Amylin under examination. Fibrillogenic polypeptide hormone of the pancreas

COMMENTARY ON THE LAW

Amylin under examination. Fibrillogenic polypeptide hormone of the pancreas

Małgorzata Marszałek 1

1. Zakład Biofizyki Medycznej, Katedra Biofizyki Ogólnej Instytutu Biofizyki, Uniwersytet Łódzki

Published: 2014-01-22
DOI: 10.5604/17322693.1086072
GICID: 01.3001.0003.1176
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 29-41

 

Abstract

In patients or animals affected by type 2 diabetes mellitus (DM2, non-insulin dependent diabetes mellitus [NIDDM]) some pathological deposits, called amyloid, are observed among cells of islets of Langerhans. Among other constituents, deposits consist of an insoluble, fibrillar form of peptide neurohormone called amylin, produced by pancreatic beta cells. It is thought that formation of fibrillar deposits of misfolded and aggregated peptide is highly toxic to beta cells and leads to cell dysfunction, cell loss, pancreas destruction and progress of the disease. This relatively small 37-amino acid peptide constitutes a serious scientific, research and to some extent a medical problem. This article presents amylin as a hormone, neurohormone and as a fibrillating molecule which participates in amyloid deposit formation in human and animal pancreas. The role of some amino acids important for fibril formation has been highlighted.

References

  • 1. Abedini A., Raleigh D.P.: The role of His-18 in amyloid formationby human islet amyloid polypeptide. Biochemistry, 2005; 44:16284-16291 2 Abedini A., Raleigh D.P.: Destabilization of human IAPP amyloidfibrils by proline mutations outside of the putative amyloidogenicdomain: is there a critical amyloidogenic domain in human IAPP?J. Mol. Biol., 2006; 355: 274-281
    Google Scholar
  • 2. diabetes mellitus. JOP, 2001; 2: 124-139
    Google Scholar
  • 3. Abedini A., Raleigh D.P.: A critical assessment of the role of helicalintermediates in amyloid formation by natively unfolded proteinsand polypeptides. Protein Eng. Des. Sel., 2009; 22: 453-459
    Google Scholar
  • 4. Andrews M.N., Winter R.: Comparing the structural propertiesof human and rat islet amyloid polypeptide by MD computer simulations.Biophys. Chem., 2011; 156: 43-50
    Google Scholar
  • 5. Asai J., Nakazato M., Miyazato M., Kangawa K., Matsuo H., MatsukuraS.: Regional distribution and molecular forms of rat islet amyloidpolypeptide. Biochem. Biophys. Res. Commun., 1990; 169: 788-795
    Google Scholar
  • 6. Azriel R., Gazit E.: Analysis of the minimal amyloid-forming fragmentof the islet amyloid polypeptide. An experimental support forthe key role of the phenylalanine residue in amyloid formation. J.Biol. Chem., 2001; 276: 34156-34161
    Google Scholar
  • 7. Born W., Fischer J.A.: The calcitonin peptide family: what can welearn from receptor knock out and transgenic mice. W: The CalcitoninGene-related Peptide Family: Form, Function and Future Perspectives,red.: D.L. Hay, I.M. Dickerson. Springer Science+BusinessMedia B.V 2010, 75-86
    Google Scholar
  • 8. Born W., Fischer J.A., Muff R.: Receptors for calcitonin gene–related peptide, adrenomedullin, and amylin: the contributionsof novel receptor-acivity-modifying proteins. Receptors Channels,2002; 8: 201-209
    Google Scholar
  • 9. Born W., Muff R., Fischer J.A.: Functional interaction of G protein-coupledreceptors of the adrenomedullin peptide family withaccessory receptor-activity-modifying proteins (RAMP). Microsc.Res. Tech., 2002; 57: 14-22
    Google Scholar
