Aspects of pericytes and their potential therapeutic use
Justyna Różycka 1 , Edyta Brzóska 1 , Tomasz Skirecki 2Abstract
Pericytes, which are multi-potential stem cells, co-create the walls of the microvessels: capillaries, terminal arterioles and postcapillary venules. These cells are localized under the basement membrane, tightly encircling the endothelium. The most frequently mentioned molecular markers of pericytes include NG2 (neural-glial antigen 2), β-type platelet-derived growth factor receptor (PDGFRβ), smooth muscle α-actin (α-SMA), regulator of G protein signalling 5 (RGS5), the adhesion protein CD146 and nestin. Different functions in physiological processes are assigned to pericytes such as maintaining the integrity and senescence of endothelial cells, transregulation of vascular tone or the potential to differentiate into other cells. Probably they are also involved in pathological processes such as tissues fibrosis. In this review, we focus on the participation of pericytes in the process of blood vessel formation, the regeneration of skeletal muscle tissue and fibrosis. Strong evidence for pericytes’ participation in endothelial homeostasis, as well as in pathological conditions such as fibrosis, reveals a broad potential for the therapeutic use of these cells. Targeted pharmacological modulation of pericytes, leading to blocking signalling pathways responsible for the differentiation of pericytes into myofibroblasts, seems to be a promising strategy for the treatment of fibrosis in the early stages.
References
- 1. Adler S.G., Schwartz S., Williams M.E., Arauz-Pacheco C., Bolton W.K., Lee T., Li D., Neff T.B., Urquilla P.R., Sewell K.L.: Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin. J. Am. Soc. Nephrol., 2010; 5: 1420-1428
Google Scholar - 2. Alliot F., Rutin J., Leenen P.J., Pessac B.: Pericytes and periendothelial cells of brain parenchyma vessels co-express aminopeptidase N, aminopeptidase A, and nestin. J. Neurosci. Res.,1999; 58: 367-378
Google Scholar - 3. Allt G., Lawrenson J.G.: Pericytes: cell biology and pathology. Cells Tissues Organs, 2001; 169: 1-11
Google Scholar - 4. Andrae J., Gallini R., Betsholz C.: Role of platelet-derived growth factors in physiology and medicine. Genes Dev., 2008; 22: 1276-1312
Google Scholar - 5. Armulik A., Abramsson A., Betsholtz C.: Endothelial/pericyte interactions. Circ. Res., 2005; 97: 512-523
Google Scholar - 6. Armulik A., Genové G., Betscholz C.: Pericytes: developmental, physiological and pathological perpectives, problems, and promises. Dev. Cell, 2011; 21: 193-215
Google Scholar - 7. Bardin N., Frances V., Lesaule G., Horschowski N., George F., Sampol J.: Identification of the S-Endo 1 endothelial-associated antigen. Biochem. Biophys. Res. Commun., 1996; 218: 210-216
Google Scholar - 8. Bergers G., Song S.: The role of pericytes in blood-vessel formation and maintaince. Neuro Oncol., 2005; 7: 452-464
Google Scholar - 9. Birbrair A., Zhang T., Files D.C., Mannava S., Smith T., Wang Z.M., Messi M.L., Mintz A., Delbono O.: Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res. Ther., 2014; 5: 122
Google Scholar - 10. Birbrair A., Zhang T., Wang Z.M., Messi M.L., Enikolopov G.N., Mintz A., Delbono O.: Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res., 2013; 10: 67-84
