone G., Moro M.L., GhidoniR., Colombo L., Messa M., Cagnotto A., Romeo M., Stravalaci M., DiomedeL., Gobbi M., Salmona M., Tagliavini F.: Good gene, bad gene:New APP variant may be both. Prog. Neurobiol., 2012; 99: 281-292
    Google Scholar
  • 9. Erickson M.A., Banks W.A.: Blood-brain barrier dysfunction asa cause and consequence of Alzheimer’s disease. J. Cereb. Blood FlowMetab., 2013; 33: 1500-1513
    Google Scholar
  • 10. Gouras G.K., Olsson T.T., Hansson O.: β-amyloid peptides andamyloid plaques in Alzheimer’s disease. Neurotherapeutics, 2015;12: 3-11
    Google Scholar
  • 11. Gouras G.K., Tampellini D., Takahashi R.H., Capetillo-Zarate E.:Intraneuronal β-amyloid accumulation and synapse pathology inAlzheimer’s disease. Acta Neuropathol., 2010; 119: 523-541
    Google Scholar
  • 12. Gouras G.K., Willén K., Faideau M.: The inside-out amyloid hypothesisand synapse pathology in Alzheimer’s disease. Neurodegener.Dis., 2014; 13: 142-146
    Google Scholar
  • 13. Gouras G.K, Willén K., Tampellini D.: Critical role of intraneuronalAβ in Alzheimer’s disease: technical challenges in studyingintracellular Aβ. Life Sci., 2012; 91: 1153-1158
    Google Scholar
  • 14. Gralle M., Ferreira S.T.: Structure and functions of the humanamyloid precursor protein: The whole is more than the sum of itsparts. Prog. Neurobiol., 2007; 82: 11-32
    Google Scholar
  • 15. Haass C., Kaether C., Thinakaran G., Sisodia S.: Trafficking andproteolytic processing of APP. Cold Spring Harb. Perspect. Med.,2012; 2: a006270
    Google Scholar
  • 16. Helisalmi S., Hiltunen M., Vepsäläinen S., Iivonen S., MannermaaA., Lehtovirta M., Koivisto A.M., Alafuzoff I., Soininen H.: Polymorphismsin neprilysin gene affect the risk of Alzheimer’s diseasein Finnish patients. J. Neurol. Neurosurg. Psychiatry, 2004; 75:1746-1748
    Google Scholar
  • 17. Hendriks L., Van Broeckhoven C.: A beta A4 amyloid precursorprotein gene and Alzheimer’s disease. Eur. J. Biochem., 1996;237: 6-15
    Google Scholar
  • 18. Jiang S., Li Y., Zhang X., Bu G., Xu H., Zhang Y.W.: Trafficking regulationof proteins in Alzheimer’s disease. Mol. Neurodegener., 2014; 9: 6
    Google Scholar
  • 19. Kang J., Lemaire H.G., Unterbeck A., Salbaum J.M., Masters C.L.,Grzeschik K.H., Multhaup G., Beyreuther K., Müller-Hill B.: The precursorof Alzheimer’s disease amyloid A4 protein resembles a cellsurfacereceptor. Nature, 1987; 325: 733-736
    Google Scholar
  • 20. Kitazume S., Yoshihisa A., Yamaki T., Oikawa M., Tachida Y.,Ogawa K., Imamaki R., Takeishi Y., Yamamoto N., Taniguchi N.:Soluble amyloid precursor protein 770 is a novel biomarker candidatefor acute coronary syndrome. Proteomics Clin. Appl., 2013;7: 657:663
    Google Scholar
  • 21. Kummer M.P., Heneka M.T.: Truncated and modified amyloidbetaspecies. Alzheimers Res. Ther., 2014; 6: 28
    Google Scholar
  • 22. Lee M.S., Kao S.C., Lemere C.A., Xia W., Tseng H.C., Zhou Y., NeveR., Ahlijanian M.K., Tsai L.H.: APP processing is regulated by cytoplasmicphosphorylation. J. Cell. Biol., 2003; 163: 83-95
    Google Scholar
  • 23. Lewczuk P.: Neurochemiczna diagnostyka chorób otępiennych.W: Choroby otępienne. Teoria i praktyka. red. J. Leszek, Wyd. II, Continuo,Wrocław 2011, 371-385
    Google Scholar
  • 24. Lewczuk P., Mroczko B., Fagan A., Kornhuber J.: Biomarkers ofAlzheimer’s disease and mild cognitive impairment: a current perspective.Adv. Med. Sci., 2015; 60: 76-82
    Google Scholar
  • 25. Lichtenthalter S.F.: α-secretase in Alzheimer’s disease: molecularidentity, regulation and therapeutic potential. J. Neurochem.,2011; 116: 10-21
    Google Scholar
