Bacteriocins from lactic acid bacteria as an alternative to antibiotics

COMMENTARY ON THE LAW

Bacteriocins from lactic acid bacteria as an alternative to antibiotics

Aleksandra Ołdak 1 , Dorota Zielińska 1

1. Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Wydział Nauk o Żywieniu Człowieka i Konsumpcji, Katedra Technologii Gastronomicznej i Higieny Żywności

Published: 2017-05-05
DOI: 10.5604/01.3001.0010.3817
GICID: 01.3001.0010.3817
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 328-338

 

Abstract

Bacteriocins are ribosomally synthesized, proteinaceous substances that inhibit the growth of closely related species through numerous mechanisms. The classification system used in this review divided bacteriocins into four sub-groups based on their size. Currently, there is extensive research focused on bacteriocins and their usage as a food preservative.The increasing incidence of multidrug resistant bacterial pathogens is one of the most pressing medical problems in recent years. Recently, the potential clinical application of LAB (Lactic Acid Bacteria) bacteriocin has been the subject of investigations by many scientists.Bacteriocins can be considered in a sense as antibiotic, although they differ from conventional antibiotics in numerous aspects. The gene-encoded nature of bacteriocins makes them easily amenable through bioengineering to either increase their activity or specify target microorganism. Owing to this feature of bacteriocins, antibiotic therapy would become less damaging to the natural gut microflora, which is a common drawback of conventional antibiotic use. Bacteriocins from lactic acid bacteria represent one of the most studied microbial defense systems and the idea of subjecting them to bioengineering to either increase antimicrobial activity or further specify their target microorganism is now a rapidly expanding field. This review aimed to present bacteriocins as a possible alternative to conventional antibiotics basic on latest scientific data.

