Anti-glycation activity of curcumin

REVIEW ARTICLE

Anti-glycation activity of curcumin

Sabina Galiniak 1 , Marek Biesiadecki 2 , Bożena Czubat 3 , Dorota Bartusik-Aebisher 1

1. Zakład Biochemii i Chemii Ogólnej, Wydział Medyczny, Uniwersytet Rzeszowski,
2. Katedra Nauk Morfologicznych, Wydział Medyczny, Uniwersytet Rzeszowski,
3. Katedra Biochemii i Biologii Komórki, Wydział Biologiczno-Rolniczy, Uniwersytet Rzeszowski,

Published: 2019-05-08
DOI: 10.5604/01.3001.0013.1934
GICID: 01.3001.0013.1934
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2019; 73 : 182-188

 

Abstract

Curcumin, a compound belonging to the group of polyphenols with a characteristic yellow-orange color, is the most active ingredient of the long-leaved Curcuma longa L. and the ingredient of seasoning mixes, including curry spices. Due to its antioxidant, anti-inflammatory and anti-cancer properties, it has a wide range of therapeutic effects and has been studied for many years. Curcumin has enormous potential in preventing many diseases due to the widely described benefits of its use, it is non-toxic and additionally. Therapy with curcumin is low cost. Currently, many studies focus on the anti-glycation activity of curcumin, which could be used as an active inhibitor of glycation, i.e. a non-enzymatic process of combining a keto or aldehyde group of sugar with a free amino group of a protein. Finally, heterogeneous end products of advanced glycation are formed in the multistage and complicated glycation reaction. Formation of glycation products is intensified with age, as well as in various disease states, including diabetes or neurodegenerative diseases. Many literature data describe the role of curcumin in the prevention and treatment of diabetes. It is known that polyphenol has beneficial effects on hyperglycemia, insulin resistance and regeneration of secretory cells of pancreatic islets. It seems that addition of curcumin, the main ingredient of curry spice, to food could help people prevent the development of lifestyle diseases, including diabetes and its complications. The article presents the current state of knowledge on the curcumin anti-glycation properties in vitro as well as in vivo.

