Bax Inhibitor 1 (BI-1) as a conservative regulator of Programmed Cell Death
Mirosław Godlewski 1 , Agnieszka Kobylińska 1Abstract
Programmed cell death (PCD) is a physiological process in which infected or unnecessary cells due to their suicidal death capability can be selectively eliminated. Pro- and antiapoptotic proteins play an important role in the induction or inhibition of this process. Presented article shows property of Bax-1 (BI-1) inhibitor which is one of the conservative protein associated with the endoplasmic reticulum (ER) as well as its cytoprotective role in the regulation of cellular processes. It was shown that: 1) BI-1 is a small protein consisting of 237 amino acids (human protein – 36 kDa) and has 6 (in animals) and 7 (in plants) α-helical transmembrane domains, 2) BI-1 is expressed in all organisms and in most tissues, moreover its level depends on the functional condition of cells and it is involved in the development or reaction to biotic and abiotic stresses, 3) BI-1 forms a pH-dependent Ca2+ channel enabling release of these ions from the ER, 4) cytoprotective effects of BI-1 requires a whole, unchanged C-terminus, 5) BI-1 can interact directly with numerous other proteins, BI-1 protein affects numerous cellular processes, including: counteracting ER stress, oxidative stress, loss of cellular Ca2+ homeostasis as well as this protein influences on sphingolipid metabolism, autophagy, actin polymerization, lysosomal activity and cell proliferation. Studies of BI-1 functions will allow understanding the mechanisms of anticancer therapy or increases the knowledge of crop tolerance to environmental stresses.
References
- 1. Ahn T., Yun C.H., Kim H.R., Chae H.J.: Cardiolipin phosphatidylserine,and BH4 domain of Bcl-2 family regulate Ca2+/H+ antiporteractivity of human Bax inhibitor-1. Cell Calcium, 2010;47: 387–396 2 Arabidopsis Genome Initiative. Analysis of the genome sequenceof the flowering plant Arabidopsis thaliana. Nature, 2000; 408: 796–815
Google Scholar - 2. coordinately regulates apoptosis, cell cycle arrest and cell cycleentry. EMBO J., 2003; 22: 5459–5470
Google Scholar - 3. Aravind L., Dixit V.M., Koonin E.V.: Apoptotic molecular machinery:vastly increased complexity in vertebrates revealed by genomecomparisons. Science, 2001; 291: 1279–1284
Google Scholar - 4. Babaeizad V., Imani J., Kogel K.H., Eichmann R., Hückelhoven R.:Over-expression of the cell death regulator BAX inhibitor-1 in barleyconfers reduced or enhanced susceptibility to distinct fungalpathogens. Theor. Appl. Genet., 2009; 118: 455–463
Google Scholar - 5. Baek D., Nam J., Koo Y.D., Kim D.H., Lee J., Jeong J.C., Kwak S.S.,Chung W.S., Lim C.O., Bahk J.D., Hong J.C., Lee S.Y., Kawai-YamadaM., Uchimiya H., Yun D.J.: Bax-induced cell death of Arabidopsis ismeditated through reactive oxygen-dependent and independentprocesses. Plant Mol. Biol., 2004, 56: 15–27
Google Scholar - 6. Bailly-Maitre B., Bard-Chapeau E., Luciano F., Droin N., BrueyJ.M., Faustin B., Kress C., Zapata J.M., Reed J.C.: Mice lacking bi-1 geneshow accelerated liver regeneration. Cancer Res., 2007; 67: 1442–1450
