Base excision repair in Alzheimer’s disease

COMMENTARY ON THE LAW

Base excision repair in Alzheimer’s disease

Dominik Kwiatkowski 1 , Tomasz Śliwiński 1

1. Katedra Genetyki Molekularnej Uniwersytetu Łódzkiego

Published: 2014-07-22
DOI: 10.5604/17322693.1114036
GICID: 01.3001.0003.1270
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 976-986

 

Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disease in people over 65 years of age. Estimates indicate that about 200 thousand Pole suffer from AD while in the world about 30 million people. Forecasts show that in developed countries the number of people with neurodegenerative diseases by 2025 will increase by several hundred percent compared to 1980. Results of carried out tests suggest several causes of this disease, in which an important role is played by age, genetic and environmental factors. An important role is played by oxidizing agents. They damage the genetic material and reduce activity of enzymes responsible for the repair of this damage contributing to the development of neurodegenerative diseases including AD. In this paper we discuss the relationship between the activity level of the main system removing oxidative DNA damage, named base excision repair (BER), which recognizes and repairs damaged DNA bases, as well as the key proteins involved in this type of DNA repair and AD. We also describe the important role of genetic polymorphism in genes encoding BER proteins, modulating the activity of this type of repair. This indicates the possibility to increase the knowledge of the AD mechanism based on the BER system, which may contribute to the identification of molecular markers of this disease in the future.

References

  • 1. Ahmed E.A., de Boer P., Philippens M.E., Kal H.B., de Rooij D.G.:Parp1-XRCC1 and the repair of DNA double strand breaks in mouseround spermatids. Mutat. Res., 2010; 683: 84-90
    Google Scholar
  • 2. Alexeyev M., Shokolenko I., Wilson G., LeDoux S.: The maintenanceof mitochondrial DNA integrity – critical analysis and update.Cold Spring Harb. Perspect. Biol., 2013; 5: a012641
    Google Scholar
  • 3. Al-Tassan N., Chmiel N.H., Maynard J., Fleming N., LivingstonA. L., Williams G. T., Hodges A. K., Davies D. R., David S. S., SampsonJ. R., Cheadle J.P.: Inherited variants of MYH associated withsomatic G:CàT:A mutations in colorectal tumors. Nat. Genet., 2002;30: 227-232
    Google Scholar
  • 4. Arai T., Kelly V.P., Minowa O., Noda T., Nishimura S.: High accumulationof oxidative DNA damage, 8-hydroxyguanine, in Mmh/Ogg1deficient mice by chronic oxidative stress. Carcinogenesis, 2002;23: 2005-2010
    Google Scholar
  • 5. Asagoshi K., Liu Y., Masaoka A., Lan L., Prasad R., Horton J.K.,Brown A.R., Wang X.H., Bdour H.M., Sobol R.W., Taylor J.S., Yasui A.,Wilson S.H.: DNA polymerase β-dependent long patch base excisionrepair in living cells. DNA Repair, 2010; 9: 109-119
    Google Scholar
  • 6. Asai M., Yagishita S., Iwata N., Saido T.C., Ishiura S., MaruyamaK.: An alternative metabolic pathway of amyloid precursor proteinC-terminal fragments via cathepsin B in a human neuroglioma model.FASEB J., 2011; 25: 3720-3730
    Google Scholar
  • 7. Baldwin M.R., O’Brien P.J.: Nonspecific DNA binding and coordinationof the first two steps of base excision repair. Biochemistry,2010; 49: 7879-7891
    Google Scholar
  • 8. Boesten D.M., de Vos-Houben J.M., Timmermans L., den HartogG.J., Bast A., Hageman G.J.: Accelerated aging during chronicoxidative stress: a role for PARP-1. Oxid. Med. Cell. Longev., 2013;2013: 680414
