Applications of electromagnetic radiation in medicine

COMMENTARY ON THE LAW

Applications of electromagnetic radiation in medicine

Katarzyna Miłowska 1 , Katarzyna Grabowska 1 , Teresa Gabryelak 1

1. Katedra Biofizyki Ogólnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki

Published: 2014-05-08
DOI: 10.5604/17322693.1101572
GICID: 01.3001.0003.1224
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 473-482

 

Abstract

Recent decades have been devoted to the intense search for the response to questions related to the impact of radiation on the human body. Due to the growing fashion for a healthy lifestyle, increasing numbers of works about the alleged dangers of electromagnetic waves and diseases that they cause appeared. However, the discoveries of 20th century, and knowledge of the properties of electromagnetic radiation have allowed to broaden the horizons of the use of artificial sources of radiation in many fields of science and especially in medicine. The aim of this paper is to show that although excessive radiation or high doses are dangerous to the human body, its careful and controlled use, does not pose a threat, and it is often necessary in therapy. The possibility of using ionizing radiation in radiotherapy, isotope diagnostics or medical imaging, and non-ionizing radiation in the treatment for dermatological disorders and cancers will be presented. The unique properties of synchrotron radiation result in using it on a large scale in the diagnosis of pathological states by imaging methods.

References

  • 1. Acierno M.J., Mitchell M.A., Roundtree M.K., Zachariah T.T.: Effectsof ultraviolet radiation on 25-hydroxyvitamin D3 synthesis inred-eared slider turtles (Trachemys scripta elegans). Am. J. Vet. Res.,2006; 67: 2046-2049
    Google Scholar
  • 2. Agostinis P., Berg K., Cengel K.A., Foster T.H., Girotti A.W., GollnickS.O., Hahn S.M., Hamblin M.R., Juzeniene A., Kessel D., Korbelik M.,Moan J., Mroz P., Nowis D., Piette J., Wilson B.C, Golab J.: Photodynamictherapy of cancer: an update. CA Cancer J. Clin., 2011; 61: 250-281
    Google Scholar
  • 3. Alharbi A.A., Azzam A., McCleskey M., Roeder B., Spiridon A.,Simmons E., Goldberg W.Z., Banu A., Trache L., Tribble R.E.: Medicalradioisotopes production: a comprehensive cross-section studyfor the production of Mo and Tc radioisotopes via proton inducednuclear reactions on natMo. W: Radioisotopes – Applications in BioMedicalScience, red. N. Singh, In Tech, 2011
    Google Scholar
  • 4. Ayaru L., Bown S.G., Pereira S.P.: Photodynamic therapy for pancreaticand biliary tract carcinoma. Int. J. Gastrointest. Cancer, 2005;35: 1-13
    Google Scholar
  • 5. Baker M.J., Gazi E., Brown M.D., Shanks J.H., Gardner P., ClarkeN.W.: FTIR-based spectroscopic analysis in the identification of clinicallyaggressive prostate cancer. Br. J. Cancer, 2008; 99: 1859-1866
    Google Scholar
  • 6. Barrett A., Dobbs J., Morris S., Roques T.: Radiobiology and treatmentplanning. W: Partical Radiotherapy Planning, Macmillan PublishingSolutions, Italy 2009
    Google Scholar
  • 7. Bernhard E.J., Maity A., Muschel R.J., McKenna W.G.: Effects ofionizing radiation on cell cycle progression. Radiat. Environ. Biophys.,1995; 34: 79-83