  • 10. Brain S.D., Grant A.D.: Vascular actions of calcitonin gene-relatedpeptide and adrenomedullin. Physiol. Rev., 2004; 84: 903-934
    Google Scholar
  • 11. Brender J.R., Lee E.L., Hartman K., Wong P.T., RamamoorthyA., Steel D.G., Gafni A.: Biphasic effects of insulin on islet amyloidpolypeptide membrane disruption. Biophys. J., 2011; 100: 685-692
    Google Scholar
  • 12. Buse J.B., Weyer C., Maggs D.G.: Amylin replacement with pramlintidein type 1 and type 2 diabetes: a physiological approach toovercome barriers with insulin therapy. Clin. Diabetes, 2002; 20:137-144
    Google Scholar
  • 13. Ceriello A., Lush C.W., Darsow T., Piconi L., Corgnali M., NanayakkaraN., Frias J.P., Maggs D.: Pramlintide reduced markers ofoxidative stress in the postprandial period in patients with type 2diabetes. Diabetes Metab. Res. Rev., 2008; 24: 103-108
    Google Scholar
  • 14. Clark A., Nilsson M.R.: Islet amyloid: a complication of islet dysfunctionor an aetiological factor in Type 2 diabetes? Diabetologia,2004; 47: 157-169
    Google Scholar
  • 15. Cooper G.J.: Amylin compared with calcitonin gene-related peptide:structure, biology, and relevance to metabolic disease. Endocr.Rev., 1994; 15: 163-201
    Google Scholar
  • 16. Cooper G.J., Willis A.C., Reid K.B., Clark A., Baker C.A., TurnerR.C., Lewis C.E., Morris J.F., Howland K., Rothbard J.B.: Diabetes-associatedpeptide. Lancet, 1987; 2: 966
    Google Scholar
  • 17. D’Este L., Casini A., Wimalawansa S.J., Renda T.G.: Immunohistochemicallocalization of amylin in rat brainstem. Peptides, 2000;21: 1743-1749
    Google Scholar
  • 18. D’Este L., Wimalawansa S.J., Renda T.G.: Distribution of amylin–immunoreactive neurons in the monkey hypothalamus and theirrelationships with the histaminergic system. Arch. Histol. Cytol.,2001; 64: 295-303
    Google Scholar
  • 19. Deléage G., Roux B.: An algorithm for protein secondary structureprediction based on class prediction. Protein Eng., 1987; 1: 289-294
    Google Scholar
  • 20. Dobolyi A.: Central amylin expression and its induction in ratdamps. J. Neurochem., 2009; 111: 1490-1500
    Google Scholar
  • 21. Dobolyi A.: Novel potential regulators of maternal adaptationsduring lactation: tuberoinfundibular peptide 39 and amylin. J. Neuroendocrinol.,2011; 23: 1002-1008
    Google Scholar
  • 22. Edelman S.V.: Identifying challenges with insulin therapy andassessing treatment strategies with pramlintide. Family PractiseNews Internal Med. News. Supplement – Journal Scan, 2009; 2: 3-4
    Google Scholar
  • 23. Edelman S.V., Schroeder B.E., Frias J.P.: Pramlintide acetate inthe treatment of type 2 and type 1 diabetes mellitus. Expert Rev.Endocrinol. Metab., 2007; 2: 9-18
    Google Scholar
  • 24. Fan L., Westermark G., Chan S.J., Steiner D.F.: Altered gene structureand tissue expression of islet amyloid polypeptide in the chicken.Mol. Endocrinol., 1994; 8: 713-721
    Google Scholar
  • 25. Ganong W.F.: Circumventricular organs: definition and role inthe regulation of endocrine and autonomic function. Clin. Exp. Pharmacol.Physiol., 2000; 27: 422-427
    Google Scholar
  • 26. Gebre-Medhin S., Mulder H., Zhang Y., Sundler F., Betsholtz C.:Reduced nociceptive behavior in islet amyloid polypeptide (amylin)knockout mice. Brain Res. Mol. Brain Res., 1998; 63: 180-183
    Google Scholar
  • 27. Gilead S., Wolfenson H., Gazit E.: Molecular mapping of the recognitioninterface between the islet amyloid polypeptide and insulin.Angew. Chem. Int. Ed. Engl., 2006; 45: 6476-6480
    Google Scholar