Google Scholar - 11. Birbrair A., ZhangT., Wang Z.M., Messi M.L., Mintz A., Delbono O.: Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. Am. J. Physiol. Cell. Physiol., 2013; 305: C1098-C1113
Google Scholar - 12. Birbrair A., Zhang T., Wang Z.M., Messi M.L., Olson J.D., Mintz A., Delbono O.: Type-2 pericytes participate in normal and tumoral angiogenesis. Am. J. Physiol. Cell. Physiol., 2014; 307: C25-C38
Google Scholar - 13. Bondjers C., Kalén M., Hellström M., Scheidl S.J., Abramsson A., Renner O., Lindahl P., Cho H., Kehrl J., Betsholtz C.: Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. Am. J. Pathol., 2003; 162: 721-729
Google Scholar - 14. Carvalho R.L., Jonker L., Goumans M.J., Larsson J., Bouwman P., Karlsson S., Dijke P.T., Arthur H.M., Mummery C.L.: Defective paracrine signalling by TGFβ in yolk sac vasculature of endoglin mutant mice: a paradigm for hereditary haemorrhagic telangiectasia. Development, 2004; 131: 6237-6247
Google Scholar - 15. Chang H., Huylebroeck D., Verschueren K., Guo Q., Matzuk M.M., Zwijsen A.: Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development, 1999; 126: 1631-1642
Google Scholar - 16. Chen C.W., Montelatici E., Crisan M., Corselli M., Huard J., Lazzari L., Péault B.: Perivascular multi-lineage progenitor cells in human organs: regenerative units, cytokine sources or both? Cytokine Growth Factor Rev., 2009; 20: 429-434
Google Scholar - 17. Chen C.W., Okada M., Proto J.D., Gao X., Sekiya N., Beckman S.A., Corselli M., Crisan M., Saparov A., Tobita K., Péault B., Huard J.: Human pericytes for ischemic heart repair. Stem Cells, 2013; 31: 305-316
Google Scholar - 18. Chen Y.T., Chang F.C., Wu C.F., Chou Y.H., Hsu H.L., Chiang W.C., Shen J., Chen Y.M., Wu K.D., Tsai T.J., Duffield J.S., Lin S.L.: Plateletderived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int., 2011; 80: 1170-1181
Google Scholar - 19. Chung C.G., James A.W., Asatrian G., Chang L., Nguyen A., Le K., Bayani G., Lee R., Stoker D., Zhang X., Ting K., Péault B., Soo C.: Human perivascular stem cell-based bone graft substitute induces rat spinal fusion. Stem Cells Transl. Med., 2014; 3: 1231-1241
Google Scholar - 20. Collins J.J., Thébaud B.: Lung mesenchymal stromal cells in development and disease: to serve and protect? Antioxid. Redox Signal., 2014; 21: 1849-1862
Google Scholar - 21. Covas D.T., Panepucci R.A., Fontes A.M., Silva W.A.Jr., Orellana M.D., Freitas M.C., Neder L., Santos A.R., Peres L.C., Jamur M.C., Zago M.A.: Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146 + perivascular cells and fibroblasts. Exp. Hematol., 2008; 36: 642-654
Google Scholar - 22. Crisan M., Yap S., Casteilla L., Chen C.W., Corselli M., Park T.S., Andriolo G., Sun B., Zheng B., Zhang L., Norotte C., Teng P.N., Traas J., Schugar R., Deasy B.M. i wsp.: A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 2008; 3: 301-313
Google Scholar - 23. Dar A., Domev H., Ben-Yosef O., Tzukerman M., Zeevi-Levin N., Novak A., Germanguz I., Amit M., Itskovitz-Eldor J.: Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation, 2012; 125: 87-99
Google Scholar - 24. Davis S., Aldrich T.H., Jones P.F., Acheson A., Compton D.L., Jain V., Ryan T.E., Bruno J., Radziejewski C., Maisonpierre P.C., Yancopoulos G.D..: Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell, 1996; 87: 1161-1169