Google Scholar - 7. Bailly-Maitre B., Fondevila C., Kaldas F., Droin N., Luciano F.,Ricci J.E., Croxton R., Krajewska M., Zapata J.M., Kupiec-WeglinskiJ.W., Farmer D., Reed J.C.: Cytoprotective gene BI-1 is requiredfor intrinsic protection from endoplasmic reticulum stress andischemia–reperfusion injury. Proc. Natl. Acad. Sci. USA, 2006;103: 2809–2814
Google Scholar - 8. Bolduc N., Brisson L.F.: Antisense down regulation of NtBI-1 intobacco BY-2 cells induces accelerated cell death upon carbon starvation.FEBS Lett., 2002; 532: 111–114
Google Scholar - 9. Bolduc N., Lamb G.N., Cessna S.G., Brisson L.F.: Modulation of BaxInhibitor-1 and cytosolic Ca2+ by cytokinins in Nicotiana tabacum cells.Biochimie, 2007; 89: 961–971
Google Scholar - 10. Bolduc N., Ouellet M., Pitre F., Brisson L.F.: Molecular characterizationof two plant BI-1 homologues which suppress Bax-inducedapoptosis in human 293 cells. Planta, 2003; 216: 377–386
Google Scholar - 11. Bonnefoy-Berard N., Aouacheria A., Verschelde C., QuemeneurL., Marçais A., Marvel J.: Control of proliferation by Bcl-2 familymembers. Biochim. Biophys. Acta, 2004; 1644: 159–168
Google Scholar - 12. Brady H.J., Gil-Gómez G., Kirberg J., Berns A.J.: Bax alpha perturbsT cell development and affects cell cycle entry of T cells. EMBOJ., 1996; 15: 6991–7001
Google Scholar - 13. Bultynck G., Kiviluoto S., Henke N., Ivanova H., Schneider L., RybalchenkoV., Luyten T., Nuyts K., De Borggraeve W., BezprozvannyI., Parys J.B., De Smedt H., Missiaen L., Methner A.: The C terminus ofBax inhibitor-1 forms a Ca2+-permeable channel pore. J. Biol. Chem.,2012; 287: 2544–2557
Google Scholar - 14. Carimi F., Zottini M., Formentin E., Terzi M., Lo Schiavo F.: Cytokinins:new apoptotic inducers in plants. Planta, 2003; 216: 413–421
Google Scholar - 15. Carrara G., Saraiva N., Parsons M., Byrne B., Prole D.L., TaylorC.W., Smith G.L.: Golgi anti-apoptotic proteins are highly conservedion channels that affect apoptosis and cell migration. J. Biol. Chem.,2015; 290: 11785–11801
Google Scholar - 16. Castillo K., Rojas-Rivera D., Lisbona F., Caballero B., Nassif M., CourtF.A., Schuck S., Ibar C., Walter P., Sierralta J., Glavic A., Hetz C.: BAX inhibitor- 1 regulates autophagy by controlling the IRE1α branch of theunfolded protein response. EMBO J., 2011: 30: 4465–4478
Google Scholar - 17. Chae H.J., Ke N., Kim H.R., Chen S., Godzik A., Dickman M., Reed J.C.:Evolutionarily conserved cytoprotection provided by Bax Inhibitor-1homologs from animals, plants, and yeast. Gene, 2003; 323: 101–113
Google Scholar - 18. Chae H.J., Kim H.R., Xu C., Bailly-Maitre B., Krajewska M., KrajewskiS., Banares S., Cui J., Digicaylioglu M., Ke N., Kitada S., MonosovE., Thomas M., Kress C.L., Babendure J.R. i wsp.: BI-1 regulatesan apoptosis pathway linked to endoplasmic reticulum stress. Mol.Cell, 2004; 15: 355–366
Google Scholar - 19. Chang Y., Bruni R., Kloss B., Assur Z., Kloppmann E., Rost B.,Hendrickson W.A., Liu Q.: Structural basis for a pH-sensitive calciumleak across membranes. Science, 2014; 344: 1131–1135
Google Scholar - 20. Chen R., Valencia I., Zhong F., McColl K.S., Roderick H.L., BootmanM.D., Berridge M.J., Conway S.J., Holmes A.B., Mignery G.A., Velez P.,Distelhorst C.W.: Bcl-2 functionally interacts with inositol 1,4,5-trisphosphatereceptors to regulate calcium release from the ER in response toinositol 1,4,5-trisphosphate. J. Cell Biol., 2004; 166: 193–203