    Google Scholar
  • 8. Berroud A., Le Roy A., Voisin P.: Membrane oxidative damage inducedby ionizing radiation detected by fluorescence polarization.Radiat. Environ. Biophys., 1996; 35: 289-295
    Google Scholar
  • 9. Berti V., Osorio R.S., Mosconi L., Li Y., De Santi S., de Leon M.J.:Early detection of Alzheimer’s disease with PET imaging. Neurodegener.Dis., 2010; 7: 131-135
    Google Scholar
  • 10. Bruening W., Uhl S., Fontanarosa J., Reston J., Treadwell J.,Schoelles K.: Noninvasive diagnostic tests for breast abnormalities:update of a 2006 review. Comp. Effectiv. Rev., 2012; 47: 1-73
    Google Scholar
  • 11. Choi J., Raghavan M.: Diagnostic imaging and image-guidedtherapy of skeletal metastases. Cancer Control, 2012; 19: 102-112
    Google Scholar
  • 12. Ciernik I.F., Dizendorf E., Baumert B.G., Reiner B., Burger C., DavisJ.B., Lütolf U.M., Steinert H.C., Von Schulthess G.K.: Radiation treatmentplanning with an integrated positron emission and computertomography (PET/CT): a feasibility study. Int. J. Radiat. Oncol. Biol.Phys., 2003; 57: 853-863
    Google Scholar
  • 13. Crinnion W.J.: Sauna as a valuable clinical tool for cardiovascular,autoimmune, toxicant-induced and other chronic health problems.Altern. Med. Rev., 2011; 16: 215-225
    Google Scholar
  • 14. Dauter Z.: Efficient use of synchrotron radiation for macromoleculardiffraction data collection. Prog. Biophys. Mol. Biol., 2005;89: 153-172
    Google Scholar
  • 15. Dawson L.A., Ménard C.: Imaging in radiation oncology: a perspective.Oncologist, 2010; 15: 338-349
    Google Scholar
  • 16. Dougherty T.J., Gomer C.J., Henderson B.W., Jori G., Kessel D.,Korbelik M., Moan J., Peng Q.: Photodynamic therapy. J. Natl. CancerInst., 1998; 90: 889-905
    Google Scholar
  • 17. Engelsen O.: The relationship between ultraviolet radiation exposureand vitamin D status. Nutrients, 2010; 2: 482-495
    Google Scholar
  • 18. Ganswindt U., Belka C.: Radiotherapy in prostate cancer. UrologeA, 2008; 47: 1245-1254
    Google Scholar
  • 19. Girard P.M., Francesconi S., Pozzebon M., Graindorge D., RochetteP., Drouin R., Sage E.: UVA-induced damage to DNA and proteins:direct versus indirect photochemical processes. J. Phys.: Conf. Ser.,2011; 261: 012002
    Google Scholar
  • 20. Häder D.P., Kumar H.D., Smith R.C., Worrest R.C.: Effects of solarUV radiation on aquatic ecosystems and interactions with climatechange. Photochem. Photobiol. Sci., 2007; 6: 267-285
    Google Scholar
  • 21. Häder D.P., Sinha R.P.: Solar ultraviolet radiation-induced DNAdamage in aquatic organisms: potential environmental impact. Mutat.Res., 2005; 571: 221-233
    Google Scholar
  • 22. Hibma J.C.: Dietary vitamin D3 and UV-B exposure effects ongreen iguana growth rate: is full-spectrum lighting necessary? Bull.Chicago Herp. Soc. 2004; 398: 145-150
    Google Scholar
  • 23. Hong-Tae K., Ki-Hong K., Gi-Hwan Ch., SangHoon J., Sung-HwanP., Bong-Il K., Kazuyuki H., Masami A., Jong-Ki K.: Photodynamicsynchrotron X-ray therapy in glioma cell using superparamagneticiron nanoparticle. Proc. SPIE, 2009; 7380: 1-10
    Google Scholar
