Applications of electromagnetic radiation in medicine
Katarzyna Miłowska 1 , Katarzyna Grabowska 1 , Teresa Gabryelak 1Abstract
Recent decades have been devoted to the intense search for the response to questions related to the impact of radiation on the human body. Due to the growing fashion for a healthy lifestyle, increasing numbers of works about the alleged dangers of electromagnetic waves and diseases that they cause appeared. However, the discoveries of 20th century, and knowledge of the properties of electromagnetic radiation have allowed to broaden the horizons of the use of artificial sources of radiation in many fields of science and especially in medicine. The aim of this paper is to show that although excessive radiation or high doses are dangerous to the human body, its careful and controlled use, does not pose a threat, and it is often necessary in therapy. The possibility of using ionizing radiation in radiotherapy, isotope diagnostics or medical imaging, and non-ionizing radiation in the treatment for dermatological disorders and cancers will be presented. The unique properties of synchrotron radiation result in using it on a large scale in the diagnosis of pathological states by imaging methods.
References
- 1. Acierno M.J., Mitchell M.A., Roundtree M.K., Zachariah T.T.: Effectsof ultraviolet radiation on 25-hydroxyvitamin D3 synthesis inred-eared slider turtles (Trachemys scripta elegans). Am. J. Vet. Res.,2006; 67: 2046-2049
Google Scholar - 2. Agostinis P., Berg K., Cengel K.A., Foster T.H., Girotti A.W., GollnickS.O., Hahn S.M., Hamblin M.R., Juzeniene A., Kessel D., Korbelik M.,Moan J., Mroz P., Nowis D., Piette J., Wilson B.C, Golab J.: Photodynamictherapy of cancer: an update. CA Cancer J. Clin., 2011; 61: 250-281
Google Scholar - 3. Alharbi A.A., Azzam A., McCleskey M., Roeder B., Spiridon A.,Simmons E., Goldberg W.Z., Banu A., Trache L., Tribble R.E.: Medicalradioisotopes production: a comprehensive cross-section studyfor the production of Mo and Tc radioisotopes via proton inducednuclear reactions on natMo. W: Radioisotopes – Applications in BioMedicalScience, red. N. Singh, In Tech, 2011
Google Scholar - 4. Ayaru L., Bown S.G., Pereira S.P.: Photodynamic therapy for pancreaticand biliary tract carcinoma. Int. J. Gastrointest. Cancer, 2005;35: 1-13
Google Scholar - 5. Baker M.J., Gazi E., Brown M.D., Shanks J.H., Gardner P., ClarkeN.W.: FTIR-based spectroscopic analysis in the identification of clinicallyaggressive prostate cancer. Br. J. Cancer, 2008; 99: 1859-1866
Google Scholar - 6. Barrett A., Dobbs J., Morris S., Roques T.: Radiobiology and treatmentplanning. W: Partical Radiotherapy Planning, Macmillan PublishingSolutions, Italy 2009
Google Scholar - 7. Bernhard E.J., Maity A., Muschel R.J., McKenna W.G.: Effects ofionizing radiation on cell cycle progression. Radiat. Environ. Biophys.,1995; 34: 79-83
Google Scholar - 8. Berroud A., Le Roy A., Voisin P.: Membrane oxidative damage inducedby ionizing radiation detected by fluorescence polarization.Radiat. Environ. Biophys., 1996; 35: 289-295
Google Scholar - 9. Berti V., Osorio R.S., Mosconi L., Li Y., De Santi S., de Leon M.J.:Early detection of Alzheimer’s disease with PET imaging. Neurodegener.Dis., 2010; 7: 131-135
Google Scholar - 10. Bruening W., Uhl S., Fontanarosa J., Reston J., Treadwell J.,Schoelles K.: Noninvasive diagnostic tests for breast abnormalities:update of a 2006 review. Comp. Effectiv. Rev., 2012; 47: 1-73
Google Scholar - 11. Choi J., Raghavan M.: Diagnostic imaging and image-guidedtherapy of skeletal metastases. Cancer Control, 2012; 19: 102-112
Google Scholar - 12. Ciernik I.F., Dizendorf E., Baumert B.G., Reiner B., Burger C., DavisJ.B., Lütolf U.M., Steinert H.C., Von Schulthess G.K.: Radiation treatmentplanning with an integrated positron emission and computertomography (PET/CT): a feasibility study. Int. J. Radiat. Oncol. Biol.Phys., 2003; 57: 853-863