Google Scholar - 21. Chen X.H., Yu H., Deng H.J., Chen J.X., Mi H.B., Mao L.C.: CucumberBAX inhibitor-1, a conserved cell death suppressor anda negative programmed cell death regulator under cold stress. Biol.Plant., 2013; 57: 684–690
Google Scholar - 22. Cheng C.H., Luo S.W., Wang A.L., Guo Z.X.: Molecular and immuneresponse characterizations of a novel Bax inhibitor-1 gene in pufferfish,Takifugu obscurus. Fish Physiol. Biochem., 2017; 43: 965–975
Google Scholar - 23. Chipuk J.E., Moldoveanu T., Llambi F., Parsons M.J., Green D.R.:The BCL-2 family reunion. Mol. Cell, 2010; 37: 299–310
Google Scholar - 24. Chonghaile T.N., Gupta S., John M., Szegezdi E., Logue S.E., SamaliA.: BCL-2 modulates the unfolded protein response by enhancingsplicing of X-box binding protein-1. Biochem. Biophys. Res.Commun., 2015; 466: 40–45
Google Scholar - 25. Dion M., Chamberland H., St-Michel C., Plante M., Darveau A.,Lafontaine J.G., Brisson L.F.: Detection of a homologue of bcl-2 inplant cells. Biochem. Cell Biol., 1997; 75: 457–461
Google Scholar - 26. Du Z.Q., Lan J.F., Weng Y.D., Zhao X.F., Wang J.X.: BAX inhibitor-1 silencingsuppresses white spot syndrome virus replication in red swampcrayfish, Procambarus clarkii. Fish Shellfish Immunol., 2013; 35: 46–53
Google Scholar - 27. Duan Y., Zhang W., Li B., Wang Y., Li K., Sodmergen H., Zhang Y.,Li X.: An endoplasmic reticulum response pathway mediates programmedcell death of root tip induced by water stress in Arabidopsis.New Phytol., 2010; 186: 681–695
Google Scholar - 28. Eichmann R., Bischof M., Weis C., Shaw J., Lacomme C., SchweizerP., Duchkov D., Hensel G., Kumlehn J., Hückelhoven R.: BAX inhibitor- 1 is required for full susceptibility of barley to powdery mildew.Mol. Plant Microbe Interact., 2010; 23: 1217–1227
Google Scholar - 29. Eichmann R., Schultheiss H., Kogel K.H., Hückelhoven R.: Thebarley apoptosis suppressor homologue BAX inhibitor-1 compromisesnonhost penetration resistance of barley to the inappropriatepathogen Blumeria graminis f. sp tritici. Mol. Plant – Microbe Interact.,2004; 17: 484–490
Google Scholar - 30. Fingrut O., Flescher E.: Plant stress hormones suppress the proliferationand induce apoptosis in human cancer cells. Leukemia,2002; 16: 608–616
Google Scholar - 31. Gaguancela O.A., Zúñiga L.P., Arias A.V., Halterman D., Flores F.J.,Johansen I.E., Wang A., Yamaji Y., Verchot J.: The IRE1/bZIP60 pathwayand Bax inhibitor 1 suppress systemic accumulation of potyvirusesand potexviruses in Arabidopsis and Nicotiana benthamianaplants. Mol. Plant Microbe Interact., 2016; 29: 750–766
Google Scholar - 32. Galluzzi L., Vitale I., Abrams J.M., Alnemri E.S., Baehrecke E.H.,Blagosklonny M.V., Dawson T.M., Dawson V.L., El-Deiry W.S., Fulda S.,Gottlieb E., Green D.R., Hengartner M.O., Kepp O., Knight R.A. i wsp.:Molecular definitions of cell death subroutines: recommendationsof the Nomenclature Committee on Cell Death 2012. Cell Death Differ.,2012; 19: 107–120
Google Scholar - 33. Godlewski M., Kobylińska A.: Programowana śmierć komórek –strategia utrzymania komórkowej homeostazy organizmu. PostępyHig. Med. Dośw., 2016; 70: 1229–1244
Google Scholar - 34. Greider C.A., Chattopadhyay C., Parkhurstb C., Yang E.: BCL-xL andBCL2 delay Myc-induced cell cycle entry through elevation of p27 andinhibition of G1 cyclin-dependent kinases. Oncogene, 2002; 21: 7765–7775