References

  • 1. Amer E.I., Mossallam S.F., Mahrous H.: Therapeutic enhancementof newly derived bacteriocins against Giardia lamblia. Exp. Parasitol.,2014; 146: 52-63
    Google Scholar
  • 2. Arthur T.D., Cavera V.L., Chikindas M.L.: On bacteriocin deliverysystems and potential applications. Future Microbiol., 2014; 9:235-248
    Google Scholar
  • 3. Asaduzzaman S.M., Sonomoto K.: Lantibiotics: diverse activitiesand unique modes of action. J. Biosci. Bioeng., 2009; 107: 475-487
    Google Scholar
  • 4. Bastos M.C., Coelho M.L., da Silva Santos O.: Resistance to bacteriocinsproduced by Gram-positive bacteria. Microbiology, 2015;161: 683-700
    Google Scholar
  • 5. Brumfitt W., Salton M.R., Hamilton-Miller J.M.: Nisin, alone andcombined with peptidoglycan-modulating antibiotics: activity againstmethicillin-resistant Staphylococcus aureus and vancomycin-resistantenterococci. J. Antimicrob. Chemother., 2002; 50: 731-734
    Google Scholar
  • 6. Calix-Lara T.F., Rajendran M., Talcott S.T., Smith S.B., Miller R.K.Castillo A., Sturino J.M., Taylor T.M.: Inhibition of Escherichia coliO157:H7 and Salmonella enterica on spinach and identification of antimicrobialsubstances produced by a commercial lactic acid bacteriafood safety intervention. Food Microbiol., 2014; 38: 192-200
    Google Scholar
  • 7. Campion A., Casey P.G., Field D., Cotter P.D., Hill C., Ross R.P.: Invivo activity of Nisin A and Nisin V against Listeria monocytogenes inmice. BMC Microbiol., 2013; 13: 23
    Google Scholar
  • 8. Cavera V.L., Arthur T.D., Kashtanov D., Chikindas M.L.: Bacteriocinsand their position in the next wave of conventional antibiotics.Int. J. Antimicrob. Agents, 2015; 46: 494-501
    Google Scholar
  • 9. Chatterjee C., Patton G.C., Cooper L., Paul M., van der Donk W.A.:Engineering dehydro amino acids and thioethers into peptides usinglacticin 481 synthetase. Chem. Biol., 2006; 13: 1109-1117
    Google Scholar
  • 10. Cotter P.D., Draper L.A., Lawton E.M., McAuliffe O., Hill C., RossR.P.: Over production of wild-type and bioengineered derivativesof the lantibiotic lacticin 3147. Appl. Environ. Microbiol., 2006; 72:4492-4496
    Google Scholar
  • 11. Cotter P.D., Hill C., Ross R.P.: Bacteriocins: developing innateimmunity for food. Nat. Rev. Microbiol., 2005; 3: 777-788
    Google Scholar
  • 12. Cotter P.D., Ross R.P., Hill C.: Bacteriocins – a viable alternativeto antibiotics? Nat. Rev. Microbiol., 2013; 11: 95-105
    Google Scholar
  • 13. Dabour N., Zihler A., Kheadr E., Lacroix C., Fliss I.: In vivo studyon the effectiveness of pediocin PA-1 and Pediococcus acidilacticiUL5 at inhibiting Listeria monocytogenes. Int. J. Food Microbiol., 2009;133: 225-233
    Google Scholar
  • 14. Dalet K., Cenatiempo Y., Cossart P., Hechard Y.: A σ54-dependentPTS permease of the mannose family is responsible for sensitivityof Listeria monocytogenes to mesentiricin Y105. Microbiology, 2001;147: 3263-3269
    Google Scholar
  • 15. Den Blaauwen T., Andreu J.M., Monasterio O.: Bacterial cell division proteins as antibiotic targets. Bioorg. Chem., 2014; 55: 27-38
    Google Scholar
  • 16. Dicks L.M., Heunis T.D., van Staden D.A., Brand A., Sutyak Noll K.,Chikindas M.L.: Medical and personal care applications of bacteriocinsproduced by lactic acid bacteria. W: Prokaryotic antimicrobialpeptides: from genes to applications. red.: D. Drider , S. Rebuffat.New York, NY, Springer; 2011; 391-421
    Google Scholar
  • 17. Diep D.B., Skaugen M., Salehian Z., Holo H., Nes I.F.: Commonmechanisms of target cell recognition and immunity for class II bacteriocins.Proc. Natl. Acad. Sci. USA, 2007; 104: 2384-2389
    Google Scholar
  • 18. Diop M.B., Dubois-Dauphin R., Tine E., Ngom A., Destain J., ThonartP.: Bacteriocin producers from traditional food products. Biotechnol.Agron. Soc. Environ., 2007; 11: 275-281
    Google Scholar
  • 19. Donczew M., Ginda K., Zakrzewska-Czerwińska J., JakimowiczD.: Odsłona tajemnic komórki bakteryjnej – zastosowanie nowychtechnik mikroskopii fluorescencyjnej. Postępy Hig. Med. Dośw., 2011;65: 114-123