References

  • 1. Abdel Aziz M.T., El-Asmar M.F., Rezq A.M., Mahfouz S.M., Wassef M.A., Fouad H.H., Ahmed H.H., Taha F.M.: The effect of a novel curcumin derivative on pancreatic islet regeneration in experimental type-1 diabetes in rats (long term study). Diabetol. Metab. Syndr., 2013; 5: 75
    Google Scholar
  • 2. Abdel-Mageid A.D., Abou-Salem M.E., Salaam N.M., El-Garhy H.A.: The potential effect of garlic extract and curcumin nanoparticles against complication accompanied with experimentally induced diabetes in rats. Phytomedicine, 2018; 43: 126-134
    Google Scholar
  • 3. Aggarwal B.B.: Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu. Rev. Nutr., 2010; 30: 173-199
    Google Scholar
  • 4. Ak T., Gülçin I.: Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact., 2008; 174: 27-37
    Google Scholar
  • 5. Anand P., Kunnumakkara A.B. Newman R.A., Aggarwal B.B.: Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007; 4: 807-818
    Google Scholar
  • 6. Arun N., Nalini N.: Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. Plant Foods. Hum. Nutr., 2002; 57: 41-52
    Google Scholar
  • 7. Babu P.S., Srinivasan K.: Influence of dietary curcumin and cholesterol on the progression of experimentally induced diabetes in albino rat. Mol. Cell. Biochem., 1995; 152: 13-21
    Google Scholar
  • 8. Bahl J.R., Bansal R.P., Garg S.N., Gupta M.M., Sigh V., Goel R., Kumar S.: Variation in yield of curcumin and yield and quality of leaf and rhizome essential oils among Indian land races of turmeric Curcuma Longa L. Proc. Indian Natn. Sci. Acad., 2014; 80: 143-156
    Google Scholar
  • 9. Bala K., Tripathy B.C., Sharma D.: Neuroprotective and anti-ageing effects of curcumin in aged rat brain regions. Biogerontology, 2006; 7: 81-89
    Google Scholar
  • 10. Banafshe H.R., Hamidi G.A., Noureddini M., Mirhashemi S.M., Mokhtari R., Shoferpour M.: Effect of curcumin on diabetic peripheral neuropathic pain: possible involvement of opioid system. Eur. J. Pharmacol., 2014; 723: 202-206
    Google Scholar
  • 11. Baraka-Vidot J., Planesse C., Meilhac O., Militello V., van den Elsen J., Bourdon E., Rondeau P.: Glycation alters ligand binding, enzymatic, and pharmacological properties of human albumin. Biochemistry, 2015; 54: 3051-3062
    Google Scholar
  • 12. Chen M., Du Z.Y., Zheng X., Li D.L., Zhou R.P., Zhang K.: Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen. Res., 2018; 13: 742-752
    Google Scholar
  • 13. Cheng A.L., Hsu C.H., Lin J.K., Hsu M.M., Ho Y.F., Shen T.S., Ko J.Y., Lin J.T., Lin B.R., Ming-Shiang W., Yu H.S., Jee S.H., Chen G.S., Chen T.M., Chen C.A. i wsp.: Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res., 2001; 21: 2895-2900
    Google Scholar
  • 14. Chilelli N.C., Ragazzi E., Valentini R., Cosma C., Ferraresso S., Lapolla A., Sartore G.: Curcumin and Boswellia serrata modulate the glyco-oxidative status and lipo-oxidation in master athletes. Nutrients, 2016; 8. pii: E745
    Google Scholar
  • 15. Choudhuri T., Pal S., Agwarwal M.L., Das T., Sa G.: Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett., 2002; 512: 334-340
    Google Scholar
  • 16. Chougala M.B., Bhaskar J.J., Rajan M.G., Salimath P.V.: Effect of curcumin and quercetin on lysosomal enzyme activities in streptozotocin-induced diabetic rats. Clin. Nutr., 2012; 31: 749-755
    Google Scholar
  • 17. Dobson C.M.: Protein aggregation and its consequences for human disease. Protein Pept. Lett., 2006; 13: 219-227
    Google Scholar
  • 18. Dong W., Yang B., Wang L., Li B., Guo X., Zhang M., Jiang Z., Fu J., Pi J., Guan D., Zhao R.: Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling. Toxicol. Appl. Pharmacol., 2018; 346: 28-36
    Google Scholar
  • 19. Dong X.N., Qin A., Xu J., Wang X.: In situ accumulation of advanced glycation endproducts (AGEs) in bone matrix and its correlation with osteoclastic bone resorption. Bone, 2011; 49: 174-183