  • 24. Iliakis G., Wang Y., Guan J., Wang H.: DNA damage checkpointcontrol in cells exposed to ionizing radiation. Oncogene, 2003; 22:5834-5847
    Google Scholar
  • 25. Kalender W.A.: Computed tomography: fundamentals, systemtechnology, image quality, applications. Publicis Publishing, Erlangen.2011
    Google Scholar
  • 26. Kamrava S.K., Behtaj M., Ghavami Y., Shahabi S., Jalessi M., AfsharE.E., Maleki S.: Evaluation of diagnostic values of photodynamicdiagnosis in identifying the dermal and mucosal squamous cell carcinoma.Photodiagnosis Photodyn. Ther., 2012; 9: 293-298
    Google Scholar
  • 27. Karam P.A.: Radioactivity. Chelsea House Publishers, New York2009
    Google Scholar
  • 28. Keller S.M. Photodynamic therapy. Biology and clinical application.Chest Surg. Clin. N. Am., 1995; 5: 121–137
    Google Scholar
  • 29. Kempner E.S.: Damage to proteins due to the direct action ofionizing radiation. Q. Rev. Biophys., 1993; 26: 27-48
    Google Scholar
  • 30. Kisiel A.: Synchrotron jako narzędzie: zastosowania promieniowaniasynchrotronowego w spektroskopii ciała stałego. SynchrotronRadiat. Natural Sci., 2006; 5: 145-167
    Google Scholar
  • 31. Laissue J.A., Blattmann H., Wagner H.P., Grotzer M.A., SlatkinD.N.: Prospects for microbeam radiation therapy of brain tumoursin children to reduce neurological sequelae. Dev. Med. Child Neurol.,2007; 49: 577-581
    Google Scholar
  • 32. Latanowicz L., Latosińska J.: Promieniowanie UV a środowisko.Wydawnictwo Naukowe PWN, Warszawa, 2011
    Google Scholar
  • 33. Lin C.C., Chang C.F., Lai M.Y., Chen T.W., Lee P.C., Yang W.C.: Farinfraredtherapy: a novel treatment to improve access blood flowand unassisted patency of arteriovenous fistula in hemodialysispatients, J. Am. Soc. Nephrol., 2007; 18: 985-992
    Google Scholar
  • 34. MacDonald A., Burden A.D.: Psoriasis: advances in pathophysiologyand management. Postgrad. Med. J., 2007; 83: 690-697
    Google Scholar
  • 35. Newman T.B., Vittinghoff E., McCulloch C.E.: Efficacy of phototherapyfor newborns with hyperbilirubinemia: a cautionary exampleof an instrumental variable analysis. Med. Decis. Making,2012; 32: 83-92
    Google Scholar
  • 36. Olds W.J., McKinley A.R., Moore M.R., Kimlin M.G.: In vitro modelof vitamin D3 (cholecalciferol) synthesis by UV radiation: doseresponserelationships, J. Photochem. Photobiol. B, 2008; 93: 88-93
    Google Scholar
  • 37. Paul S.A., Stoeckli S.J., von Schulthess G.K., Goerres G.W.: FDGPET and PET/CT for the detection of the primary tumour in patientswith cervical non-squamous cell carcinoma metastasis of anunknown primary. Eur. Arch. Otorhinolaryngol., 2007; 264: 189-195
    Google Scholar
  • 38. Pełka J.B.: Synchrotron radiation in biology and medicine. ActaPhys. Pol., 2008; 114: 309-329
    Google Scholar
  • 39. Polgár C., Major T.: Current status and perspectives of brachytherapyfor breast cancer. Int. J. Clin. Oncol., 2009; 14: 7-24
    Google Scholar
  • 40. Prezado Y., Adam J.F., Berkvens P., Martinez-Rovira I., Fois G.,Thengumpallil S., Edouard M., Vautrin M., Deman P., Bräuer-KrischE., Renier M., Elleaume H., Esteve F., Bravin A.: Synchrotron radiationtherapy from a medical physics point of view, AIP Conf. Proc.,2010; 1266: 101