Google Scholar - 25. Dellavalle A., Maroli G., Covarello D., Azzoni E., Innocenzi A., Perani L., Antonini S., Sambasivan R., Brunelli S., Tajbakhsh S., Cossu G.: Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat. Commun., 2011; 2: 499
Google Scholar - 26. Dellavalle A., Sampaolesi M., Tonlorenzi R., Tagliafico E., Sacchetti B., Perani L., Innocenzi A., Galvez B.G., Messina G., Morosetti R., Li S., Belicchi M., Peretti G., Chamberlain J.S., Wright W.E., et al.: Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat. Cell Biol., 2007; 9: 255-267
Google Scholar - 27. Díaz-Flores L., Gutiérrez R., Madrid J.F., Varela H., Valladares F., Acosta E., Martín-Vasallo P., Díaz-Flores L.Jr.: Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol. Histopathol., 2009; 24: 909-969
Google Scholar - 28. Dickson M.C., Martin J.S., Cousins F.M., Kulkarni A.B., Karlsson S., Akhurst R.J.: Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development, 1995; 121: 1845-1854
Google Scholar - 29. Duffield J.S.: Cellular and molecular mechanisms in kidney fibrosis. J. Clin. Invest., 2014; 124: 2299-2306
Google Scholar - 30. Dumont D.J., Gradwohl G.J., Fong G.H., Auerbach R., Breitman M.L.: The endothelial-specific receptor tyrosine kinase, tek, is a member of a new subfamily of receptors. Oncogene, 1993; 8: 1293-1301
Google Scholar - 31. Dumont D.J., Gradwohl G., Fong G.H., Puri M.C., Gertsenstein M., Auerbach A., Breitman M.L.: Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev., 1994; 8: 1897-1909
Google Scholar - 32. Eberth C.J.: Handbuch der Lehre von der Gewegen des Menschen und der Tiere. Leipzig, 1871
Google Scholar - 33. Epling G.P.: Electron microscopic observations of pericytes of small blood vessels in the lungs and hearts of normal cattle and swine. Anat. Rec., 1966; 155: 513-529
Google Scholar - 34. Eriksson J.E., Dechat T., Grin B., Helfand B., Mendez M., Pallari H.M., Goldman R.D.: Introducing intermediate filaments: from discovery to disease. J. Clin. Invest., 2009; 119: 1763-1771
Google Scholar - 35. Etchevers H.C., Vincent C., Le Douarin N.M., Couly G.F.: The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development, 2001; 128: 1059-1068
Google Scholar - 36. Falcón B.L., Hashizume H., Koumoutsakos P., Chou J., Bready J.V., Coxon A., Oliner J.D., McDonald D.M.: Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. Am. J. Pathol., 2009; 175: 2159-2170
Google Scholar - 37. Fernandez I.E., Eickelberg O.: New cellular and molecular mechanisms of lung injury and fibrosis in idiopathic pulmonary fibrosis. Lancet, 2012; 380: 680-688
Google Scholar - 38. Foster K., Sheridan J., Veiga-Fernandes H., Roderick K., Pachnis V., Adams R., Blackburn C., Kioussis D., Coles M.: Contribution of neural crest-derived cells in the embryonic and adult thymus. J. Immunol., 2008; 180: 3183-3189
Google Scholar - 39. Gerhardt H., Betsholtz C.: Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res., 2003; 314: 15-23
Google Scholar - 40. Goretzki L., Burg M.A., Grako K.A., Stallcup W.B.: High-affinity binding of basic fibroblast growth factor and platelet-derived growth factor-AA to the core protein of the NG2 proteoglycan. J. Biol. Chem., 1999; 274: 16831-16837
Google Scholar - 41. Goumans M.J., Valdimarsdottir G., Itoh S., Lebrin F., Larsson J., Mummery C., Karlsson S., ten Dijke P.: Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Mol. Cell, 2003; 12: 817-828