  • 28. Goldsbury C., Goldie K., Pellaud J., Seelig J., Frey P., Müller S.A.,Kistler J., Cooper G.J., Aebi U.: Amyloid fibril formation from full–length and fragments of amylin. J. Struct. Biol., 2000; 130: 352-362
    Google Scholar
  • 29. Górska-Ciebiada M., Ciebiada M., Barylski M., Loba J.: Cukrzycau osób w wieku podeszłym w świetle nowych wytycznych PolskiegoTowarzystwa Diabetologicznego. Geriatria, 2009; 3: 228-233
    Google Scholar
  • 30. Green J., Goldsbury C., Mini T., Sunderji S., Frey P., Kistler J.,Cooper G., Aebi U.: Full-length rat amylin forms fibrils followingsubstitution of single residues from human amylin. J. Mol. Biol.,2003; 326: 1147-1156
    Google Scholar
  • 31. Greenwood H.C., Bloom S.R., Murphy K.G.: Peptides and theirpotential role in the treatment of diabetes and obesity. Rev. Diabet.Stud., 2011; 8: 355-368
    Google Scholar
  • 32. Hay D.L., Christopoulos G., Christopoulos A., Sexton P.M.: Amylinreceptors: molecular composition and pharmacology. Biochem.Soc. Trans., 2004; 32: 865-867
    Google Scholar
  • 33. Hayden M.R., Tyagi S.C.: “A” is for amylin and amyloid in type
    Google Scholar
  • 34. Hollander P.A., Levy P., Fineman M.S., Maggs D.G., Shen L.Z.,Strobel S.A., Weyer C., Kolterman O.G.: Pramlintide as an adjunct toinsulin therapy improves long-term glycemic and weight control inpatients with type 2 diabetes: a 1-year randomized controlled trial.Diabetes Care, 2003; 26: 784-790
    Google Scholar
  • 35. Hoogwerf B.J., Doshi K.B., Diab D.: Pramlintide, the syntheticanalogue of amylin: physiology, pathophysiology, and effects onglycemic control, body weight, and selected biomarkers of vascularrisk. Vasc. Health Risk Manag., 2008; 4: 355-362
    Google Scholar
  • 36. Hossain P., Kawar B., El Nahas M.: Obesity and diabetes in thedeveloping world – a growing challenge. N. Engl. J. Med., 2007; 356:213-215
    Google Scholar
  • 37. Huebner A.K., Keller J., Catala-Lehnen P., Perkovic S., StreichertT., Emeson R.B., Amling M., Schinke T.: The role of calcitonin andα-calcitonin gene-related peptide in bone formation. Arch. Biochem.Biophys., 2008; 473: 210-217
    Google Scholar
  • 38. Jagielski A.K., Piesiewicz A.: Cukrzyca wyzwaniem dla medycynyXXI wieku – wnioski z badań klinicznych i biochemicznych. PostępyBiochemii, 2011; 57: 191-199
    Google Scholar
  • 39. Jaikaran E.T., Clark A.: Islet amyloid and type 2 diabetes: frommolecular misfolding to islet pathophysiology. Biochim. Biophys.Acta, 2001; 1537: 179-203
    Google Scholar
  • 40. Jaikaran E.T., Higham C.E., Serpell L.C., Zurdo J., Gross M., ClarkA., Fraser P.E.: Identification of a novel human islet amyloid polypeptideβ-sheet domain and factors influencing fibrillogenesis. J.Mol. Biol., 2001; 308: 515-525
    Google Scholar
  • 41. Jarrett J.L., Lansbury P.T.Jr.: Seeding “one-dimensional crystallization”of amyloid: a pathogenic mechanism in Alzheimer’s diseaseand scrapie? Cell, 1993; 73: 1055-1058
    Google Scholar
  • 42. Kahn S.E., Andrikopoulos S., Verchere C.B.: Islet amyloid: a long–recognized but underappreciated pathological feature of type 2diabetes. Diabetes, 1999; 48: 241-253
    Google Scholar
  • 43. Kajava A.V., Aebi U., Steven A.C.: The parallel superpleated beta-structureas a model for amyloid fibrils of human amylin. J. Mol.Biol., 2005; 348: 247-252
    Google Scholar
  • 44. Katafuchi T., Yasue H., Osaki T., Minamino N.: Calcitonin receptor-stimulatingpeptide: Its evolutionary and functional relationshipwith calcitonin/calcitonin gene-related peptide based on genestructure. Peptides, 2009; 30: 1753-1762
    Google Scholar