    Google Scholar
  • 20. Draper L.A., Cotter P.D., Hill C., Ross R.P.: The two peptide lantibioticlacticin 3147 acts synergistically with polymyxin to inhibitGram-negative bacteria. BMC Microbiol., 2013; 13: 212
    Google Scholar
  • 21. Drider D., Fimland G., Hechard Y., McMullen L.M., Prevost H.:The continuing story of class IIa bacteriocins. Microbiol. Mol. Biol.Rev., 2006; 70: 564-582
    Google Scholar
  • 22. Eijsink V.G., Axelsson L., Diep D.B., Havarstein L.S., Holo H., NesI.F.: Production of class II bacteriocins by lactic acid bacteria; anexample of biological warfare and communication. Antonie VanLeeuwenhoek, 2002; 81: 639-654
    Google Scholar
  • 23. Ennahar S., Sonomoto K., Ishizaki A.: Class IIa bacteriocins fromlactic acid bacteria: antibacterial activity and food preservation. J.Biosci. Bioeng., 1999; 87: 705-716
    Google Scholar
  • 24. Fimland G., Johnsen L., Dalhus B., Nissen-Meyer J.: Pediocin-likeantimicrobial peptides (class IIa bacteriocins) and their immunityproteins: biosynthesis, structure, and mode of action. J. Pept. Sci.,2005; 11: 688-696
    Google Scholar
  • 25. Fujita K., Ichimasa S., Zendo T., Koga S., Yoneyama F., NakayamaJ., Sonomoto K.: Structural analysis and characterization of lacticinQ, a novel bacteriocin belonging to a new family of unmodifiedbacteriocins of Gram-positive bacteria. Appl. Environ. Microbiol.,2007; 73: 2871-2877
    Google Scholar
  • 26. Gutkind G.O., Di Conza J., Power P., Radice M.: β-Lactamasemediatedresistance: a biochemical, epidemiological and geneticoverview. Curr. Pharm. Des., 2013; 19: 164-208
    Google Scholar
  • 27. Héchard Y., Pelletier C., Cenatiempo Y., Frère J.: Analysis of σ54-dependent genes in Enterococcus faecalis: a mannose PTS permease(EIIMan) is involved in sensitivity to a bacteriocin, mesentericin Y105.Microbiology, 2001; 147: 1575-1580
    Google Scholar
  • 28. Iwatani S., Yoneyama F., Miyashita S., Zendo T., Nakayama J., Sonomoto K.: Identification of the genes involved in the secretionand self-immunity of lacticin Q, an unmodified leaderless bacteriocinfrom Lactococcus lactis QU 5. Microbiology, 2012; 158: 2927-2935
    Google Scholar
  • 29. Justice S.S., García-Lara J., Rothfield L.I.: Cell division inhibitorsSulA and MinC/MinD block septum formation at different steps inthe assembly of the Escherichia coli division machinery. Mol. Microbiol.,2000; 37: 410-423
    Google Scholar
  • 30. Kaur B., Garg N., Sachdev A., Kumar B.: Effect of the oral intakeof probiotic Pediococcus acidilactici BA28 on Helicobacter pylori causingpeptic ulcer in C57BL/6 mice models. Appl. Biochem. Biotechnol.,2014; 172: 973-983
    Google Scholar
  • 31. Kheadr E., Bernoussi N., Lacroix C., Fliss I.: Comparison of thesensitivity of commercial strains and infant isolates of bifidobacteriato antibiotics and bacteriocins. Int. Dairy J., 2004; 14: 1041-1053
    Google Scholar
  • 32. Kjos M., Salehian Z., Nes I.F., Diep D.B.: An extracellular loop ofthe mannose phosphotransferase system component IIC is responsiblefor specific targeting by class IIa bacteriocins. J. Bacteriol.,2010; 192: 5906-5913
    Google Scholar
  • 33. Lages M.C., Beilharz K., Morales Angeles D., Veening J.W., ScheffersD.J.: The localization of key Bacillus subtilis penicillin bindingproteins during cell growth is determined by substrate availability.Environ. Microbiol., 2013; 15: 3272-3281
    Google Scholar
  • 34. Laursen M.F., Bahl M.I., Licht T.R., Gram L. Knudsen G.M.: A singleexposure to a sublethal pediocin concentration initiates a resistance-associatedtemporal cell envelope and general stress responsein Listeria monocytogenes. Environ Microbiol, 2015; 17: 1134-1151
    Google Scholar
  • 35. le Blay G., Lacroix C., Zihler A., Fliss I.: In vitro inhibition activityof nisin A, nisin Z, pediocin PA-1 and antibiotics against commonintestinal bacteria. Lett. Appl. Microbiol., 2007; 45: 252-257