Google Scholar - 42. Goumans M.J., Valdimarsdottir G., Itoh S., Rosendahl A., Sideras P., ten Dijke P.: Balancing the activation state of the endothelium via two distinct TGF-β type I receptors. EMBO J., 2002; 21: 1743-1753
Google Scholar - 43. Göritz C., Dias D.O., Tomilin N., Barbacid M., Shupliakov O., Frisén J.: A pericyte origin of spinal cord scar tissue. Science, 2011; 333: 238-242
Google Scholar - 44. Haefliger I.O., Anderson D.R.: Oxygen modulation of guanylate cyclase-mediated retinal pericyte relaxations with 3-morpholinosydnonimine and atrial natriuretic peptide. Invest. Ophthalmol. Vis. Sci., 1997; 38: 1563-1568
Google Scholar - 45. Hammes H.P., Lin J., Wagner P., Feng Y., Vom Hagen F., Krzizok T., Renner O., Breier G., Brownlee M., Deutsch U.: Angiopoietin-2 causes pericyte dropout in the normal retina evidence for involvement in diabetic retinopathy. Diabetes, 2004; 53: 1104-1110
Google Scholar - 46. Hellström M., Kalén M., Lindahl P., Abramsson A., Betsholtz C.: Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development, 1999; 126: 3047-3055
Google Scholar - 47. Humphreys B.D., Lin S.L., Kobayashi A., Hudson T.E., Nowlin B.T., Bonventre J.V., Valerius M.T., McMahon A.P., Duffield J.S.: Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 2010; 176: 85-97
Google Scholar - 48. Hung C., Linn G., Chow Y.H., Kobayashi A., Mittelsteadt K., Altemeier W.A., Gharib S.A., Schnapp L.M., Duffield J.S.: Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am. J. Respir. Crit. Care Med., 2013; 188: 820-830
Google Scholar - 49. Iivanainen E., Nelimarkka L., Elenius V., Heikkinen S.M., Junttila T.T., Sihombing L., Sundvall M., Määttä J.A., Laine V.J., Ylä-Herttuala S., Higashiyama S.: Angiopoietin-regulated recruitment of vascular smooth muscle cells by endothelial-derived heparin binding EGFlike growth factor. FASEB J., 2003; 17: 1609-1621
Google Scholar - 50. Jiang B., Brey E.M.: Formation of stable vascular networks in engineered tissues. W: Regenerative Medicine and Tissue Engineering – Cells and Biomaterials, red.: D. Eberli. INTECH, 2011
Google Scholar - 51. Kelly J.D., Haldeman B.A., Grant F.J., Murray M.J., Seifert R.A., Bowen-Pope D.F., Cooper J.A., Kazlauskas A.: Platelet-derived growth factor (PDGF) stimulates PDGF receptor subunit dimerization and intersubunit transphosphorylation. J. Biol. Chem., 1991; 266: 8987-8992
Google Scholar - 52. Korn J., Christ B., Kurz H.: Neuroectodermal origin of brain pericytes and vascular smooth muscle cells. J. Comp. Neurol., 2002; 442:78-88
Google Scholar - 53. Kostallari E., Baba-Amer Y., Alonso-Martin S., Ngoh P., Relaix F., Lafuste P., Gherardi R.K.: Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence. Development, 2015; 142, 1242-1253
Google Scholar - 54. König M.A., Canepa D.D., Cadosch D., Casanova E., Heinzelmann M., Rittirsch D., Plecko M., Hemmi S., Simmen H.P., Cinelli P., Wanner G.A.: Direct transplantation of native pericytes from adipose tissue: a new perspective to stimulate healing in critical size bone defects. Cytotherapy, 2016; 18: 41-52
Google Scholar - 55. Kurz H.: Cell lineages and early patterns of embryonic CNS vascularization. Cell Adh. Migr., 2009; 3: 205-210
Google Scholar - 56. Lan Y., Liu B., Yao H., Li F., Weng T., Yang G., Li W., Cheng X., Mao N., Yang X.: Essential role of endothelial Smad4 in vascular remodeling and integrity. Mol. Cell. Biol., 2007; 27: 7683-7692