  • 45. Khemtémourian L., Engel M.F., Kruijtzer J.A., Höppener J.W.,Liskamp R.M., Killian J.A.: The role of the disulfide bond in the interactionof islet amyloid polypeptide with membranes. Eur. Biophys.J., 2010; 39: 1359-1364
    Google Scholar
  • 46. Koo B.W., Miranker A.D.: Contribution of the intrinsic disulfideto the assembly mechanism of islet amyloid. Protein Sci., 2005;14: 231-239
    Google Scholar
  • 47. Leffert J.D., Newgard C.B., Okamoto H., Milburn J.L., Luskey K.L.:Rat amylin: cloning and tissue-specific expression in pancreatic islets.Proc. Natl. Acad. Sci. USA, 1989; 86: 3127-3130
    Google Scholar
  • 48. Lerner U.H.: Deletions of genes encoding calcitonin/α-CGRP,amylin and calcitonin receptor have given new and unexpectedinsights into the function of calcitonin receptors and calcitoninreceptor-like receptors in bone. J. Musculoskelet. Neuronal Interact.,2006; 6: 87-95
    Google Scholar
  • 49. Lubieniecka-Mazur B., Czarny-Działak M., Majcherska-KwietniakA., Głuszek S.: Czy amylina stanowi postęp w leczeniu cukrzycy?Medical Studies, 2006; 4: 113-118
    Google Scholar
  • 50. Luca S., Yau W.M., Leapman R., and Tycko R.: Peptide conformationand supramolecular organization in amylin fibrils: constraintsfrom solid-state NMR. Biochemistry, 2007; 46: 13505-13522
    Google Scholar
  • 51. Ludvik B., Clodi M., Kautzky-Willer A., Schuller M., Graf H.,Hartter E., Pacini G., Prager R.: Increased levels of circulating isletamyloid polypeptide in patients with chronic renal failure have noeffect on insulin secretion. J. Clin. Invest., 1994; 94: 2045-2050
    Google Scholar
  • 52. Ludvik B., Lell B., Hartter E., Schnack C., Prager R.: Decrease ofstimulated amylin release precedes impairment of insulin secretionin type II diabetes. Diabetes, 1991; 40: 1615-1619
    Google Scholar
  • 53. Lukinius A., Wilander E., Westermark G.T., Engström U., WestermarkP.: Co-localization of islet amyloid polypeptide and insulin inthe B cell secretory granules of the human pancreatic islets. Diabetologia,1989; 32: 240-244
    Google Scholar
  • 54. Ma Z., Westermark G.T., Sakagashira S., Sanke T., GustavssonA., Sakamoto H., Engström U., Nanjo K., Westermark P.: Enhancedin vitro production of amyloid-like fibrils from mutant (S20G) isletamyloid polypeptide. Amyloid, 2001; 8: 242-249
    Google Scholar
  • 55. Mack C.M., Smith P.A., Athanacio J.R., Xu K., Wilson J.K., ReynoldsJ.M., Jodka C.M., Lu M.G., Parkes D.G.: Glucoregulatory effects andprolonged duration of action of davalintide: a novel amylinomimeticpeptide. Diabetes Obes. Metab., 2011; 13: 1105-1113
    Google Scholar
  • 56. Mack C.M., Soares C.J., Wilson J.K., Athanacio J.R., Turek V.F.,Trevaskis J.L., Roth J.D., Smith P.A., Gedulin B., Jodka C.M., RolandB.L., Adams S.H., Lwin A., Herich J., Laugero K.D. i wsp.: Davalintide(AC2307), a novel amylin-mimetic peptide: enhanced pharmacologicalproperties over native amylin to reduce food intake and bodyweight. Int. J. Obes., 2010; 34: 385-395
    Google Scholar
  • 57. Marek P., Abedini A., Song B., Kanungo M., Johnson M.E., GuptaR., Zaman W., Wong S.S., Raleigh D.P.: Aromatic interactions are notrequired for amyloid fibril formation by islet amyloid polypeptidebut do influence the rate of fibril formation and fibril morphology.Biochemistry, 2007; 46: 3255-3261
    Google Scholar
  • 58. Marek P., Mukherjee S., Zanni M.T., Raleigh D.P.: Residue-specific,real-time characterization of lag-phase species and fibril growthduring amyloid formation: a combined fluorescence and IR study ofp-cyanophenylalanine analogs of islet amyloid polypeptide. J. Mol.Biol., 2010; 400: 878-888