Google Scholar - 35. Grzmil M., Kaulfuss S., Thelen P., Hemmerlein B., Schweyer S., ObenauerS., Kang T.W., Burfeind P.: Expression and functional analysis ofBax inhibitor-1 in human breast cancer cells. J. Pathol., 2006; 208: 340–349
Google Scholar - 36. Grzmil M., Thelen P., Hemmerlein B., Schweyer S., Voigt S., MuryD., Burfeind P.: Bax inhibitor-1 is overexpressed in prostate cancer andits specific down-regulation by RNA interference leads to cell deathin human prostate carcinoma cells. Am. J. Pathol., 2003; 163: 543–552
Google Scholar - 37. Hanada M., Aimé-Sempé C., Sato T., Reed J.C.: Structure-functionanalysis of Bcl-2 protein. Identification of conserved domainsimportant for homodimerization with Bcl-2 and heterodimerizationwith Bax. J. Biol. Chem., 1995; 270: 11962–11969
Google Scholar - 38. Hemrajani C., Berger C.N., Robinson K.S., Marchès O., MousnierA., Frankel G.: NleH effectors interact with Bax inhibitor-1 to blockapoptosis during enteropathogenic Escherichia coli infection. Proc.Natl. Acad. Sci. USA, 2010; 107: 3129–3134
Google Scholar - 39. Henke N., Lisak D.A., Schneider L., Habicht J., Pergande M., MethnerA.: The ancient cell death suppressor BAX inhibitor-1. CellCalcium, 2011; 50: 251–260
Google Scholar - 40. Herbert R.J., Vilhar B., Evett C., Orchard C.B., Rogers H.J., DaviesM.S., Francis D.: Ethylene induces cell death at particularphases of the cell cycle in the tobacco TBY-2 cell line. J. Exp. Bot.,2001; 52: 1615–1623
Google Scholar - 41. Hetz C., Bernasconi P., Fisher J., Lee A.H., Bassik M.C., AntonssonB., Brandt G.S., Iwakoshi N.N., Schinzel A., Glimcher L.H., KorsmeyerS.J.: Proapoptotic BAX and BAK modulate the unfolded protein responseby a direct interaction with IRE1α. Science, 2006; 312: 572–576
Google Scholar - 42. Hetz C., Glimcher L.H.: XBP-1 and the UPRosome: mastering secretorycell function. Curr. Immunol. Rev., 2008; 4: 1–10
Google Scholar - 43. Hetz C., Glimcher L.H.: Fine-tuning of the unfolded protein response:Assembling the IRE1α interactome. Mol. Cell, 2009; 35: 551–561
Google Scholar - 44. Hoeberichts F.A., Woltering E.J.: Multiple mediators of plant programmedcell death: Interplay of conserved cell death mechanismsand plant-specific regulators. Bioessays, 2003; 25: 47–57
Google Scholar - 45. Huang D.C., O’Reilly L.A., Strasser A., Cory S.: The anti-apoptosisfunction of Bcl-2 can be genetically separated from its inhibitoryeffect on cell cycle entry. EMBO J., 1997; 16: 4628–4638
Google Scholar - 46. Hückelhoven R.: BAX inhibitor-1, an ancient cell death suppressorin animals and plants with prokaryotic relatives. Apoptosis,2004; 9: 299–307
Google Scholar - 47. Hückelhoven R., Fodor., J., Preis C., Kogel K.H.: Hypersensitivecell death and papilla formation in barley attacked by the powderymildew fungus are associated with hydrogen peroxide but not withsalicylic acid accumulation. Plant Physiol., 1999; 119: 1251–1260
Google Scholar - 48. Ihara-Ohori Y., Nagano M., Muto S., Uchimiya H., Kawai-YamadaM.: Cell death suppressor Arabidopsis Bax inhibitor-1 is associatedwith calmodulin binding and ion homeostasis. Plant Physiol., 2007;143: 650–660