    Google Scholar
  • 9. Boiteux S., O’Connor T.R., Laval J.: Formamidopyrimidine-DNAglycosylase of Escherichia coli: cloning and sequencing of the fpgstructural gene and overproduction of the protein. EMBO J., 1987;6: 3177-3183
    Google Scholar
  • 10. Breen A.P., Murphy J.A.: Reactions of oxyl radicals with DNA.Free Rad. Biol. Med., 1995; 18: 1033-1077
    Google Scholar
  • 11. Bucholtz N., Demuth I.: DNA-repair in mild cognitive impairmentand Alzheimer’s disease. DNA Repair, 2013; 12: 811-816
    Google Scholar
  • 12. Cardozo-Pelaez F., Cox D. P., Bolin C.: Lack of the DNA repairenzyme OGG1 sensitizes dopamine neurons to manganese toxicityduring development. Gene Expr., 2005; 12: 315-323
    Google Scholar
  • 13. Christen Y.: Oxidative stress and Alzheimer disease. Am. J. Clin.Nutr., 2000; 71: 621-629
    Google Scholar
  • 14. Christmann M., Kaina B.: Transcriptional regulation of humanDNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation. Nucleic Acids Res.,2013; 41:8403-8420
    Google Scholar
  • 15. Christmann M., Tomicic M.T., Roos W.P., Kaina B.: Mechanismsof human DNA repair: an update. Toxicology, 2003; 193: 3-34
    Google Scholar
  • 16. Cooke M.S., Evans M.D., Dizdaroglu M., Lunec J.: Oxidative DNAdamage: mechanisms, mutation, and disease. FASEB J., 2003; 17:1195-1214
    Google Scholar
  • 17. Coppedè F., Mancuso M., Lo Gerfo A., Carlesi C., Piazza S., RocchiA.: Association of the hOGG1 Ser326Cys polymorphism with sporadicamyotrophic lateral sclerosis. Neurosci. Lett., 2007; 420: 163-168
    Google Scholar
  • 18. Coppedè F., Mancuso M., Lo Gerfo A., Manca M. L., Petrozzi L.,Migliore L., Siciliano G., Murri L.: A Ser326Cys polymorphism in theDNA repair gene hOGG1 is not associated with sporadic Alzheimer’sdisease. Neurosci. Lett., 2007; 414: 282-285
    Google Scholar
  • 19. David S.S., O’Shea V.L., Kundu S.: Base-excision repair of oxidativeDNA damage. Nature, 2007; 447: 941-950
    Google Scholar
  • 20. Davies K.: Oxidative stress: the paradox of aerobic life. Biochem.Soc. Symp., 1995; 61: 1-31
    Google Scholar
  • 21. Davydov V., Hansen L.A., Shackelford D. A.: Is DNA repair compromisedin Alzheimer’s disease? Neurobiol. Aging, 2003; 24: 953-968
    Google Scholar
  • 22. Deavall D.G., Martin E.A., Horner J.M., Roberts R.: Drug-inducedoxidative stress and toxicity. J. Toxicol., 2012; 2012: 645460
    Google Scholar
  • 23. Demple B., DeMott M.S.: Dynamics and diversions in base excisionDNA repair of oxidized abasic lesions. Oncogene, 2002; 21: 8926-8934
    Google Scholar
  • 24. Dickson D.W.: Required techniques and useful molecular markersin the neuropathologic diagnosis of neurodegenerative diseases.Acta Neuropathol., 2005; 109: 14-24
    Google Scholar
  • 25. Doğru-Abbasoğlu S., Aykaç-Toker G., Hanagasi H.A., Gürvit H.,Emre M., Uysal M.: The Arg194Trp polymorphism in DNA repair geneXRCC1 and the risk for sporadic late-onset Alzheimer’s disease. Neurol.Sci., 2007; 28: 31-34
    Google Scholar
  • 26. Dolinnaya N.G., Kubareva E.A., Romanova E.A., Trikin R.M., OretskayaT.S.: Thymidine glycol: the effect on DNA molecular structureand enzymatic processing. Biochimie, 2013; 95: 134-147
    Google Scholar
  • 27. Dorszewska J., Kempisty B., Jaroszewska-Kolecka J., Rózycka A.,Florczak J., Lianeri M., Jagodziński P.P., Kozubski W.: Expression andpolymorphisms of gene 8-oxoguanine glycosylase 1 and the level ofoxidative DNA damage in peripheral blood lymphocytes of patientswith Alzheimer’s disease. DNA Cell Biol., 2009; 28: 579-588
