Antimicrobial peptides in asthma pathogenesis

COMMENTARY ON THE LAW

Antimicrobial peptides in asthma pathogenesis

Krzysztof Pałgan 1 , Marta Tykwińska 1 , Zbigniew Bartuzi 1

1. Katedra i Klinika Alergologii, Immunologii Klinicznej i Chorób Wewnętrznych, Collegium Medicum w Bydgoszczy, UMK Toruń

Published: 2015-01-02
DOI: 10.5604/17322693.1135042
GICID: 01.3001.0009.6474
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2015; 69 : 10-13

 

Abstract

Antimicrobial peptides exhibit activity against bacteria, viruses, fungi, and parasites. They have been described not only as endogenous antibiotics but also as immune modulators with an impact on innate and adaptive immune functions. Asthma is one of the most common diseases, characterized by chronic airway inflammation, bronchial hyperreactivity and asthma attacks. Airway inflammation in asthma is characterized by allergic phenotypes, such as dense infiltration of eosinophils, mast cells, Th 2 lymphocytes and monocytes. Viral infections are often the cause of asthma exacerbation. This review highlights recent observations on the role of antimicrobial peptides in asthma pathogenesis.

References

  • 1. Afshar M., Gallo R.L.: Innate immune defense system of the skin.Vet. Dermatol., 2013; 24: 32-38.e8-9
    Google Scholar
  • 2. Alvarez-Suarez J.M, Giampieri F., Battino M.: Honey as a sourceof dietary antioxidants: structures, bioavailability and evidence ofprotective effects against human chronic diseases. Curr. Med. Chem.,2013; 20: 621-638
    Google Scholar
  • 3. Beisswenger C., Kandler K., Hess C., Garn H., Felgentreff K., WegmannM., Renz H., Vogelmeier C., Bals R.: Allergic airway inflammationinhibits pulmonary antibacterial host defense. J. Immunol.,2006; 177: 1833-1837
    Google Scholar
  • 4. Eder W., Klimecki W., Yu L., von Mutius E., Riedler J., Braun-FahrländerC., Nowak D., Holst O., Martinez F.D.; ALEX-Team: Associationbetween exposure to farming, allergies and genetic variationin CARD4/NOD1. Allergy, 2006; 61: 1117-1124
    Google Scholar
  • 5. Fekonja O., Avbelj M., Jerala R.: Suppression of TLR signalingby targeting TIR domain-containing proteins. Curr. Protein Pept.Sci., 2012; 13: 776-788
    Google Scholar
  • 6. Fleming A.: On a remarkable bacteriolytic element found in tissuesand secretions. Proc. R. Soc. Lond. B, 1922; 93: 306-317
    Google Scholar
  • 7. Frasca L., Lande R.: Role of defensins and cathelicidin LL37 inauto-immune and auto-inflammatory diseases. Curr. Pharm. Biotechnol.,2012; 13: 1882-1897
    Google Scholar
  • 8. Huang H., Porpodis K., Zarogoulidis P., Domvri K., Giouleka P.,Papaiwannou A., Primikyri S., Mylonaki E., Spyratos D., Hohenforst–Schmidt W., Kioumis I., Zarogoulidis K.: Vitamin D in asthma andfuture perspectives. Drug Des. Devel. Ther., 2013; 7: 1003-1013
    Google Scholar
  • 9. Jang S.A., Kim H., Lee J.Y., Shin J.R., Kim da J., Cho J.H., Kim S.C.:Mechanism of action and specificity of antimicrobial peptides designedbased on buforin IIb. Peptides, 2012; 34: 283-289
    Google Scholar
  • 10. Kho A.T., Sharma S., Qiu W., Gaedigk R., Klanderman B., Niu S.,Anderson C., Leeder J.S., Weiss S.T., Tantisira K.G.: Vitamin D relatedgenes in lung development and asthma pathogenesis. BMC MedGenomics, 2013; 6: 47-58
    Google Scholar
  • 11. Leonard B.C., Affolter V.K., Bevins C.L.: Antimicrobial peptides:agents of border protection for companion animals. Vet. Dermatol.,2012; 23: 177-182
    Google Scholar
  • 12. Levy H., Raby B.A., Lake S., Tantisira K.G., Kwiatkowski D., LazarusR., Silverman E.K., Richter B., Klimecki W.T., Vercelli D., MartínezF.D., Weiss S.T.: Association of defensin β-1 gene polymorphisms withasthma. J. Allergy Clin. Immunol., 2005; 115: 252-258