Google Scholar - 57. Larsson J., Goumans M.J., Sjöstrand L.J., van Rooijen M.A., Ward D., Levéen P., Xu X., ten Dijke P., Mummery C.L., Karlsson S.: Abnormal angiogenesis but intact hematopoietic potential in TGF-β type I receptor-deficient mice. EMBO J., 2001; 20: 1663-1673
Google Scholar - 58. Laties A.M., Rapoport S.I., McGlinn A.: Hypertensive breakdown of cerebral but not of retinal blood vessels in rhesus monkey. Arch. Ophthalmol., 1979; 97: 1511-1514
Google Scholar - 59. Lebrin F., Goumans M.J., Jonker L., Carvalho R.L., Valdimarsdottir G., Thorikay M., Mummery C., Arthur H.M., ten Dijke P.: Endoglin promotes endothelial cell proliferation and TGF‐β/ALK1 signal transduction. EMBO J., 2004; 23: 4018-4028
Google Scholar - 60. Lehmann J.M., Holzmann B., Breitbart E.W., Schmiegelow P., Riethmüller G., Johnson J.P.: Discrimination between benign and malignant cells of melanocytic lineage by two novel antigens, a glycoprotein with a molecular weight of 113,000 and a protein with a molecular weight of 76,000. Cancer Res., 1987; 47: 841-845
Google Scholar - 61. Lendahl U., Zimmerman L.B., McKay R.D.: CNS stem cells express a new class of intermediate filament protein. Cell, 1990; 60: 585-595
Google Scholar - 62. Li Q., Yu Y., Bischoff J., Mulliken J.B., Olsen B.R.: Differential expression of CD146 in tissues and endothelial cells derived from infantile haemangioma and normal human skin. J. Pathol., 2003; 201: 296-302
Google Scholar - 63. Lin S.L., Chang F.C., Schrimpf C., Chen Y.T., Wu C.F., Wu V.C., Chiang W.C., Kuhnert F., Kuo C.J., Chen Y.M., Wu K.D., Tsai T.J., Duffield J.S.: Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. Am. J. Pathol., 2011; 178: 911-923
Google Scholar - 64. Lindblom P., Gerhardt H., Liebner S., Abramsson A., Enge M., Hellström M., Bäckström G., Fredriksson S., Landegren U., Nyström H.C., Bergström G., Dejana E., Ostman A., Lindahl P., Betsholtz C.: Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev., 2003; 17: 1835-1840
Google Scholar - 65. Liu S., Shi-wen X., Abraham D.J., Leask A.: CCN2 is required for bleomycin-induced skin fibrosis in mice. Arthritis Rheum., 2011; 63: 239-246
Google Scholar - 66. Mathiisen T.M., Lehre K.P., Danbolt N.C., Ottersen O.P.: The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia, 2010; 58: 1094-1103
Google Scholar - 67. Matsugi T., Chen Q., Anderson D.R.: Suppression of CO2-induced relaxation of bovine retinal pericytes by angiotensin II. Invest. Ophthalmol.Vis. Sci., 1997; 38: 652-657
Google Scholar - 68. Mendel T.A., Clabough E.B., Kao D.S., Demidova-Rice T.N., Durham J.T., Zotter B.C., Seaman S.A., Cronk S.M., Rakoczy E.P., Katz A.J., Herman I.M.: Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy. PLoS One, 2013; 8: e65691
Google Scholar - 69. Mokrý J., Ehrmann J., Karbanová J., Čížková D., Soukup T., Suchánek J., Filip S., Kolář Z.: Expression of intermediate filament nestin in blood vessels of neural and non-neural tissues. Acta Medica, 2008; 51: 173-179
Google Scholar - 70. Nehls V., Drenckhahn D.: Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. J. Cell Biol., 1991; 113: 147-154
Google Scholar - 71. Nehls V., Drenckhahn D.: The versatility of microvascular pericytes: from mesenchyme to smooth muscle? Histochemistry, 1993; 99: 1-12
Google Scholar - 72. O›Farrell F.M., Attwell D.: A role for pericytes in coronary noreflow. Nat. Rev. Cardiol., 2014; 11: 427-432