    Google Scholar
  • 28. Doseth B., Visnes T., Wallenius A., Ericsson I., Sarno A., PettersenH.S., Flatberg A., Catterall T., Slupphaug G., Krokan H.E., KavliB.: Uracil-DNA glycosylase in base excision repair and adaptive immunity:species differences between man and mouse. J. Biol. Chem.,2011; 286: 16669-16680
    Google Scholar
  • 29. Duxin J.P., Dao B., Martinsson P., Rajala N., Guittat L., CampbellJ.L., Spelbrink J.N., Stewart S.A.: Human Dna2 is a nuclear andmitochondrial DNA maintenance protein. Mol. Cell. Biol., 2009; 29:4274-4282
    Google Scholar
  • 30. Efrati E., Tocco G., Eritja R., Wilson S.H., Goodman M.F.: “Action–at-a-distance” mutagenesis. 8-oxo-7, 8-dihydro-2’-deoxyguanosinecauses base substitution errors at neighboring template sites whencopied by DNA polymerase β. J. Biol. Chem., 1999; 274: 15920-15926
    Google Scholar
  • 31. El-Khamisy S. F., Masutani M., Suzuki H., Caldecott K.W.: A requirementfor PARP-1 for the assembly or stability of XRCC1 nuclearfoci at sites of oxidative DNA damage. Nucleic Acids Res., 2003;31: 5526-5533
    Google Scholar
  • 32. Fitzgerald M.E., Drohat A.C.: Coordinating the initial steps ofbase excision repair. Apurinic/apyrimidinic endonuclease 1 activelystimulates thymine DNA glycosylase by disrupting the productcomplex. J. Biol. Chem., 2008; 283: 32680-32690
    Google Scholar
  • 33. Fortini P., Dogliotti E.: Base damage and single-strand breakrepair: mechanisms and functional significance of short- and long–patch repair subpathways. DNA Repair, 2007; 6: 398-409
    Google Scholar
  • 34. Fortini P., Parlanti E., Sidorkina O.M., Laval J., Dogliotti E.: Thetype of DNA glycosylase determines the base excision repair pathwayin mammalian cells. J. Biol. Chem., 1999; 274: 15230-15236
    Google Scholar
  • 35. Frosina G., Fortini P., Rossi O., Carrozzino F., Raspaglio G., Cox L.S.,Lane D.P., Abbondandolo A., Dogliotti E.: Two pathways for base excisionrepair in mammalian cells. J. Biol. Chem., 1996; 271: 9573-9578
    Google Scholar
  • 36. Fu D., Calvo J.A., Samson L.D.: Balancing repair and toleranceof DNA damage caused by alkylating agents. Nat. Rev. Cancer, 2012;12: 104-120
    Google Scholar
  • 37. Gao Y., Katyal S., Lee Y., Zhao J., Rehg J.E., Russell H.R., McKinnonP.J.: DNA ligase III is critical for mtDNA integrity but not Xrcc1-mediatednuclear DNA repair. Nature, 2011; 471: 240-244
    Google Scholar
  • 38. Ghosh R., Mitchell D.L.: Effect of oxidative DNA damage in promoterelements on transcription factor binding. Nucleic Acids Res.,1999; 27: 3213-3218
    Google Scholar
  • 39. Hadland B.K., Manley N.R., Su D., Longmore G.D., Moore C.L.,Wolfe M.S., Schroeter E.H., Kopan R.: γ-Secretase inhibitors repressthymocyte development. Proc. Natl. Acad. Sci. USA, 2001; 98: 7487-7491
    Google Scholar
  • 40. Haghdoost S., Czene S., Näslund I., Skog S., Harms-Ringdahl M.:Extracellular 8-oxo-dG as a sensitive parameter for oxidative stressin vivo and in vitro. Free Radic. Res., 2005; 39: 153-162
    Google Scholar
  • 41. Halliwell B., Gutteridge J.: Free Radicals in Biology and Medicine.Oxford University Press, Oxford, New Jork 1999
    Google Scholar
  • 42. Hashiguchi K., Stuart J.A., de Souza-Pinto N.C., Bohr V.A.: TheC-terminal alpha O helix of human Ogg1 is essential for 8-oxoguanineDNA glycosylase activity: the mitochondrial beta-Ogg1 lacksthis domain and does not have glycosylase activity. Nucleic AcidsRes., 2004; 32: 5596-5608