  • 26. Ling Y., Morgan K., Kalsheker N.: Amyloid precursor protein(APP) and the biology of proteolytic processing: relevance to Alzheimer’sdisease. Int. J. Biochem. Cell Biol., 2003; 35: 1505-1535
    Google Scholar
  • 27. Marszałek M.: Amylina w badaniach eksperymentalnych. Fibrylotwórczypolipeptyd amyloidu trzustkowego. Postępy Hig. Med.Dośw., 2015; 69: 14-24
    Google Scholar
  • 28. Marszałek M.: Amylina w badaniach eksperymentalnych. Fibrylacja– cytotoksyczna agregacja polipeptydu trzustki. Postępy Hig.Med. Dośw., 2015; 69: 309-319
    Google Scholar
  • 29. Marszałek M.: Amylina w badaniach eksperymentalnych. Fibrylotwórczypolipeptydowy hormon trzustki. Postępy Hig. Med.Dośw., 2014; 68: 29-41
    Google Scholar
  • 30. Marszałek M.: Amylina. Nowe mechanizmy regulacyjne fibrylującegohormonu trzustki – wybrane aspekty. Post. Biol. Kom., 2015;42: 1-23
    Google Scholar
  • 31. Marszałek M.: Cukrzyca typu 2 a choroba Alzheimera – jednaczy dwie choroby? Mechanizmy asocjacji. Postępy Hig. Med. Dośw.,2013; 67: 653-671
    Google Scholar
  • 32. Mehta P.D., Pirttilä T., Mehta S.P., Sersen E.A., Aisen P.S., WisniewskiH.M.: Plasma and cerebrospinal fluid levels of amyloid βproteins 1-40 and 1-42 in Alzheimer disease. Arch. Neurol., 2000;57: 100-105
    Google Scholar
  • 33. Mehta P.D., Pirttila T., Patrick B.A., Barshatzky M., Mehta S.P.:Amyloid β protein 1-40 and 1-42 levels in matched cerebrospinalfluid and plasma from patients with Alzheimer disease. Neurosci.Lett., 2001; 304: 102-106
    Google Scholar
  • 34. Miners J.S., Baig S., Tayler H., Kehoe P.G., Love S.: Neprilysinand insulin-degrading enzyme levels are increased in Alzheimerdisease in relation to disease severity. J. Neuropathol. Exp. Neurol.,2009; 68: 902-914
    Google Scholar
  • 35. Muresan V., Ladescu Muresan Z.: Amyloid-β precursor protein:multiple fragments, numerous transport routes and mechanisms.Exp. Cell Res., 2015; 334: 45-53
    Google Scholar
  • 36. Nalivaeva N.N., Turner A.J.: The amyloid precursor protein:a biochemical enigma in brain development, function and disease.FEBS Lett., 2013; 587: 2046-2054
    Google Scholar
  • 37. Oberstein T.J., Spitzer P., Klafki H.W., Linning P., Neff F., KnölkerH.J., Lewczuk P., Wiltfang J., Kornhuber J., Maler J.M.: Astrocytesand microglia but not neurons preferentially generate N-terminallytruncated Aβ peptides. Neurobiol. Dis., 2015; 73: 24-35
    Google Scholar
  • 38. Olsson F., Schmidt S., Althoff V., Munter L.M., Jin S., RosqvistS., Lendahl U., Multhaup G., Lundkvist J.: Characterization of intermediatesteps in amyloid beta (Aβ) production under near-nativeconditions. J. Biol. Chem., 2014; 289: 1540-1550
    Google Scholar
  • 39. Pannee J., Törnqvist U., Westerlund A., Ingelsson M., LannfeltL., Brinkmalm G., Persson R., Gobom J., Svensson J., Johansson P.,Zetterberg H., Blennow K., Portelius E.: The amyloid-β degradationpattern in plasma – a possible tool for clinical trials in Alzheimer’sdisease. Neurosci. Lett., 2014; 573: 7-12
    Google Scholar
  • 40. Pappolla M., Sambamurti K., Vidal R., Pacheco-Quinto J., PoeggelerB., Matsubara E.: Evidence for lymphatic Aβ clearance in Alzheimer’stransgenic mice. Neurobiol. Dis., 2014; 71: 215-219
    Google Scholar
  • 41. Portelius E., Brinkmalm G., Tran A., Andreasson U., ZetterbergH., Westman-Brinkmalm A., Blennow K., Ohrfelt A.: Identificationof novel N-terminal fragments of amyloid precursor protein in cerebrospinalfluid. Exp. Neurol., 2010; 223: 351-358
    Google Scholar
  • 42. Portelius E., Brinkmalm G., Tran A.J., Zetterberg H., WestmanBrinkmalmA., Blennow K.: Identification of novel APP/Aβ isoformsin human cerebrospinal fluid. Neurodegener. Dis., 2009; 6: 87-94