Google Scholar - 49. Isbat M., Zeba N., Kim S.R., Hong C.B.: A BAX inhibitor-1 gene inCapsicum annuum is induced under various abiotic stresses and endowsmulti-tolerance in transgenic tobacco. J. Plant Physiol., 2009;166: 1685–1693
Google Scholar - 50. Ishii Y., Hori Y., Sakai S., Honma Y.: Control of differentiationand apoptosis of human myeloid leukemia cells by cytokinins andcytokinin nucleosides, plant redifferentiation-inducing hormones.Cell Growth Differ., 2002; 13: 19–26
Google Scholar - 51. Ishikawa T., Aki T., Yanagisawa S., Uchimiya H., Kawai-YamadaM.: Overexpression of BAX inhibitor-1 links plasma membrane microdomainproteins to stress. Plant Physiol., 2015; 169: 1333–1343
Google Scholar - 52. Janumyan Y.M., Sansam C.G., Chattopadhyay A., Cheng N., SoucieE.L., Penn L.Z., Andrews D., Knudson C.M., Yang E.: Bcl-xL/Bcl-
Google Scholar - 53. Jarosch B., Kogel K.H., Schaffrath U.: The ambivalence of thebarley Mlo locus: mutations conferring resistance against powderymildew (Blumeria graminis f.sp. hordei) enhance susceptibility to therice blast fungus Magnaporte grisea. Mol. Plant – Microbe Interact.,1999; 12: 508–514
Google Scholar - 54. Jean J.C., Oakes S.M., Joyce-Brady M.: The Bax inhibitor-1 geneis differentially regulated in adult testis and developing lung bytwo alternative TATA-less promoters, Genomics, 1999; 57: 201–208
Google Scholar - 55. Kawai M., Pan L., Reed J.C., Uchimiya H.: Evolutionally conservedplant homologue of the Bax inhibitor-1 (BI-1) gene capable of suppressingBax-induced cell death in yeast. FEBS Lett., 1999; 464: 143–147
Google Scholar - 56. Kawai-Yamada M., Hori Z., Ogawa T., Ihara-Ohori Y., Tamura K.,Nagano M., Ishikawa T., Uchimiya H.: Loss of calmodulin binding toBax inhibitor-1 affects Pseudomonas-mediated hypersensitive response-associated cell death in Arabidopsis thaliana. J. Biol. Chem.,2009; 284: 27998–28003
Google Scholar - 57. Kawai-Yamada M., Ohori Y., Uchimiya H.: Dissection of ArabidopsisBax inhibitor-1 suppressing Bax-, hydrogen peroxide-, andsalicylic acid-induced cell death. Plant Cell, 2004; 16: 21–32
Google Scholar - 58. Kim H.P., Pae H.O., Back S.H., Chung S.W., Woo J.M., Son Y., ChungH.T.: Heme oxygenase-1 comes back to endoplasmic reticulum. Biochem.Biophys. Res. Commun., 2011; 404: 1–5
Google Scholar - 59. Kim H.R., Lee G.H., Cho E.Y., Chae S.W., Ahn T., Chae H.J.: Bax inhibitor- 1 regulates ER stress-induced ROS accumulation through theregulation of cytochrome P450 2E1. J. Cell Sci., 2009; 122: 1126–1133
Google Scholar - 60. Kim H.R., Lee G.H., Ha K.C., Ahn T., Moon J.Y., Lee B.J., Cho S.G.,Kim S., Seo Y.R., Shin Y.J., Chae S.W., Reed J.C., Chae H.J.: Bax inhibitor- 1 is a pH-dependent regulator of Ca2+ channel activity in theendoplasmic reticulum. J. Biol. Chem., 2008; 283: 15946–15955
Google Scholar - 61. Kim J.G., Nonneman D., Vallet J.L., Christenson R.K.: Linkagemapping of the porcine testis enhanced gene transcript (TEGT) geneto chromosome 5. Anim. Genet., 2003; 34: 152–153
Google Scholar - 62. Kim J.H., Lee E.R., Jeon K., Choi H.Y., Lim H., Kim S.J., Chae H.J.,Park S.H., Kim S., Seo Y.R., Kim J.H., Cho S.G.: Role of BI-1 (TEGT)–mediated ERK1/2 activation in mitochondria-mediated apoptosisand splenomegaly in BI-1 transgenic mice. Biochim. Biophys. Acta,2012; 1823: 876–888