    Google Scholar
  • 43. Hashimoto H., Hong S., Bhagwat A.S., Zhang X., Cheng X.: Excisionof 5-hydroxymethyluracil and 5-carboxylcytosine by the thymineDNA glycosylase domain: its structural basis and implications foractive DNA demethylation. Nucleic Acids Res., 2012; 40: 10203-10214
    Google Scholar
  • 44. Hill J.W., Hazra T. K., Izumi T., Mitra S.: Stimulation of human8-oxoguanine-DNA glycosylase by AP endonuclease: potential coordinationof the initial steps in base excision repair. Nucleic AcidsRes., 2001; 29: 430-438
    Google Scholar
  • 45. Hwang B.J., Shi G., Lu A.L.: Mammalian MutY homolog (MYHor MUTYH) protects cells from oxidative DNA damage. DNA Repair,2014; 13: 10-21
    Google Scholar
  • 46. Iida T., Furuta A., Nishioka K., Nakabeppu Y., Iwaki T.: Expressionof 8-oxoguanine DNA glycosylase is reduced and associated withneurofibrillary tangles in Alzheimer’s disease brain. Acta Neuropathol.,2002; 103: 20-25
    Google Scholar
  • 47. Imam S.Z., Karahalil B., Hogue B.A., Souza-Pinto N.C., Bohr V.A.:Mitochondrial and nuclear DNA-repair capacity of various brain regionsin mouse is altered in an age-dependent manner. Neurobiol.Aging, 2006; 27: 1129-1136
    Google Scholar
  • 48. Jacob K.D., Noren Hooten N., Tadokoro T., Lohani A., Barnes J.,Evans M.K.: Alzheimer’s disease-associated polymorphisms in humanOGG1 alter catalytic activity and sensitize cells to DNA damage.Free Radic. Biol. Med., 2013; 63: 115-125
    Google Scholar
  • 49. Jacobs A.L., Schär P.: DNA glycosylases: in DNA repair and beyond.Chromosoma, 2012; 121: 1-20
    Google Scholar
  • 50. Kadioglu E., Sardas S., Aslan S., Isik E., Esat Karakaya A.: Detectionof oxidative DNA damage in lymphocytes of patients with Alzheimer’sdisease. Biomarkers, 2004; 9: 203-209
    Google Scholar
  • 51. Kato S., Hashiguchi K., Igarashi K., Moriwaki T., Yonekura S.,Zhang-Akiyama Q.M.: Structural and functional properties of CiNTH,an endonuclease III homologue of the ascidian Ciona intestinalis: criticalrole of N-terminal region. Genes Genet. Syst., 2012; 87: 115-124
    Google Scholar
  • 52. Kim Y.J., Wilson D.M. 3rd: Overview of base excision repair biochemistry.Curr. Mol. Pharmacol., 2012; 5: 3-13
    Google Scholar
  • 53. Klungland A., Lindahl T.: Second pathway for completion of humanDNA base excision-repair: reconstitution with purified proteinsand requirement for DNase IV (FEN1). EMBO J., 1997; 16: 3341-3348
    Google Scholar
  • 54. Klungland A., Paulsen R., Rolseth V., Yamada Y., Ueno Y., WiikP., Matsuda A., Seeberg E., Bjelland S.: 5-Formyluracil and its nucleosidederivatives confer toxicity and mutagenicity to mammaliancells by interfering with normal RNA and DNA metabolism. Toxicol.Lett., 2001; 119: 71-78
    Google Scholar
  • 55. Knobel P.A., Marti T.M.: Translesion DNA synthesis in the contextof cancer research. Cancer Cell Int., 2011; 11: 39
    Google Scholar
  • 56. Kovacic P., Somanathan R.: Novel, unifying mechanism for aromaticprimary-amines (therapeutics, carcinogens and toxins): electrontransfer, reactive oxygen species, oxidative stress and metabolites.Med. Chem. Commun., 2011; 2: 106-112
    Google Scholar
  • 57. Kubota Y., Nash R.A., Klungland A., Schär P., Barnes D.E., LindahlT.: Reconstitution of DNA base excision-repair with purified humanproteins: interaction between DNA polymerase beta and the XRCC1protein. EMBO J., 1996; 15: 6662-6670