Google Scholar - 13. Crinnion W.J.: Sauna as a valuable clinical tool for cardiovascular,autoimmune, toxicant-induced and other chronic health problems.Altern. Med. Rev., 2011; 16: 215-225
Google Scholar - 14. Dauter Z.: Efficient use of synchrotron radiation for macromoleculardiffraction data collection. Prog. Biophys. Mol. Biol., 2005;89: 153-172
Google Scholar - 15. Dawson L.A., Ménard C.: Imaging in radiation oncology: a perspective.Oncologist, 2010; 15: 338-349
Google Scholar - 16. Dougherty T.J., Gomer C.J., Henderson B.W., Jori G., Kessel D.,Korbelik M., Moan J., Peng Q.: Photodynamic therapy. J. Natl. CancerInst., 1998; 90: 889-905
Google Scholar - 17. Engelsen O.: The relationship between ultraviolet radiation exposureand vitamin D status. Nutrients, 2010; 2: 482-495
Google Scholar - 18. Ganswindt U., Belka C.: Radiotherapy in prostate cancer. UrologeA, 2008; 47: 1245-1254
Google Scholar - 19. Girard P.M., Francesconi S., Pozzebon M., Graindorge D., RochetteP., Drouin R., Sage E.: UVA-induced damage to DNA and proteins:direct versus indirect photochemical processes. J. Phys.: Conf. Ser.,2011; 261: 012002
Google Scholar - 20. Häder D.P., Kumar H.D., Smith R.C., Worrest R.C.: Effects of solarUV radiation on aquatic ecosystems and interactions with climatechange. Photochem. Photobiol. Sci., 2007; 6: 267-285
Google Scholar - 21. Häder D.P., Sinha R.P.: Solar ultraviolet radiation-induced DNAdamage in aquatic organisms: potential environmental impact. Mutat.Res., 2005; 571: 221-233
Google Scholar - 22. Hibma J.C.: Dietary vitamin D3 and UV-B exposure effects ongreen iguana growth rate: is full-spectrum lighting necessary? Bull.Chicago Herp. Soc. 2004; 398: 145-150
Google Scholar - 23. Hong-Tae K., Ki-Hong K., Gi-Hwan Ch., SangHoon J., Sung-HwanP., Bong-Il K., Kazuyuki H., Masami A., Jong-Ki K.: Photodynamicsynchrotron X-ray therapy in glioma cell using superparamagneticiron nanoparticle. Proc. SPIE, 2009; 7380: 1-10
Google Scholar - 24. Iliakis G., Wang Y., Guan J., Wang H.: DNA damage checkpointcontrol in cells exposed to ionizing radiation. Oncogene, 2003; 22:5834-5847
Google Scholar - 25. Kalender W.A.: Computed tomography: fundamentals, systemtechnology, image quality, applications. Publicis Publishing, Erlangen.2011
Google Scholar - 26. Kamrava S.K., Behtaj M., Ghavami Y., Shahabi S., Jalessi M., AfsharE.E., Maleki S.: Evaluation of diagnostic values of photodynamicdiagnosis in identifying the dermal and mucosal squamous cell carcinoma.Photodiagnosis Photodyn. Ther., 2012; 9: 293-298
Google Scholar - 27. Karam P.A.: Radioactivity. Chelsea House Publishers, New York2009
Google Scholar - 28. Keller S.M. Photodynamic therapy. Biology and clinical application.Chest Surg. Clin. N. Am., 1995; 5: 121–137
Google Scholar - 29. Kempner E.S.: Damage to proteins due to the direct action ofionizing radiation. Q. Rev. Biophys., 1993; 26: 27-48
Google Scholar - 30. Kisiel A.: Synchrotron jako narzędzie: zastosowania promieniowaniasynchrotronowego w spektroskopii ciała stałego. SynchrotronRadiat. Natural Sci., 2006; 5: 145-167
Google Scholar - 31. Laissue J.A., Blattmann H., Wagner H.P., Grotzer M.A., SlatkinD.N.: Prospects for microbeam radiation therapy of brain tumoursin children to reduce neurological sequelae. Dev. Med. Child Neurol.,2007; 49: 577-581
Google Scholar - 32. Latanowicz L., Latosińska J.: Promieniowanie UV a środowisko.Wydawnictwo Naukowe PWN, Warszawa, 2011
Google Scholar - 33. Lin C.C., Chang C.F., Lai M.Y., Chen T.W., Lee P.C., Yang W.C.: Farinfraredtherapy: a novel treatment to improve access blood flowand unassisted patency of arteriovenous fistula in hemodialysispatients, J. Am. Soc. Nephrol., 2007; 18: 985-992
Google Scholar - 34. MacDonald A., Burden A.D.: Psoriasis: advances in pathophysiologyand management. Postgrad. Med. J., 2007; 83: 690-697
Google Scholar - 35. Newman T.B., Vittinghoff E., McCulloch C.E.: Efficacy of phototherapyfor newborns with hyperbilirubinemia: a cautionary exampleof an instrumental variable analysis. Med. Decis. Making,2012; 32: 83-92