Google Scholar - 63. Kiviluoto S., Schneider L., Luyten T., Vervliet T., Missiaen L.,De Smedt H., Parys J.B., Methner A., Bultynck G.: Bax inhibitor-1 isa novel IP3 receptor-interacting and –sensitizing protein. Cell DeathDis., 2012; 3: e367
Google Scholar - 64. Kobylińska A., Posmyk M.M.: Melatonin restricts Pb-inducedPCD by enhancing BI-1 expression in tobacco suspension cells. Biometals,2016: 29: 1059–1074
Google Scholar - 65. Kovács J., Poór P., Szepesi Á., Tari I.: Salicylic acid induced cysteineprotease activity during programmed cell death in tomatoplants. Acta Biol. Hung., 2016; 67: 148–158
Google Scholar - 66. Krajewska M., Xu L., Xu W., Krajewski S., Kress C.L., Cui J., Yang L.,Irie F., Yamaguchi Y., Lipton S.A., Reed J.C.: Endoplasmic reticulum proteinBI-1 modulates unfolded protein response signaling and protectsagainst stroke and traumatic brain injury. Brain Res., 2011; 1370: 227–237
Google Scholar - 67. Lacomme C., Santa Cruz S.: Bax-induced cell death in tobaccois similar to the hypersensitive response. Proc. Natl. Acad. Sci. USA,1999; 96: 7956–7961
Google Scholar - 68. Lam E., Kato N., Lawton M.: Programmed cell death, mitochondriaand the plant hypersensitive response. Nature, 2001; 411: 848–853
Google Scholar - 69. Lee G.H., Ahn T., Kim D.S., Park S.J., Lee Y.C., Yoo W.H., Jung S.J.,Yang J.S., Kim S., Muhlrad A., Seo Y.R., Chae S.W., Kim H.R., ChaeH.J.: Bax inhibitor 1 increases cell adhesion through actin polymerization:involvement of calcium and actin binding. Mol. Cell. Biol.,2010; 30: 1800–1813
Google Scholar - 70. Lee G.H., Hwang J.D., Choi J.Y., Park H.J., Cho J.Y., Kim K.W. ChaeH.J., Kim H.R.: An acidic pH environment increases cell death andpro-inflammatory cytokine release in osteoblasts: the involvementof BAX inhibitor-1. Int. J. Biochem. Cell Biol., 2011; 43: 1305–1317
Google Scholar - 71. Lee G.H., Kim D.S., Kim H.T., Lee J.W., Chung C.H., Ahn T., Lim J.M.,Kim I.K., Chae H.J., Kim H.R.: Enhanced lysosomal activity is involvedin Bax inhibitor-1-induced regulation of the endoplasmic reticulum(ER) stress response and cell death against ER stress involvement ofvacuolar H+-ATPase (V-ATPase). J. Biol. Chem., 2011; 286: 24743–24753
Google Scholar - 72. Lee G.H., Kim H.K., Chae S.W., Kim D.S., Ha K.C., Cuddy M., KressC., Reed J.C., Kim H.R., Chae H.J.: Bax inhibitor-1 regulates endoplasmicreticulum stress-associated reactive oxygen species andheme oxygenase-1 expression. J. Biol. Chem., 2007; 282: 21618–21628
Google Scholar - 73. Lee G.H., Kim H.R., Chae H.J.: Bax inhibitor-1 regulates theexpression of P450 2E1 through enhanced lysosome activity. Int. J.Biochem. Cell Biol., 2012; 44: 600–611
Google Scholar - 74. Lee G.H., Oh K.J., Kim H.R., Han H.S., Lee H.Y., Park K.G., NamK.H., Koo S.H., Chae H.J.: Effect of BI-1 on insulin resistance throughregulation of CYP2E1. Sci. Rep., 2016; 6: 32229
Google Scholar - 75. Lee G.H., Yan C., Shin S.J., Hong S.C., Ahn T., Moon A., Park S.J.,Lee Y.C., Yoo W.H., Kim H.T., Kim D.S., Chae S.W., Kim H.R., Chae H.J.:BAX inhibitor-1 enhances cancer metastasis by altering glucosemetabolism and activating the sodium-hydrogen exchanger: thealteration of mitochondrial function. Oncogene, 2010; 29: 2130–2141