    Google Scholar
  • 58. Kunz B.A., Straffon A.F., Vonarx E.J.: DNA damage-induced mutation:tolerance via translesion synthesis. Mutat. Res., 2000; 451: 169-185
    Google Scholar
  • 59. Larsen E., Reite K., Nesse G., Gran C., Seeberg E., Klungland A.:Repair and mutagenesis at oxidized DNA lesions in the developingbrain of wild-type and Ogg1-/- mice. Oncogene, 2006; 25: 2425-2432
    Google Scholar
  • 60. Leitner-Dagan Y., Sevilya Z., Pinchev M., Kramer R., Elinger D.,Roisman L.C., Rennert H.S., Schechtman E., Freedman L., Rennert G.,Livneh Z., Paz-Elizur T.: N-methylpurine DNA glycosylase and OGG1DNA repair activities: opposite associations with lung cancer risk. J.Natl. Cancer Inst., 2012; 104: 1765-1769
    Google Scholar
  • 61. Lillenes M.S., Espeseth T., Støen M., Lundervold A.J., Frye S.A.,Rootwelt H., Reinvang I., Tønjum T.: DNA base excision repair genepolymorphisms modulate human cognitive performance and declineduring normal life span. Mech. Ageing Dev., 2011; 132: 449-458
    Google Scholar
  • 62. Lillenes M.S., Støen M., Gómez-Muñoz M., Torp R., GüntherC.C., Nilsson L.N., Tønjum T.: Transient OGG1, APE1, PARP1 and Polβexpression in an Alzheimer’s disease mouse model. Mech. AgeingDev., 2013; 134: 467-477
    Google Scholar
  • 63. Lindahl T.: An N-glycosidase from Escherichia coli that releasesfree uracil from DNA containing deaminated cytosine residues. Proc.Natl. Acad. Sci. USA, 1974; 71: 3649-3653
    Google Scholar
  • 64. Liu M., Imamura K., Averill A.M., Wallace S.S., Doublie S.: Structuralcharacterization of a mouse ortholog of human NEIL3 with a markedpreference for single-stranded DNA. Structure, 2013; 21: 1-14
    Google Scholar
  • 65. Lovell M.A., Soman S., Bradley M.A.: Oxidatively modified nucleicacids in preclinical Alzheimer’s disease (PCAD) brain. Mech. AgeingDev., 2011; 132: 443-448
    Google Scholar
  • 66. Lovell M.A., Xie C., Markesbery W.R.: Decreased base excisionrepair and increased helicase activity in Alzheimer’s disease brain.Brain Res., 2000; 855: 116-123
    Google Scholar
  • 67. Mao G., Pan X., Gu L.: Evidence that a mutation in the MLH13’-untranslated region confers a mutator phenotype and mismatchrepair deficiency in patients with relapsed leukemia. J. Biol. Chem.2008; 283: 3211-3216
    Google Scholar
  • 68. Mao G., Pan X., Zhu B.B., Zhang Y., Yuan F., Huang J., Lovell M.A.,Lee M.P., Markesbery W.R., Li G.M., Gu L.: Identification and characterizationof OGG1 mutations in patients with Alzheimer’s disease.Nucleic Acids Res., 2007; 35: 2759-2766
    Google Scholar
  • 69. Markesbery W.R.: Oxidative stress hypothesis in Alzheimer’sdisease. Free Radic. Biol. Med., 1997; 23: 134-147
    Google Scholar
  • 70. Markesbery W.R.: The role of oxidative stress in Alzheimer disease.Arch. Neurol., 1999; 56: 1449-1452
    Google Scholar
  • 71. Marsin S., Vidal A.E., Sossou M., Menissier-de Murcia J., LePage F., Boiteux S., de Murcia G., Radicella J.P.: Role of XRCC1 inthe coordination and stimulation of oxidative DNA damage repairinitiated by the DNA glycosylase hOGG1. J. Biol. Chem., 2003;278: 44068-44074
    Google Scholar
  • 72. Matsumoto Y., Kim K.: Excision of deoxyribose phosphate residuesby DNA polymerase β during DNA repair. Science, 1995; 269:699-702
    Google Scholar
  • 73. Matter B., Malejka-Giganti D., Csallany A.S., Tretyakova N.: Quantitativeanalysis of the oxidative DNA lesion, 2,2-diamino-4-(2-deoxy-β-D-erythro-pentofuranosyl)amino]-5(2H)-oxazolone (oxazolone),in vitro and in vivo by isotope dilution-capillary HPLC-ESI-MS/MS.Nucleic Acids Res., 2006; 34: 5449-5460