    Google Scholar
  • 20. El-Azab M.F., Attia F.M., El-Mowafy A.M.: Novel role of curcumin combined with bone marrow transplantation in reversing experimental diabetes: Effects on pancreatic islet regeneration, oxidative stress, and inflammatory cytokines. Eur. J. Pharmacol., 2011; 658: 41-48
    Google Scholar
  • 21. El-Moselhy M.A., Taye A., Sharkawi S.S., El-Sisi S.F., Ahmed A.F.: The antihyperglycemic effect of curcumin in high fat diet fed rats. Role of TNF-α and free fatty acids. Food Chem. Toxicol., 2011; 49: 1129-1140
    Google Scholar
  • 22. Ganugula R., Arora M., Jaisamut P., Wiwattanapatapee R., Jørgensen H.G., Venkatpurwar V.P., Zhou B., Rodrigues Hoffmann A., Basu R., Guo S., Majeti N.V.: Nano-curcumin safely prevents streptozotocin-induced inflammation and apoptosis in pancreatic beta cells for effective management of Type 1 diabetes mellitus. Br. J. Pharmacol., 2017; 174: 2074-2084
    Google Scholar
  • 23. Grama C.N., Suryanarayana P., Patil M.A., Raghu G., Balakrishna N., Kumar M.N., Reddy G.B.: Efficacy of biodegradable curcumin nanoparticles in delaying cataract in diabetic rat model. PLoS One, 2013; 8: e78217
    Google Scholar
  • 24. Grzegorczyk-Karolak I., Gołąb K., Gburek J., Wysokińska H., Matkowski A.: Inhibition of advanced glycation end-product formation and antioxidant activity by extracts and polyphenols from Scutellaria alpina L. and S. altissima L. Molecules, 2016; 21: E739
    Google Scholar
  • 25. Gupta S.C., Prasad S., Kim J.H., Patchva S., Webb L.J., Priyadarsini I.K., Aggarwal B.B.: Multitargeting by curcumin as revealed by molecular interaction studies. Nat. Prod. Rep., 2011; 28: 1937-1955
    Google Scholar
  • 26. Gutierres V.O., Pinheiro C.M., Assis R.P., Vendramini R.C., Pepato M.T., Brunetti I.L.: Curcumin-supplemented yoghurt improves physiological and biochemical markers of experimental diabetes. Br. J. Nutr., 2012; 108: 440-448
    Google Scholar
  • 27. Hasanbašić S., Jahić A., Berbić S., Žnidarič M.T., Žerovnik E.: Inhibition of protein aggregation by several antioxidants. Oxid. Med. Cell. Longev., 2018; 2018: 8613209
    Google Scholar
  • 28. Hegab Z., Gibbons S., Neyses L., Mamas M.A.: Role of advanced glycation end products in cardiovascular disease. World J. Cardiol., 2012; 4: 90-102
    Google Scholar
  • 29. Jain S.K., Rains J., Croad J., Larson B., Jones K.: Curcumin supplementation lowers TNF-alpha, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-alpha, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats. Antioxid. Redox Signal., 2009; 11: 241-249
    Google Scholar
  • 30. Kang S.K., Cha S.H., Jeon H.G.: Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev., 2006; 15: 165-174
    Google Scholar
  • 31. Koschinsky T., He C.J., Mitsuhashi T., Bucala R., Liu C., Buenting C., Heitmann K., Vlassara H.: Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc. Natl. Acad. Sci. USA, 1997; 94: 6474-6479
    Google Scholar
  • 32. Li J., Wang P., Ying J., Chen Z., Yu S.: Curcumin attenuates retinal vascular leakage by inhibiting calcium/calmodulin-dependent protein kinase II activity in streptozotocin-induced diabetes. Cell. Physiol. Biochem., 2016; 39: 1196-1208
    Google Scholar
  • 33. Li Y., Zhang Y., Liu D.B., Liu H.Y., Hou W.G., Dong Y.S.: Curcumin attenuates diabetic neuropathic pain by downregulating TNF-α in a rat model. Int. J. Med. Sci., 2013; 10: 377-381
    Google Scholar
  • 34. Lin J., Tang Y., Kang Q., Feng Y., Chen A.: Curcumin inhibits gene expression of receptor for advanced glycation end-products (RAGE) in hepatic stellate cells in vitro by elevating PPARγ activity and attenuating oxidative stress. Br. J. Pharmacol., 2012; 166: 2212-2227
    Google Scholar
  • 35. Liu J.P., Feng L., Zhu M.M., Wang R.S., Zhang M.H., Hu S.Y., Jia X.B., Wu J.J.: The in vitro protective effects of curcumin and demethoxycurcumin in Curcuma longa extract on advanced glycation end products-induced mesangial cell apoptosis and oxidative stress. Planta Med., 2012; 78: 1757-1760