    Google Scholar
  • 59. Marzban L., Soukhatcheva G., Verchere C.B.: Role of carboxypeptidaseE in processing of pro-islet amyloid polypeptide in β-cells.Endocrinology, 2005; 146: 1808-1817
    Google Scholar
  • 60. Messer C., Green D.: A review of pramlintide in the managementof diabetes. Clin. Med. Insights Ther., 2009; 1: 305-311
    Google Scholar
  • 61. Milardi D., Sciacca M.F., Pappalardo M., Grasso D.M., La Rosa C.:The role of aromatic side-chains in amyloid growth and membraneinteraction of the islet amyloid polypeptide fragment LANFLVH. Eur.Biophys. J., 2011; 40: 1-12
    Google Scholar
  • 62. Miyazato M., Nakazato M., Shiomi K., Aburaya J., Kangawa K.,Matsuo H., Matsukura S.: Molecular forms of islet amyloid polypeptide(IAPP/amylin) in four mammals. Diabetes Res. Clin. Pract.,1992; 15: 31-36
    Google Scholar
  • 63. Mosselman S., Höppener J.W., Lips C.J., Jansz H.S.: The completeislet amyloid polypeptide precursor is encoded by two exons. FEBSLett., 1989; 247: 154-158
    Google Scholar
  • 64. Mulder H.: Expression of islet amyloid polypeptide. Localizationand regulation in the pancreatic islets, gastrointestinal tractand sensory nervous system. PhD thesis, University of Lund, Sweden,1997
    Google Scholar
  • 65. Naot D., Cornish J.: The role of peptides and receptors of thecalcitonin family in the regulation of bone metabolism. Bone, 2008;43: 813-818
    Google Scholar
  • 66. Nilsson M.R., Raleigh D.P.: Analysis of amylin cleavage productsprovides new insights into the amyloidogenic region of human amylin.J. Mol. Biol., 1999; 294: 1375-1385
    Google Scholar
  • 67. Nishi M., Chan S.J., Nagamatsu S., Bell G.I., Steiner D.F.: Conservationof the sequence of islet amyloid polypeptide in five mammalsis consistent with its putative role as an islet hormone. Proc. Natl.Acad. Sci. USA, 1989; 86: 5738-5742
    Google Scholar
  • 68. Nishi M., Sanke T., Nagamatsu S., Bell G.I., Steiner D.F.: Isletamyloid polypeptide. A new β-cell secretory product related to isletamyloid deposits. J. Biol. Chem., 1990; 265: 4173-4176
    Google Scholar
  • 69. Nishi M., Sanke T., Seino S., Eddy R.L., Fan Y.S., Byers M.G., ShowsT.B., Bell G.I., Steiner D.F.: Human islet amyloid polypeptide gene:complete nucleotide sequence, chromosomal localization, and evolutionaryhistory. Mol. Endocrinol., 1989; 3: 1775-1781
    Google Scholar
  • 70. Novials A., Rojas I., Casamitjana R., Usac E.F., Gomis R.: A novelmutation in islet amyloid polypeptide (IAPP) gene promoter is associatedwith type II diabetes mellitus. Diabetologia, 2001; 44: 1064-1065
    Google Scholar
  • 71. Ogoshi M., Inoue K., Naruse K., Takei Y.: Evolutionary history ofthe calcitonin gene-related peptide family in vertebrates revealedby comparative genomic analyses. Peptides, 2006; 27: 3154-3164
    Google Scholar
  • 72. Otto-Buczkowska E., Mazur-Dworzecka U., Dworzecki T.: Rolaamyliny w utrzymaniu homeostazy glukozy i perspektywy jej zastosowaniaw terapii cukrzycy. Przegl. Lek., 2008; 65: 135-139
    Google Scholar
  • 73. Paulsson J.F., Andersson A., Westermark P., Westermark G.T.:Intracellular amyloid-like deposits contain unprocessed pro-isletamyloid polypeptide (proIAPP) in beta cells of transgenic mice overexpressingthe gene for human IAPP and transplanted human islets.Diabetologia, 2006; 49: 1237-1246
    Google Scholar
  • 74. Pérez-Figarez J.M., Jimenez A.J., Rodriguez E.M.: Subcommissuralorgan, cerebrospinal fluid circulation, and hydrocephalus. Microsc.Res. Tech., 2001; 52: 591-607