Google Scholar - 73. Oshima M., Oshima H., Taketo M.M.: TGF-β receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev. Biol., 1996; 179: 297-302
Google Scholar - 74. Østerud B., Bjørklid E.: Sources of tissue factor. Semin. Thromb. Hemost., 2006; 32: 11-23
Google Scholar - 75. Ozerdem U., Grako K.A., Dahlin-Huppe K., Monosov E., Stallcup W.B.: NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev. Dyn., 2001; 222: 218-227
Google Scholar - 76. Parikh S.M.: Dysregulation of the angiopoietin–Tie-2 axis in sepsis and ARDS. Virulence, 2013; 4: 517-524
Google Scholar - 77. Patan S.: TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc. Res., 1998; 56: 1-21
Google Scholar - 78. Petrova T.V., Karpanen T., Norrmén C., Mellor R., Tamakoshi T., Finegold D., Ferrell R., Kerjaschki D., Mortimer P., Ylä-Herttuala S., Miura N., Alitalo K.: Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat. Med., 2004; 10: 974-981
Google Scholar - 79. Pierro M., Ionescu L., Montemurro T., Vadivel A., Weissmann G., Oudit G., Emery D., Bodiga S., Eaton F., Péault B., Mosca F., Lazzari L., Thébaud B.: Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia. Thorax, 2013; 68: 475-484
Google Scholar - 80. Ponticos M., Holmes A.M., Shi-Wen X., Leoni P., Khan K., Rajkumar V.S., Hoyles R.K., Bou-Gharios G., Black C.M., Denton C.P., Abraham D.J., Leask A., Lindahl G.E.: Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen. Arthritis Rheum., 2009; 60: 2142-2155
Google Scholar - 81. Raghu G., Scholand M.B., De Andrade J., Lancaster L., Mageto Y.N., Goldin J.G., Porter S., Neff T.B., Valone F., Stauffer J.: Safety and efficacy of anti-CTGF monoclonal antibody FG-3019 for treatment of idiopathic pulmonary fibrosis (IPF): results of phase 2 clinical trial two years after initiation. Am. J. Respir. Crit. Care Med., 2014; 189: A1426
Google Scholar - 82. Risau W.: Mechanisms of angiogenesis. Nature, 1997; 386: 671-674
Google Scholar - 83. Risau W., Flamme I.: Vasculogenesis. Annu. Rev. Cell Dev. Biol., 1995; 11: 73-91
Google Scholar - 84. Rock J.R., Barkauskas C.E., Cronce M.J., Xue Y., Harris J.R., Liang J., Noble P.W., Hogan B.L.: Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition, Proc. Natl. Acad. Sci. USA, 2011; 108: E1475-E1483
Google Scholar - 85. Rouget C.: Memoire sur le developpement, la structures et les proprieties des capillaires sanguins et lymphatiques. Archs. Physiol. Norm. Pathol., 1873; 5: 603-633
Google Scholar - 86. Rucker H.K., Wynder H.J., Thomas W.E.: Cellular mechanisms of CNS pericytes. Brain Res. Bull., 2000; 51: 363-369
Google Scholar - 87. Sambasivan R., Yao R., Kissenpfennig A., Van Wittenberghe L., Paldi A., Gayraud-Morel B., Guenou H., Malissen B., Tajbakhsh S., Galy A.: Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development, 2011; 138: 3647-3656
Google Scholar - 88. Sato Y., Rifkin D.B.: Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J. Cell Biol., 1989; 109: 309-315
Google Scholar - 89. Schrimpf C., Xin C., Campanholle G., Gill S.E., Stallcup W., Lin S.L., Davis G.E., Gharib S.A., Humphreys B.D., Duffield J.S.: Pericyte TIMP3 and ADAMTS1 modulate vascular stability after kidney injury. J. Am. Soc. Nephrol., 2012; 23: 868-883
Google Scholar - 90. Sejersen T., Lendahl U.: Transient expression of the intermediate filament nestin during skeletal muscle development. J. Cell Sci., 1993; 106: 1291-1300
Google Scholar - 91. Shepro D., Morel N.M.: Pericyte physiology. FASEB J., 1993; 7: 1031-1038