    Google Scholar
  • 36. Lu M., Yin N., Liu W., Cui X., Chen S., Wang E.: Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 inflammasome signaling. Biomed Res. Int., 2017; 2017: 1516985
    Google Scholar
  • 37. Lv F.H., Yin H.L., He Y.Q., Wu H.M., Kong J., Chai X.Y., Zhang S.R.: Effects of curcumin on the apoptosis of cardiomyocytes and the expression of NF-κB, PPAR-γ and Bcl-2 in rats with myocardial infarction injury. Exp. Ther. Med., 2016; 12: 3877-3884
    Google Scholar
  • 38. Marjaneh R.M., Rahmani F., Hassanian S.M., Rezaei N., Hashemzehi M., Bahrami A., Ariakia F., Fiuji H., Sahebkar A., Avan A., Khazaei M.: Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J. Cell. Physiol., 2018; 233: 6785-6798
    Google Scholar
  • 39. Mehta H.J., Patel V., Sadikot R.T.: Curcumin and lung cancer – a review. Target. Oncol., 2014; 9: 295-310
    Google Scholar
  • 40. Na L.X., Zhang Y.L., Li Y., Liu L.Y., Li R., Kong T., Sun C.H.: Curcumin improves insulin resistance in skeletal muscle of rats. Nutr. Metab. Cardiovasc. Dis., 2011; 21: 526-533
    Google Scholar
  • 41. Negre-Salvayre A., Salvayre R., Augé N., Pamplona R., Portero-Otín M.: Hyperglycemia and glycation in diabetic complications. Antioxid. Redox Signal., 2009; 11: 3071-3109
    Google Scholar
  • 42. Pan Z., Zhuang J., Ji C., Cai Z., Liao W., Huang Z.: Curcumin inhibits hepatocellular carcinoma growth by targeting VEGF expression. Oncol. Lett., 2018; 15: 4821-4826
    Google Scholar
  • 43. Papatheodorou K., Banach M., Edmonds M., Papanas N., Papazoglou D.: Complications of Diabetes. J. Diabetes Res., 2015; 2015: 189525
    Google Scholar
  • 44. Parsaeyan N.: Effect of curcumin supplementation on fructosamine level, blood lipids, lipid peroxidation and hepatic enzymes in type 2 diabetics. IJDO; 2015; 7: 55-61
    Google Scholar
  • 45. Peeyush K.T., Gireesh G., Jobin M., Paulose C.S.: Neuroprotective role of curcumin in the cerebellum of streptozotocin-induced diabetic rats. Life Sci., 2009; 85: 704-710
    Google Scholar
  • 46. Prasad S., Tyagi A.K., Aggarwal B.B.: Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res. Treat., 2014; 46: 2-18
    Google Scholar
  • 47. Putteeraj M., Lim W.L., Teoh S.L., Yahaya M.F.: Flavonoids and its neuroprotective effects on brain ischemia and neurodegenerative diseases. Curr. Drug. Targets, 2018; 19: 1710-1720
    Google Scholar
  • 48. Rao C.V.: Regulation of COX and LOX by curcumin. Adv. Exp. Med. Biol., 2007; 595: 213-226
    Google Scholar
  • 49. Rashid K., Sil P.C.: Curcumin enhances recovery of pancreatic islets from cellular stress induced inflammation and apoptosis in diabetic rats. Toxicol. Appl. Pharmacol., 2015; 282: 297-310
    Google Scholar
  • 50. Rouse M. Younès A., Egan J.M.: Resveratrol and curcumin enhance pancreatic β-cell function by inhibiting phosphodiesterase activity. J. Endocrinol., 2014; 223: 107-117
    Google Scholar
  • 51. Sadowska-Bartosz I., Adamczyk-Sowa M., Galiniak S., Mucha S., Pierzchala K., Bartosz G.: Oxidative modification of serum proteins in multiple sclerosis. Neurochem. Int., 2013; 63: 507-516
    Google Scholar
  • 52. Sadowska-Bartosz I., Bartosz G.: Prevention of protein glycation by natural compounds. Molecules, 2015; 20: 3309-3334
    Google Scholar
  • 53. Salahuddin P., Rabbani G., Khan R.H.: The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach. Cell. Mol. Biol. Lett., 2014; 19: 407-437
    Google Scholar
  • 54. Scheijen J.L., Clevers E., Engelen L., Dagnelie P.C., Brouns F., Stehouwer C.D., Schalkwijk C.G.: Analysis of advanced glycation endproducts in selected food items by ultra-performance liquid chromatography tandem mass spectrometry: Presentation of a dietary AGE database. Food Chem., 2016; 190: 1145-1150
    Google Scholar