    Google Scholar
  • 41. Rajpara A.N., O’Neill J.L., Nolan B.V., Yentzer B.A., Feldman S.R.:Review of home phototherapy. Dermatol. Online J., 2010; 16: 2
    Google Scholar
  • 42. Rastogi R.P., Richa, Kumar A., Tyagi M.B., Sinha R.P.: Molecularmechanisms of ultraviolet radiation-induced DNA damage and repair.J. Nucleic Acids, 2010; 2010: 592980
    Google Scholar
  • 43. Sachs R.K., Chen P.L., Hahnfeldt P.J., Hlatky L.R.: DNA damagecaused by ionizing radiation. Math. Biosci., 1992; 112: 271-303
    Google Scholar
  • 44. Schootman M., Jeffe D.B., Gillanders W.E., Yan Y., Aft R.: The effectsof radiotherapy for the treatment of contralateral breast cancer.Breast Cancer Res. Treat., 2007; 103: 77-83
    Google Scholar
  • 45. Sibata C.H., Colussi V.C., Oleinick N.L., Kinsella T.J.: Photodynamictherapy: a new concept in medical treatment. Braz. J. Med.Biol. Res., 2000; 33: 869-880
    Google Scholar
  • 46. Sourtti P., Thomlinson W.: Medical applications of synchrotronradiation. Phys. Med. Biol., 2003; 48: R1-R35
    Google Scholar
  • 47. Speiser B.L.: Brachytherapy for lung cancer. Radiat. Oncol. 2000;55: 19
    Google Scholar
  • 48. Spotheim-Maurizot M., Davídková M.: Radiation damage to DNAproteincomplexes. J. Phys.: Conf. Ser., 2011; 261: 012010
    Google Scholar
  • 49. Sprung C.N., Cholewa M., Usami N., Kobayashi K., Crosbie J.C.:DNA damage and repair kinetics after microbeam radiation therapyemulation in living cells using monoenergetic synchrotron X-raymicrobeams. J. Synchrotron Radiat., 2011; 18: 630-636
    Google Scholar
  • 50. Stylli S.S., Kaye A.H.: Photodynamic therapy of cerebral glioma –a review. Part II – clinical studies. J. Clin. Neurosci., 2006, 13: 709-717
    Google Scholar
  • 51. Su Y., Meador J.A., Geard C.R., Balajee A.S.: Analysis of ionizingradiation-induced DNA damage and repair in three-dimensional humanskin model system. Exp. Dermatol., 2010; 19: e16-e22
    Google Scholar
  • 52. Suntharalingam N., Podgorsak E.B., Tolli H.: Brachytherapy: physicaland clinical aspects W: Radiation oncology physics: A handbookfor teachers and students, red.: E.B. Podgorsak, IAEA, Austria, 2005
    Google Scholar
  • 53. Sutherland B.M.: UV effects in “the real world”: problems ofUV dosimetry in complex organisms. J. Photochem. Photobiol. B,1997; 40: 8-13
    Google Scholar
  • 54. Tatsumi M., Cohade C., Mourtzikos K.A., Fishman E.K., Wahl R.L.:Initial experience with FDG-PET/CT in the evaluation of breast cancer.Eur. J. Nucl. Med. Mol. Imaging, 2006; 33: 254-262
    Google Scholar
  • 55. Vincent W.F., Neale P.J.: Mechanisms of UV damage to aquaticorganisms. W: The effects of UV Radiation in the Marine Environment.red.: S. de Mora, S. Demers, M. Vernet, Cambridge UniversityPress, Cambridge, 2000, 149-176
    Google Scholar
  • 56. Xiong T., Chen D., Duan Z., Qu Y., Mu D.: Clofibrate for unconjugatedhyperbilirubinemia in neonates: a systematic review. IndianPediatr., 2012; 49: 35-41
    Google Scholar
  • 57. Zhang Y., Zhao C., Liu H., Hou H., Zhang H.: Multiple metastasislikebone lesions in scintigraphic imaging. J. Biomed. Biotechnol.,2012; 2012: 957364
    Google Scholar

Full text

Skip to content