    Google Scholar
  • 75. Price C.J., Hoyda T.D., Ferguson A.V.: The area postrema: a brainmonitor and integrator of systemic autonomic state. Neuroscientist,2008; 14: 182-194
    Google Scholar
  • 76. Pullman J., Darsow T., Frias J.P.: Pramlintide in the managementof insulin-using patients with type 2 and type 1 diabetes. Vasc. HealthRisk Manag., 2006; 2: 203-212
    Google Scholar
  • 77. Reda T.K., Geliebter A., Pi-Sunyer F.X.: Amylin, food intake, andobesity. Obesity Res., 2002; 10: 1087-1091
    Google Scholar
  • 78. Riediger T., Zuend D., Becskei C., Lutz T.A.: The anorectic hormoneamylin contributes to feeding-related changes of neuronalactivity in key structures of the gut-brain axis. Am. J. Physiol. Regul.Integr. Comp. Physiol., 2004; 286: R114-R122
    Google Scholar
  • 79. Roberts A.N., Leighton B., Todd J.A., Cockburn D., Schofield P.N.,Sutton R., Holt S., Boyd Y., Day A.J., Foot E.A., Willis A.C., Reid K.B.,Cooper G.J.: Molecular and functional characterization of amylin,a peptide associated with type 2 diabetes mellitus. Proc. Natl. Acad.Sci. USA, 1989; 86: 9662-9666
    Google Scholar
  • 80. Roth J.D., Maier H., Chen S., Roland B.L.: Implications of amylinreceptor agonism: integrated neurohormonal mechanisms and therapeuticapplications. Arch. Neurol., 2009; 66: 306-310
    Google Scholar
  • 81. Ryan G., Briscoe T.A., Jobe L.: Review of pramlintide as adjunctivetherapy in treatment of type 1 and type 2 diabetes. Drug Des.Devel. Ther., 2009; 2: 203-214
    Google Scholar
  • 82. Sakagashira S., Sanke T., Hanabusa T., Shimomura H., Ohagi S.,Kumagaye K.Y., Nakajima K., Nanjo K.: Missense mutation of amylingene (S20G) in Japanese NIDDM patients. Diabetes, 1996; 45: 1279-1281
    Google Scholar
  • 83. Sexton P.M., Albiston A., Morfis M., Tilakaratne N.: Receptoractivity modifying proteins. Cell. Signal., 2001; 13: 73-83
    Google Scholar
  • 84. Shiomi K., Nakazato M., Miyazato M., Kangawa K., Matsuo H.,Matsukura S.: Establishment of hypersensitive radioimmunoassayfor islet amyloid polypeptide using antiserum specific for itsN-terminal region. Biochem. Biophys. Res. Commun., 1992; 186:1065-1073
    Google Scholar
  • 85. Singh-Franco D., Robles G., Gazze D.: Pramlintide acetate injectionfor the treatment of type 1 and type 2 diabetes mellitus. Clin.Ther., 2007; 29: 535-562
    Google Scholar
  • 86. Steiner D.E., Ohagi S., Nagamatsu S., Bell G.I., Nishi M.: Is isletamyloid polypeptide a significant factor in the pathogenesis or pathophysiologyof diabetes? Diabetes, 1991; 40: 305-309
    Google Scholar
  • 87. Stridsberg M., Sandler S., Wilander E.: Cosecretion of islet amyloidpolypeptide (IAPP) and insulin from isolated rat pancreatic isletsfollowing stimulation or inhibition of beta-cell function. Regul.Pept., 1993; 45: 363-370
    Google Scholar
  • 88. Stridsberg M., Tjälve H., Wilander E.: Whole body autoradiographyof 123I-labelled islet amyloid poplypeptide (IAPP). Accumulationin the lung parenchyma and in the villi of the intestinal mucosa inrats. Acta Oncol., 1993; 32: 155-159
    Google Scholar
  • 89. SYMLIN®: pramlintide acetate. Ulotka informacyjna. AmylinPharmaceuticals, Inc., San Diego, CA.,USA
    Google Scholar
  • 90. Szabó E.R., Cservenák M., Dobolyi A.: Amylin is a novel neuropeptidewith potential maternal functions in the rat. FASEB J.,2012; 26: 272-281
    Google Scholar
  • 91. Takei Y.: Molecular and functional evolution of the AM family invertebrates. W: The Calcitonin Gene-related Peptide Family: Form,Function and Future Perspectives, red.: D.L. Hay, I.M. Dickerson.Springer Science+Business Media B.V 2010, 1-20