  • 55. Seo K.I., Choi M.S., Jung U.J., Kim H.J., Yeo J., Jeon S.M., Lee M.K.: Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. Mol. Nutr. Food Res., 2008; 52: 995-1004
    Google Scholar
  • 56. Sharma S., Kulkarni S.K., Agrewala J.N., Chopra K.: Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur. J. Pharmacol., 2006; 536: 256-261
    Google Scholar
  • 57. Shen L.R., Xiao F., Yuan P., Chen Y., Gao Q.K., Parnell L.D., Meydani M., Ordovas J.M., Li D., Lai C.Q.: Curcumin-supplemented diets increase superoxide dismutase activity and mean lifespan in Drosophila. Age, 2013; 35: 1133-1142
    Google Scholar
  • 58. Singh V.P., Bali A., Singh N., Jaggi A.S.: Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol., 2014; 18: 1-14
    Google Scholar
  • 59. Sowndhar Rajan B., Manivasagam S., Dhanusu S., Chandrasekar N., Krishna K., Kalaiarasu L.P., Babu A.A., Vellaichamy E.: Diet with high content of advanced glycation end products induces systemic inflammation and weight gain in experimental mice: Protective role of curcumin and gallic acid. Food Chem. Toxicol., 2018; 114: 237-245
    Google Scholar
  • 60. Suryanarayana P., Saraswat M., Mrudula T., Krishna T.P., Krishnaswamy K., Reddy G.B.: Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats. Invest. Ophthalmol. Vis. Sci., 2005; 46: 2092-2099
    Google Scholar
  • 61. Szkudlarek A., Sułkowska A., Maciążek-Jurczyk M., Chudzik M., Równicka-Zubik J.: Effects of non-enzymatic glycation in human serum albumin. Spectroscopic analysis. Spectrochim. Acta A. Mol. Biomol. Spectrosc., 2016; 152: 645-653
    Google Scholar
  • 62. Tang Y., Chen A.: Curcumin eliminates the effect of advanced glycation end-products (AGEs) on the divergent regulation of gene expression of receptors of AGEs by interrupting leptin signaling. Lab. Invest., 2014; 94: 503-516
    Google Scholar
  • 63. Tayyem R.F., Heath D.D., Al-Delaimy W.K., Rock C.L.: Curcumin content of turmeric and curry powders. Nutr. Cancer, 2006; 55: 126-131
    Google Scholar
  • 64. Tejada S., Manayi A., Daglia M., Nabavi S.F., Sureda A., Hajheydari Z., Gortzi O., Pazoki-Toroudi H., Nabavi S.M.: Wound healing effects of curcumin: A review. Curr. Pharm. Biotechnol., 2016; 17: 1002-1007
    Google Scholar
  • 65. Vistoli G., De Maddis D., Cipak A., Zarkovic N., Carini M., Aldini G.: Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic. Res., 2013; 47, Suppl. 1: 3-27
    Google Scholar
  • 66. Wei Y., Gao J., Qin L., Xu Y., Shi H., Qu L., Liu Y., Xu T., Liu T.: Curcumin suppresses AGEs induced apoptosis in tubular epithelial cells via protective autophagy. Exp. Ther. Med., 2017; 14: 6052-6058
    Google Scholar
  • 67. Yamagishi S., Fukami K., Matsui T.: Evaluation of tissue accumulation levels of advanced glycation end products by skin autofluorescence: A novel marker of vascular complications in high-risk patients for cardiovascular disease. Int. J. Cardiol., 2015; 185: 263-268
    Google Scholar
  • 68. Yang F., Yu J., Ke F., Lan M., Li D., Tan K., Ling J., Wang Y., Wu K., Li D.: Curcumin alleviates diabetic retinopathy in experimental diabetic rats. Ophthalmic. Res., 2018; 60: 43-54
    Google Scholar
  • 69. Younus H., Anwar S.: Prevention of non-enzymatic glycosylation (glycation): Implication in the treatment of diabetic complication. Int. J. Health Sci., 2016; 10: 261-277
    Google Scholar
  • 70. Zhang Z., Leong D., Xu L., He Z., Wang A., Navati M., Kim S.J., Hirsh D.M., Hardin J.A., Cobelli N.J., Friedman J.M., Sun H.B.: Curcumin slows osteoarthritis progression and relieves osteoarthritis-associated pain symptoms in a post-traumatic osteoarthritis mouse model. Arthritis Res. Ther., 2016; 18: 128
    Google Scholar
  • 71. Zhao W.C., Zhang B., Liao M.J., Zhang W.X., He W.Y., Wang H.B., Yang C.X.: Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord. Neurosci. Lett., 2014; 560: 81-85
    Google Scholar

Full text

Skip to content