    Google Scholar
  • 43. Portelius E., Price E., Brinkmalm G., Stiteler M., Olsson M., PerssonR., Westman-Brinkmalm A., Zetterberg H., Simon A.J., BlennowK.: A novel pathway for amyloid precursor protein processing. Neurobiol.Aging, 2011; 32: 1090-1098
    Google Scholar
  • 44. Portelius E., Westman-Brinkmalm A., Zetterberg H., BlennowK.: Determination of β-amyloid peptide signatures in cerebrospinalfluid using immunoprecipitation-mass spectrometry. J. ProteomeRes., 2006; 5: 1010-1016
    Google Scholar
  • 45. Portelius E., Zetterberg H., Andreasson U., Brinkmalm G., AndreasenN., Wallin A., Westman-Brinkmalm A., Blennow K.: An Alzheimer’s disease-specific β-amyloid fragment signature in cerebrospinalfluid. Neurosci. Lett., 2006; 409: 215-219
    Google Scholar
  • 46. Takeda S., Sato N., Rakugi H., Morishita R.: Plasma β-amyloid aspotential biomarker of Alzheimer disease: possibility of diagnostictool for Alzheimer disease. Mol. Biosyst., 2010; 6: 1760-1766
    Google Scholar
  • 47. Tampellini D., Gouras G.K.: Synapses, synaptic activity and intraneuronalAβ in Alzheimer’s disease. Front. Aging Neurosci., 2010;21; 2
    Google Scholar
  • 48. Tanzi R.E., Gusella J.F., Watkins P.C., Bruns G.A., St George-HyslopP., Van Keuren M.L., Patterson D., Pagan S., Kurnit D.M., Neve R.L.:Amyloid beta protein gene: cDNA, mRNA distribution, and geneticlinkage near the Alzheimer locus. Science, 1987: 235: 880-884
    Google Scholar
  • 49. Tanzi R.E., Moir R.D., Wagner S.L.: Clearance of Alzheimer’s Aβpeptide: the many roads to perdition. Neuron, 2004; 43: 605-608
    Google Scholar
  • 50. Thinakaran G., Koo E.H.: Amyloid precursor protein trafficking,processing, and function. J. Biol. Chem., 2008; 283: 29615-29619
    Google Scholar
  • 51. Trinchese F., Liu S., Ninan I., Puzzo D., Jacob J.P., Arancio O.:Cell cultures from animal models of Alzheimer’s disease as a toolfor faster screening and testing of drug efficacy. J. Mol. Neurosci.,2004; 24:15-21
    Google Scholar
  • 52. Turner P.R., O’Connor K., Tate W.P., Abraham W.C.: Roles of amyloidprecursor protein and its fragments in regulating neural activity,plasticity and memory. Prog. Neurobiol., 2003; 70: 1-32
    Google Scholar
  • 53. Vergara L., Abid K., Soto C.: Protein misfolding, a common mechanismin the pathogenesis of neurodegenerative diseases. Handbookof Neurochemistry and Molecular Neurobiology, Springer Scienceand Busines Media, LLC; 2008; 285-304
    Google Scholar
  • 54. Watson D., Castano E., Kokjohn T.A., Kuo Y.M., Lyubchenko Y.,Pinsky D., Connolly E.S.Jr., Esh C., Luehrs D.C., Stine W.B., RowseL.M., Emmerling M.R., Roher A.E.: Physicochemical characteristicsof soluble oligomeric Aβ and their pathologic role in Alzheimer’sdisease. Neurol. Res., 2005; 27: 869-881
    Google Scholar
  • 55. Wiltfang J., Esselmann H., Bibl M., Smirnov A., Otto M., Paul S.,Schmidt B., Klafki H.W., Maler M.., Dyrks T., Bienert M., BeyermannM., Rüther E., Kornhuber J.: Highly conserved and disease-specificpatterns of carboxyterminally truncated Aβ peptides 1-37/38/39in addition to 1-40/42 in Alzheimer’s disease and in patients withchronic neuroinflammation. J. Neurochem., 2002; 81: 481-496
    Google Scholar
  • 56. Wittnam J.L., Portelius E., Zetterberg H., Gustavsson M.K., SchillingS., Koch B., Demuth H.U., Blennow K., Wirths O., Bayer T.A.: Pyroglutamateamyloid β (Aβ) aggravates behavioral deficits in transgenicamyloid mouse model for Alzheimer disease. J. Biol. Chem.,2012; 287: 8154-8162
    Google Scholar
  • 57. Zhang Y.W., Thompson R., Zhang H., Xu H.: APP processing inAlzheimer’s disease. Mol. Brain, 2011; 4: 3
    Google Scholar

Full text

Skip to content