    Google Scholar
  • 74. Migliore L., Fontana I., Trippi F., Colognato R., Coppede F., TognoniG., Nucciarone B., Siciliano G.: Oxidative DNA damage in peripheralleukocytes of mild cognitive impairment and AD patients.Neurobiol. Aging, 2005; 26: 567-573
    Google Scholar
  • 75. Miller E., Mrowicka M., Żołyński K., Kędziora A.J.: Stres oksydacyjnyw stwardnieniu rozsianym. Pol. Merk. Lek., 2009; 162: 499-502
    Google Scholar
  • 76. Murphy M.P., Hickman L.J., Eckman C.B., Uljon S.N., Wang R.,Golde T.E.: g-secretase, evidence for multiple proteolytic activitiesand influence of membrane positioning of substrate on generationof amyloid β peptides of varying length. J. Biol. Chem., 1999; 274:11914-11923
    Google Scholar
  • 77. Odell I.D., Barbour J.E., Murphy D.L., Della-Maria J.A., Sweasy J.B.,Tomkinson A.E., Wallace S.S., Pederson D.S.: Nucleosome disruptionby DNA ligase III-XRCC1 promotes efficient base excision repair. Mol.Cell. Biol., 2011; 31: 4623-4632
    Google Scholar
  • 78. Perluigi M., Di Domenico F., Blarzino C., Foppoli C., Cini C., GiorgiA., Grillo C., De Marco F., Butterfield D.A., Schininà M.E., Coccia R.:Effects of UVB-induced oxidative stress on protein expression andspecific protein oxidation in normal human epithelial keratinocytes:a proteomic approach. Proteome Sci., 2010; 18: 13
    Google Scholar
  • 79. Petermann E., Ziegler M., Oei S.L.: ATP-dependent selection betweensingle nucleotide and long patch base excision repair. DNARepair, 2003; 2: 1101-1114
    Google Scholar
  • 80. Prasad R., Dianov G.L., Bohr V.A., Wilson S.H.: FEN1 stimulationof DNA polymerase β mediates an excision step in mammalianlong patch base excision repair. J. Biol. Chem., 2000; 275: 4460-4466
    Google Scholar
  • 81. Reitz C., Mayeux R.: Alzheimer disease: epidemiology, diagnosticcriteria, risk factors and biomarkers. Biochem. Pharmacol.,2014; 88: 640-651
    Google Scholar
  • 82. Risom L., Dybdahl M., Møller P., Wallin H., Haug T., Vogel U.: Repeatedinhalations of diesel exhaust particles and oxidatively damagedDNA in young oxoguanine DNA glycosylase (OGG1) deficientmice. Free Radic. Res., 2007; 41: 172-181
    Google Scholar
  • 83. Robertson A.B., Klungland A., Rognes T., Leiros I.: DNA repair inmammalian cells: Base excision repair: the long and short of it. Cell.Mol. Life Sci., 2009; 66: 981-993
    Google Scholar
  • 84. Robson C.N., Hickson I.D.: Isolation of cDNA clones encodinga human apurinic/apyrimidinic endonuclease that corrects DNArepair and mutagenesis defects in E. coli xth (exonuclease III) mutants.Nucleic Acids Res., 1991; 19: 5519-5523
    Google Scholar
  • 85. Romano A.D., Serviddio G., de Matthaeis A., Bellanti F., VendemialeG.: Oxidative stress and aging. J. Nephrol., 2010; 15: S29-S36
    Google Scholar
  • 86. Sarkaria J.N., Kitange G.J., James C.D., Plummer R., Calvert H.,Weller M., Wick W.: Mechanisms of chemoresistance to alkylatingagents in malignant glioma. Clin. Cancer Res., 2008; 14: 2900-2908
    Google Scholar
  • 87. Scharer O.D.: Chemistry and biology of DNA repair. Angew.Chem. Int. Ed. Engl., 2003; 42: 2946-2974
    Google Scholar
  • 88. Shao C., Roberts K.N., Markesbery W.R., Scheff S.W., Lovell M.A.:Oxidative stress in head trauma in aging. Free Radic. Biol. Med.,2006; 41: 77-85
    Google Scholar