    Google Scholar
  • 13. Lundberg A., Wikberg L.A., Ilonen J., Vaarala O., Böttcher M.F.:Lipopolysaccharide-induced immune responses in relation to theTLR4(Asp299Gly) gene polymorphism. Clin. Vaccine Immunol., 2008;15: 1878-1883
    Google Scholar
  • 14. Majak P., Olszowiec-Chlebna M., Smejda K., Stelmach I.: VitaminD supplementation in children may prevent asthma exacerbationtriggered by acute respiratory infection. J. Allergy Clin. Immunol.,2011; 127: 1294-1296
    Google Scholar
  • 15. Maria-Neto S., Candido Ede S., Rodrigues D.R., de Sousa D.A., daSilva E.M., de Moraes L.M., Otero-Gonzalez Ade J., Magalhaes B.S.,Dias S.C., Franco O.L.: Deciphering the magainin resistance processof Escherichia coli strains in light of the cytosolic proteome. Antimicrob.Agents Chemother., 2012; 56: 1714-1724
    Google Scholar
  • 16. Oppenheim J.J., Yang D.: Alarmins: chemotactic activators ofimmune responses. Curr. Opin. Immunol., 2005; 17: 359-365
    Google Scholar
  • 17. Pałgan K., Bartuzi Z.: Czynniki genetyczne i środowiskowe w rozwojualergii na pokarmy. Postępy Hig. Med. Dośw., 2012; 66: 385-391
    Google Scholar
  • 18. Pałgan K., Bartuzi Z.: Właściwości biologiczne jadu pszczół. AlergiaAstma Immunologia, 2009; 14: 17-19
    Google Scholar
  • 19. Pałgan K., Dziedziczko A., Bartuzi Z.: Remodeling of the basementmembrane and airway epithelium in patients with asthma.Pol. Merkur. Lekarski, 2005; 19: 553-555
    Google Scholar
  • 20. Panyutich A.V., Hiemstra P.S., van Wetering S., Ganz T.: Humanneutrophil defensin and serpins form complexes and inactivate eachother. Am. J. Respir. Cell Mol. Biol. 1995; 12: 351-357
    Google Scholar
  • 21. Paone G., Stevens L.A., Levine R.L., Bourgeois C., Steagall W.K.,Gochuico B.R., Moss J.: ADP-ribosyltransferase-specific modificationof human neutrophil peptide-1. J. Biol. Chem., 2006; 281: 17054-17060
    Google Scholar
  • 22. Paone G., Wada A., Stevens L.A., Matin A., Hirayama T., Levine R.L.,Moss J.: ADP ribosylation of human neutrophil peptide-1 regulates itsbiological properties. Proc. Natl. Acad. Sci. USA, 2002; 99: 8231-8235
    Google Scholar
  • 23. Roider E., Ruzicka T., Schauber J.: Vitamin D, the cutaneousbarrier, antimicrobial peptides and allergies: is there a link? AllergyAsthma Immunol. Res., 2013; 5: 119-128
    Google Scholar
  • 24. Sirisinha S.: Insight into the mechanisms regulating immunehomeostasis in health and disease. Asian Pac. J. Allergy Immunol.,2011; 29: 1-14
    Google Scholar
  • 25. Tziveleka L.A., Vagias C., Roussis V.: Natural products with anti–HIV activity from marine organisms. Curr. Top. Med. Chem., 2003;3: 1512-1535
    Google Scholar
  • 26. Urashima M., Segawa T., Okazaki M., Kurihara M., Wada Y., Ida H.:Randomized trial of vitamin D supplementation to prevent seasonalinfluenza A in schoolchildren. Am. J. Clin. Nutr., 2010; 91: 1255-1260
    Google Scholar
  • 27. Vega A., Ventura I., Chamorro C., Aroca R., Orovigt A., GómezE., Puente Y., Martínez A., Asturias J.A., Monteseirín J.: Neutrophildefensins: their possible role in allergic asthma. J. Investig. Allergol.Clin. Immunol., 2011; 21: 38-43
    Google Scholar
  • 28. Witkowska D., Bartyś A., Gamian A.: Defensyny i katelicydynyjako naturalne antybiotyki peptydowe. Postępy Hig. Med. Dośw.,2008; 62: 694-707
    Google Scholar
  • 29. Zhang Y., Lubberstedt T., Xu M.: The genetic and molecular basisof plant resistance to pathogens. J. Genet. Genomics, 2013; 40: 23-35
    Google Scholar

Full text

Skip to content