    Google Scholar
  • 36. Lee T.K., Tropini C., Hsin J., Desmarais S.M., Ursell T.S., Gong E.,Gitai Z., Monds R.D., Huang K.C.: A dynamically assembled cell wallsynthesis machinery buffers cell growth. Proc. Natl. Acad. Sci. USA,2014; 111: 4554-4559
    Google Scholar
  • 37. Liu X., Basu U., Miller P., McMullen L.M.: Stress response andadaptation of Listeria monocytogenes 08-5923 exposed to a sublethaldose of carnocyclin A. Appl. Environ. Microbiol., 2014; 80: 3835-3841
    Google Scholar
  • 38. Lohans C.T., Vederas J.C.: Development of class IIa bacteriocinsas therapeutic agents. Int. J. Microbiol., 2012; 2012: 386410
    Google Scholar
  • 39. Löwe J., Amos L.A.: Evolution of cytomotive filaments: the cytoskeletonfrom prokaryotes to eukaryotes. Int. J. Biochem. CellBiol., 2009; 41: 323-329
    Google Scholar
  • 40. Majeed H., Gillor O., Kerr B., Riley M.A.: Competitive interactionsin Escherichia coli populations: the role of bacteriocins. ISMEJ., 2011; 5: 71-81
    Google Scholar
  • 41. Majeed H., Lampert A., Ghazaryan L., Gillor O.: The weak shallinherit: bacteriocin-mediated interactions in bacterial populations.PLoS One, 2013; 8: 63837
    Google Scholar
  • 42. Maldonado-Barragán A., Cárdenas N., Martínez B., Ruiz-BarbaJ.L., Fernández-Garayzábal J.F., Rodríguez J.M., Gibello A.: GarvicinA, a novel class IId bacteriocin from Lactococcus garvieae that inhibitsseptum formation in L. garvieae strains. Appl. Environ. Microbiol.,2013; 79: 4336-4346
    Google Scholar
  • 43. Martínez B., Rodríguez A., Suárez J.E.: Lactococcin 972, a bacteriocinthat inhibits septum formation in lactococci. Microbiology,2000; 146: 949-955
    Google Scholar
  • 44. Michael C.A., Dominey-Howes D., Labbate M.: The antimicrobialresistance crisis: causes, consequences, and management. Front.Public Health, 2014; 2: 145
    Google Scholar
  • 45. Modi K.D., Chikindas M.L., Montville T.J.: Sensitivity of nisin–resistant Listeria monocytogenes to heat and the synergistic actionof heat and nisin. Lett. Appl. Microbiol. 2000; 30: 249-253
    Google Scholar
  • 46. Mogi T., Kita K.: Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics. Cell. Mol. Life Sci., 2009; 66: 3821-3826
    Google Scholar
  • 47. Moll G.N., Konings W.N., Driessen A.J.: Bacteriocins: mechanismof membrane insertion and pore formation. Antonie Van Leeuwenhoek,1999; 76: 185-198
    Google Scholar
  • 48. Montiel R., Martín-Cabrejas I., Langa S., El Aouad N., Arqués J.L.,Reyes F., Medina M.: Antimicrobial activity of reuterin produced byLactobacillus reuteri on Listeria monocytogenes in cold-smoked salmon.Food Microbiol., 2014; 44: 1-5
    Google Scholar
  • 49. Mora L., de Zamaroczy M.: In vivo processing of DNase colicinsE2 and E7 is required for their import into the cytoplasm of targetcells. PLoS One, 2014; 9: e96549
    Google Scholar
  • 50. Nayar A.S., Dougherty T.J., Ferguson K.E., Granger B.A., McWilliamsL., Stacey C., Leach L.J., Narita S., Tokuda H., Miller A.A., BrownD.G., McLeod S.M.: Novel antibacterial targets and compounds revealedby a high-throughput cell wall reporter assay. J. Bacteriol.2015; 197: 1726-1734
    Google Scholar
  • 51. Nes I.F., Diep D.B., Yasuyoshi I.: Enterococcal bacteriocins andantimicrobial proteins that contribute to niche control, Enterococci:from commensals to leading causes of drug resistant infection.http://www.ncbi.nlm.nih.gov/books/NBK190428/#bacteriocins.REF.diep.2007.2384 (01.03.2016)
    Google Scholar
  • 52. Nishie M., Nagao J., Sonomoto K.: Antibacterial peptides “bacteriocin”:an overview of their diverse characteristics and applications.Biocontrol Sci., 2012; 17: 1-16
    Google Scholar
  • 53. Oman T.J., van der Donk W.A.: Follow the leader: the use of leaderpeptides to guide natural product biosynthesis. Nat. Chem.Biol., 2010; 6: 9-18
    Google Scholar
  • 54. Papagianni M., Anastasiadou S.: Pediocins: the bacteriocins ofPediococci. Sources, production, properties and applications. Microb.Cell Fact., 2009; 8: 3