Google Scholar - 36. Olds W.J., McKinley A.R., Moore M.R., Kimlin M.G.: In vitro modelof vitamin D3 (cholecalciferol) synthesis by UV radiation: doseresponserelationships, J. Photochem. Photobiol. B, 2008; 93: 88-93
Google Scholar - 37. Paul S.A., Stoeckli S.J., von Schulthess G.K., Goerres G.W.: FDGPET and PET/CT for the detection of the primary tumour in patientswith cervical non-squamous cell carcinoma metastasis of anunknown primary. Eur. Arch. Otorhinolaryngol., 2007; 264: 189-195
Google Scholar - 38. Pełka J.B.: Synchrotron radiation in biology and medicine. ActaPhys. Pol., 2008; 114: 309-329
Google Scholar - 39. Polgár C., Major T.: Current status and perspectives of brachytherapyfor breast cancer. Int. J. Clin. Oncol., 2009; 14: 7-24
Google Scholar - 40. Prezado Y., Adam J.F., Berkvens P., Martinez-Rovira I., Fois G.,Thengumpallil S., Edouard M., Vautrin M., Deman P., Bräuer-KrischE., Renier M., Elleaume H., Esteve F., Bravin A.: Synchrotron radiationtherapy from a medical physics point of view, AIP Conf. Proc.,2010; 1266: 101
Google Scholar - 41. Rajpara A.N., O’Neill J.L., Nolan B.V., Yentzer B.A., Feldman S.R.:Review of home phototherapy. Dermatol. Online J., 2010; 16: 2
Google Scholar - 42. Rastogi R.P., Richa, Kumar A., Tyagi M.B., Sinha R.P.: Molecularmechanisms of ultraviolet radiation-induced DNA damage and repair.J. Nucleic Acids, 2010; 2010: 592980
Google Scholar - 43. Sachs R.K., Chen P.L., Hahnfeldt P.J., Hlatky L.R.: DNA damagecaused by ionizing radiation. Math. Biosci., 1992; 112: 271-303
Google Scholar - 44. Schootman M., Jeffe D.B., Gillanders W.E., Yan Y., Aft R.: The effectsof radiotherapy for the treatment of contralateral breast cancer.Breast Cancer Res. Treat., 2007; 103: 77-83
Google Scholar - 45. Sibata C.H., Colussi V.C., Oleinick N.L., Kinsella T.J.: Photodynamictherapy: a new concept in medical treatment. Braz. J. Med.Biol. Res., 2000; 33: 869-880
Google Scholar - 46. Sourtti P., Thomlinson W.: Medical applications of synchrotronradiation. Phys. Med. Biol., 2003; 48: R1-R35
Google Scholar - 47. Speiser B.L.: Brachytherapy for lung cancer. Radiat. Oncol. 2000;55: 19
Google Scholar - 48. Spotheim-Maurizot M., Davídková M.: Radiation damage to DNAproteincomplexes. J. Phys.: Conf. Ser., 2011; 261: 012010
Google Scholar - 49. Sprung C.N., Cholewa M., Usami N., Kobayashi K., Crosbie J.C.:DNA damage and repair kinetics after microbeam radiation therapyemulation in living cells using monoenergetic synchrotron X-raymicrobeams. J. Synchrotron Radiat., 2011; 18: 630-636
Google Scholar - 50. Stylli S.S., Kaye A.H.: Photodynamic therapy of cerebral glioma –a review. Part II – clinical studies. J. Clin. Neurosci., 2006, 13: 709-717
Google Scholar - 51. Su Y., Meador J.A., Geard C.R., Balajee A.S.: Analysis of ionizingradiation-induced DNA damage and repair in three-dimensional humanskin model system. Exp. Dermatol., 2010; 19: e16-e22
Google Scholar - 52. Suntharalingam N., Podgorsak E.B., Tolli H.: Brachytherapy: physicaland clinical aspects W: Radiation oncology physics: A handbookfor teachers and students, red.: E.B. Podgorsak, IAEA, Austria, 2005
Google Scholar - 53. Sutherland B.M.: UV effects in “the real world”: problems ofUV dosimetry in complex organisms. J. Photochem. Photobiol. B,1997; 40: 8-13
Google Scholar - 54. Tatsumi M., Cohade C., Mourtzikos K.A., Fishman E.K., Wahl R.L.:Initial experience with FDG-PET/CT in the evaluation of breast cancer.Eur. J. Nucl. Med. Mol. Imaging, 2006; 33: 254-262
Google Scholar - 55. Vincent W.F., Neale P.J.: Mechanisms of UV damage to aquaticorganisms. W: The effects of UV Radiation in the Marine Environment.red.: S. de Mora, S. Demers, M. Vernet, Cambridge UniversityPress, Cambridge, 2000, 149-176
Google Scholar - 56. Xiong T., Chen D., Duan Z., Qu Y., Mu D.: Clofibrate for unconjugatedhyperbilirubinemia in neonates: a systematic review. IndianPediatr., 2012; 49: 35-41
Google Scholar - 57. Zhang Y., Zhao C., Liu H., Hou H., Zhang H.: Multiple metastasislikebone lesions in scintigraphic imaging. J. Biomed. Biotechnol.,2012; 2012: 957364
Google Scholar