  • 89. Shao C., Xiong S., Li G.M., Gu L., Mao G., Markesbery W.R., LovellM.A.: Altered 8-oxoguanine glycosylase in mild cognitive impairmentand late-stage Alzheimer’s disease brain. Free Radic. Biol.Med., 2008; 45: 813-819
    Google Scholar
  • 90. Sheng Z., Oka S., Tsuchimoto D., Abolhassani N., Nomaru H,Sakumi K., Yamada H., Nakabeppu Y.: 8-Oxoguanine causes neurodegenerationduring MUTYH-mediated DNA base excision repair. J.Clin. Invest., 2012; 122: 4344-4361
    Google Scholar
  • 91. Sjolund A.B., Senejani A.G., Sweasy J.B.: MBD4 and TDG: multifacetedDNA glycosylases with ever expanding biological roles. Mutat.Res., 2013; 743-744: 12-25
    Google Scholar
  • 92. Smith M.A., Perry G., Richey P.L., Sayre L.M., Andreson V.E., Beal M.F.,Kowall N:. Oxidative damage in Alzheimer’s. Nature, 1996; 382: 120-121
    Google Scholar
  • 93. Srivastava D.K., Berg B.J., Prasad R., Molina J.T., Beard W.A.,Tomkinson A.E., Wilson S.H.: Mammalian abasic site base excisionrepair. Identification of the reaction sequence and rate-determiningsteps. J. Biol. Chem., 1998; 273: 21203-21209
    Google Scholar
  • 94. Tan Z., Sun. N, Schreiber S. S.: Immunohistochemical localizationof redox factor-1 (Ref-1) in Alzheimer’s hippocampus. Neuroreport,1998; 9: 2749-2752
    Google Scholar
  • 95. Valavanidis A., Vlachogianni T., Fiotakis C.: 8-hydroxy-2’ -deoxyguanosine(8-OHdG): A critical biomarker of oxidative stress andcarcinogenesis. J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol.Rev. 2009; 27: 120-139
    Google Scholar
  • 96. Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., TelserJ.: Free radicals and antioxidants in normal physiological functionsand human disease. Int. J. Biochem. Cell Biol., 2007; 39: 44-84
    Google Scholar
  • 97. Vilenchik M.M., Knudson A.G.Jr.: Inverse radiation dose-rateeffects on somatic and germ-line mutations and DNA damage rates.Proc. Natl. Acad. Sci. USA, 2000; 97: 5381-5386
    Google Scholar
  • 98. Wallace S.S.: DNA glycosylases search for and remove oxidizedDNA bases. Environ. Mol. Mutagen., 2013; 54: 691-704
    Google Scholar
  • 99. Weiss J. M., Goode E.L., Ladiges W.C., Ulrich C.M.: Polymorphicvariation in hOGG1 and risk of cancer: a review of the functional andepidemiologic literature. Mol. Carcinog., 2005; 42: 127-141
    Google Scholar
  • 100. Weissman L., de Souza-Pinto N.C., Mattson M.P., Bohr V.A.:DNA base excision repair activities in mouse models of Alzheimer’sdisease. Neurobiol. Aging, 2009; 30: 2080-2081
    Google Scholar
  • 101. Weissman L., Jo D.G., Sørensen M. M., de Souza-Pinto N.C.,Markesbery W.R., Mattson M.P.: Defective DNA base excision repairin brain from individuals with Alzheimer’s disease and amnesticmild cognitive impairment. Nucleic Acids Res., 2007; 35: 5545-5555
    Google Scholar
  • 102. Wilson D.M.3rd., Bohr V.A.: The mechanics of base excisionrepair, and its relationship to aging and disease. DNA Repair, 2007;6: 544-559
    Google Scholar
  • 103. Yang J.L., Weissman L., Bohr V.A., Mattson, M.P.: MitochondrialDNA damage and repair in neurodegenerative disorders. DNARepair, 2008; 7: 1110-1120
    Google Scholar
  • 104. Zhang Y., Wang Y., Wu J., Li L.J.: XRCC1 Arg194Trp polymorphismis associated with oral cancer risk: evidence from a meta–analysis. Tumour Biol., 2013; 34: 2321-2327
    Google Scholar
  • 105. Zhao Y., Zhao B.: Oxidative stress and the pathogenesis of Alzheimer’sdisease. Oxid. Med. Cell. Longev., 2013; 2013: 316523
    Google Scholar

Full text

Skip to content