    Google Scholar
  • 55. Perez R.H., Zendo T., Sonomoto K.: Novel bacteriocins from lacticacid bacteria (LAB): various structures and applications. Microb.Cell Fact., 2014; 13: S3
    Google Scholar
  • 56. Plat A., Kluskens L.D., Kuipers A., Rink R., Moll G.N.: Requirementsof the engineered leader peptide of nisin for inducing modification,export, and cleavage. Appl. Environ. Microbiol., 2011;77: 604-611
    Google Scholar
  • 57. Pogliano J.: The bacterial cytoskeleton. Curr. Opin. Cell Biol.,2008; 20: 19-27
    Google Scholar
  • 58. Prado-Acosta M., Ruzal S.M., Allievi M.C., Palomino M.M., SanchezRivas C.: Synergistic effects of the Lactobacillus acidophilus surfacelayer and nisin on bacterial growth. Appl. Environ. Microbiol.2010; 76: 974-977
    Google Scholar
  • 59. Ramaswamy V., Cresence V.M., Rejitha J.S., Lekshmi M.U., DharsanaK.S., Prasad S.P., Vijila H.M.: Listeria – review of epidemiologyand pathogenesis. J. Microbiol., Immunol. Infection, 2007; 40: 4-13
    Google Scholar
  • 60. Ramnath M., Beukes M., Tamura K., Hastings J.W.: Absence ofputative mannose-specific phosphotransferase system enzyme IIABcomponent in a leucocin A-resistant strain of Listeria monocytogenes,as shown by two-dimensional sodium dodecyl sulfate-polyacrylamidegel electrophoresis. Appl. Environ. Microb., 2000; 66: 3098-3101
    Google Scholar
  • 61. Rawlinson E.L., Nes I.F., Skaugen M.: Identification of the DNA–binding site of the Rgg-like regulator LasX within the lactococin Spromoter region. Microbiology, 2005; 151: 813-823
    Google Scholar
  • 62. Rea M.C., Alemayehu D., Casey P.G., O’Connor P.M., Lawlor P.G.,Walsh M., Shanahan F., Kiely B., Ross R.P., Hill C.: Bioavailability ofthe anti-clostridial bacteriocin thuricin CD in gastrointestinal tract.Microbiology, 2014; 160: 439-445
    Google Scholar
  • 63. Rihakova J., Cappelier J. M., Hue I., Demnerova K., Fédérighi M.,Prévost H., Drider D.: In vivo activities of recombinant divercin V41and its structural variants against Listeria monocytogenes. Antimicrob.Agents Chemother., 2010; 54: 563-564
    Google Scholar
  • 64. Rogne P., Haugen C., Fimland G., Nissen-Meyer J., KristiansenP.E.: Three-dimensional structure of the two-peptide bacteriocinplantaricin JK. Peptides; 2009; 30: 1613-1621
    Google Scholar
  • 65. Shapiro L., McAdams H.H., Losick R.: Why and how bacteria localizeproteins. Science, 2009; 326: 1225-1228
    Google Scholar
  • 66. Sharma A., Srivastava S.: Anti-Candida activity of two-peptidebacteriocins, plan-taricins (Pln E/F and J/K) and their mode of action.Fungal. Biol., 2014; 118: 264-275
    Google Scholar
  • 67. Singh A.P., Prabha V., Rishi P.: Value addition in the efficacyof conventional antibiotics by nisin against Salmonella. PLoS One,2013; 8: e76844
    Google Scholar
  • 68. Singh A.P., Preet S., Rishi P.: Nisin/β-lactam adjunct therapyagainst Salmonella enterica serovar Typhimurium: a mechanistic approach.J. Antimicrob. Chemother., 2014; 69: 1877-1887
    Google Scholar
  • 69. Tiwari S.K., Sutyak Noll K., Cavera V.L., Chikindas M.L.: Improvedantimicrobial activities of synthetic-hybrid bacteriocins designed from enterocin E50-52 and pediocin PA-1. Appl. Environ. Microbiol.,2015; 81: 1661-1667
    Google Scholar
  • 70. van Staden A.D., Brand A.M., Dicks L.M.: Nisin F-loaded brushitebone cement prevented the growth of Staphylococcus aureus in vivo.J. Appl. Microbiol., 2012; 112: 831-840
    Google Scholar
  • 71. Yang E., Fan L., Jiang Y., Doucette C., Fillmore S.: Antimicrobialactivity of bacteriocin-producing lactic acid bacteria isolated fromcheeses and yogurts. AMB Express, 2012; 2: 48
    Google Scholar
  • 72. Zúñiga M., Comas I., Linaje R., Monedero V., Yebra M.J., EstebanC.D., Deutscher J., Pérez-Martinez G., González-Candelas F.: Horizontalgene transfer in the molecular evolution of mannose PTStransporters. Mol. Biol. Evol., 2005; 22: 1673-1685
    Google Scholar

Full text

Skip to content