    Google Scholar
  • 92. Tilakaratne N., Christopoulous G., Zumpe E.T., Foord S.M., SextonP.M.: Amylin receptor phenotypes derived from human calcitoninreceptor/RAMP coexpression exhibit pharmacological differencesdependent on receptor isoform and host cell environment. J. Pharmacol.Exp. Ther., 2000; 294: 61-72
    Google Scholar
  • 93. Tracz S.M., Abedini A., Driscoll M., Raleigh D.P.: Role of aromaticinteractions in amyloid formation by peptides derived from humanamylin. Biochemistry, 2004; 43: 15901-15908
    Google Scholar
  • 94. Traina A.N., Kane M.P.: Primer on pramlintide, an amylin analog.Diabetes Educ., 2011; 37: 426-431
    Google Scholar
  • 95. Watschinger B., Hartter E., Traindl O., Pohanka E., Pidlich J., KovarikJ.: Increased levels of plasma amylin in advanced renal failure.Clin. Nephrol., 1992; 37: 131-134
    Google Scholar
  • 96. Westermark P.: Amyloidosis and amyloid proteins: brief historyand definitions. W: Amyloid Proteins. The beta sheet conformationand disease, red.: J.D. Sipe. Wiley-VCH VerlagGmbh & Co Kga A.,Weinheim 2005, 3-17
    Google Scholar
  • 97. Westermark P., Andersson A., Westermark G.T.: Islet amyloidpolypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev.,2011; 91: 795-826
    Google Scholar
  • 98. Westermark P., Wilander E.: Islet amyloid in type 2 (non-insulin-dependent)diabetes is related to insulin. Diabetologia, 1983;24: 342-346
    Google Scholar
  • 99. Wild S., Roglic G., Green A., Sicree R., King H.: Global prevalenceof diabetes: estimates for the year 2000 and projections for 2030.Diabetes Care, 2004; 27: 1047-1053
    Google Scholar
  • 100. Williamson J.A., Loria J.P., Miranker A.D.: Helix stabilizationprecedes aqueous and bilayer-catalyzed fiber formation in islet amyloidpolypeptide. J. Mol. Biol., 2009; 393: 383-396
    Google Scholar
  • 101. Wiltzius J.J., Sievers S.A., Sawaya M.R., Cascio D., Popov D.,Riekel C., Eisenberg D.: Atomic structure of the cross-β spine of isletamyloid polypeptide (amylin). Protein Sci., 2008; 17: 1467-1474
    Google Scholar
  • 102. Wimalawansa S.J.: Amylin, calcitonin gene-related peptide,calcitonin, and adrenomedullin: a peptide superfamily. Crit. Rev.Neurobiol., 1997; 11: 167-239
    Google Scholar
  • 103. World Health Organization. Diabetes. www.who.int/mediacentre/factsheets/fs312/en(30.09.2013)
    Google Scholar
  • 104. Wróbel M.: Epidemiologia cukrzycy. W: Strojek K.: Diabetologia.Wydawnictwa Medyczne Termedia, Poznań 2008; 8: 7-18
    Google Scholar
  • 105. Yanagi K., Ashizaki M., Yagi H., Sakurai K., Lee Y.H., Goto Y.:Hexafluoroisopropanol induces amyloid fibrils of islet amyloid polypeptideby enhancing both hydrophobic and electrostatic interactions.J. Biol. Chem., 2011; 286: 23959-23966
    Google Scholar
  • 106. Yonemoto I.T., Kroon G.J., Dyson H.J., Balch W.E., Kelly J.W.:Amylin proprotein processing generates progressively more amyloidogenicpeptides that initially sample the helical state. Biochemistry,2008; 47: 9900-9910
    Google Scholar
  • 107. Young A.: Receptor pharmacology. Adv. Pharmacol., 2005; 52:47-65
    Google Scholar
  • 108. Zanuy D., Nussinov R.: The sequence dependence of fiber organization.A comparative molecular dynamics study of the isletamyloid polypeptide segments 22-27 and 22-29. J. Mol. Biol., 2003;329: 565-584
    Google Scholar
  • 109. Zimmet P., Alberti K.G., Shaw J.: Global and societal implicationsof the diabetes epidemic. Nature, 2001; 414: 782-787
    Google Scholar

Full text

Skip to content