Google Scholar - 92. Snijders T., Nederveen J.P., McKay B.R., Joanisse S., Verdijk L.B., van Loon L.J., Parise G.: Satellite cells in human skeletal muscle plasticity. Front. Physiol., 2015; 6: 283
Google Scholar - 93. Soriano P.: Abnormal kidney development and hematological disorders in PDGFβ-receptor mutant mice. Genes Dev., 1994; 8: 1888-1896
Google Scholar - 94. Stallcup W.B.: The NG2 proteoglycan: past insights and future prospects. J. Neurocytol., 2002; 31: 423-435
Google Scholar - 95. Sundberg C., Kowanetz M., Brown L.F., Detmar M., Dvorak H.F.: Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Lab. Invest., 2002; 82: 387-401
Google Scholar - 96. Trzpis M., McLaughlin P.M., de Leij L.M., Harmsen M.C.: Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. Am. J. Pathol., 2007; 171: 386-395
Google Scholar - 97. Urness L.D., Sorensen L.K., Li D.Y.: Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat. Genet., 2000; 26: 328-331
Google Scholar - 98. Van Nieuwenhoven F.A., Jensen L.J., Flyvbjerg A., Goldschmeding R.: Imbalance of growth factor signalling in diabetic kidney disease: is connective tissue growth factor (CTGF, CCN2) the perfect intervention point? Nephrol. Dial. Transplant., 2005; 20: 6-10
Google Scholar - 99. Verbeek M.M., Otte-Höller I., Wesseling P., Ruiter D.J., de Waal R.M.: Induction of α-smooth muscle actin expression in cultured human brain pericytes by transforming growth factor-β1. Am. J. Pathol., 1994; 144: 372-382
Google Scholar - 100. von Tell D., Armulik A., Betsholtz C.: Pericytes and vascular stability. Exp. Cell Res., 2006; 312: 623-629
Google Scholar - 101. Wang Z., Yan X.: CD146, a multi-functional molecule beyond adhesion. Cancer Lett., 2013; 330: 150-162
Google Scholar - 102. Winkler E.A., Bell R.D., Zlokovic B.V.: Central nervous system pericytes in health and disease. Nat. Neurosci., 2011; 14: 1398-1405
Google Scholar - 103. Wong S.P., Rowley J.E., Redpath A.N., Tilman J.D., Fellous T.G., Johnson J.R.: Pericytes, mesenchymal stem cells and their contributions to tissue repair. Pharmacol Ther., 2015; 151: 107-120
Google Scholar - 104. Wroblewski J., Engström M., Edwall‐Arvidsson C., Sjöberg G., Sejersen T., Lendahl U. Distribution of nestin in the developing mouse limb bud in vivo and in micro‐mass cultures of cells isolated from limb buds. Differentiation, 1997; 61: 151-159
Google Scholar - 105. Wynn T.A.: Cellular and molecular mechanisms of fibrosis. J. Pathol., 2008; 214: 199-210
Google Scholar - 106. Yu X., Radulescu A., Chen C.L., James I.O., Besner G.E.: Heparin-binding EGF-like growth factor protects pericytes from injury. J. Surg. Res., 2012; 172: 165-176
Google Scholar - 107. Yuan S.M., Guo Y., Zhou X.J., Shen W.M., Chen H.N.: PDGFR-β (+) perivascular cells from infantile hemangioma display the features of mesenchymal stem cells and show stronger adipogenic potential in vitro and in vivo. Int. J. Clin. Exp. Pathol., 2014; 7: 2861-2870
Google Scholar - 108. Zhang X., Péault B., Chen W., Li W., Corselli M., James A.W., Lee M., Siu R.K., Shen P., Zheng Z., Shen J. i wsp.: The Nell-1 growth factor stimulates bone formation by purified human perivascular cells. Tissue Eng. Part A, 2011; 17: 2497-2509
Google Scholar - 109. Zimmermann K.W.: Der feinere bau der blutcapillares, Z. Anat. Entwicklungsgesch., 1923; 68: 3-109
Google Scholar