Google Scholar - 76. Lesniewski M., Das S., Skomorovska-Prokvolit Y., Wang F.Z., PellettP.E.: Primate cytomegalovirus US12 gene family: a distinct and diverseclade of seven-transmembrane proteins. Virology, 2006; 354: 286–298
Google Scholar - 77. Lima R.T., Martins L.M., Guimarães J.E., Sambade C., VasconcelosM.H.: Specific downregulation of bcl-2 and xIAP by RNAi enhancesthe effects of chemotherapeutic agents in MCF-7 human breast cancercells. Cancer Gene Ther., 2004; 11: 309–316
Google Scholar - 78. Linette G.P., Li Y., Roth K., Korsmeyer S.J.: Cross talk betweencell death and cell cycle progression: BCL-2 regulates NFAT-mediatedactivation. Proc. Natl. Acad. Sci. USA, 1996; 93: 9545–9552
Google Scholar - 79. Lisak D., Schacht T., Gawlitza A., Albrecht P., Aktas O., KoopB., Gliem M., Hofstetter H.H., Zanger K., Bultynck, G., Parys J.B., DeSmedt H., Kindler T., Adams-Quack P., Hahn M. i wsp.: Less BAX inhibitor- 1 is a Ca2+ channel critically important for immune cell functionand survival. Cell Death Differ., 2016; 23: 358–368
Google Scholar - 80. Lisbona F., Rojas-Rivera D., Thielen P., Zamorano S., Todd D.,Martinon F., Glavic A., Kress C., Lin J.H., Walter P., Reed J.C., GlimcherL.H., Hetz C.: BAX inhibitor-1 is a negative regulator of the ER stresssensor IRE1α. Mol. Cell. 2009; 33: 679–691
Google Scholar - 81. Liu Q.: TMBIM-mediated Ca2+ homeostasis and cell death. Biochim.Biophys. Acta, 2017; 1864: 850–857
Google Scholar - 82. Maggio C., Barbante A., Ferro F., Frigerio L., Pedrazzini E.: Intracellularsorting of the tail-anchored protein cytochrome b5 inplants: a comparative study using different isoforms from rabbitand Arabidopsis. J. Exp. Bot., 2007; 58: 1365–1379
Google Scholar - 83. Matsumura H., Nirasawa S., Kiba A., Urasaki N., Saitoh H., ItoM., Kawai-Yamada M., Uchimiya H., Terauchi R.: Overexpression ofBax inhibitor suppresses the fungal elicitor-induced cell death inrice (Oryza sativa L.) cells. Plant J., 2003; 33, 425–434
Google Scholar - 84. Mitsuhara I., Malik K.A., Miura M., Ohashi Y.: Animal cell-deathsuppressors bcl-xL and Ced-9 inhibit cell death in tobacco plants.Curr. Biol., 1999; 9: 775–778
Google Scholar - 85. Nagano M., Ihara-Ohori Y., Imai H., Inada N., Fujimoto M., TsutsumiN., Uchimiya H., Kawai-Yamada M.: Functional association ofcell death suppressor, Arabidopsis Bax inhibitor-1, with fatty acid2-hydroxylation through cytochrome b5., Plant J., 2009; 58: 122–134
Google Scholar - 86. O’Reilly L.A., Huang D.C., Strasser A.: The cell death inhibitorBcl-2 and its homologues influence control of cell cycle entry. EMBOJ., 1996; 15: 6979–6990
Google Scholar - 87. Pattingre S., Tassa A., Qu X., Garuti R., Liang X.H., MizushimaN., Packer M., Schneider M.D., Levine B.: Bcl-2 antiapoptotic proteinsinhibit Beclin 1-dependent autophagy. Cell, 2005; 122: 927–939
Google Scholar - 88. Reimers K., Choi C.Y., Bucan V., Vogt P.M.: The Bax Inhibitor-1 (BI-1)family in apoptosis and tumorigenesis. Curr. Mol. Med., 2008; 8: 148–156
Google Scholar - 89. Robinson K.S., Clements A., Williams A.C., Berger C.N., Frankel G.:Bax inhibitor 1 in apoptosis and disease. Oncogene, 2011; 30: 2391–2400
Google Scholar - 90. Rodrigez D.A., Zamorano S., Lisbona F., Rojas-Rivera D., Urra H.,Cubillos-Ruiz J.R., Armisen R., Henriquez D.R., Cheng E.H., Letek M.,Vaisar T., Irrazabal T., Gonzalez-Billault C., Letai A., Pimentel-MuiñosF.X. i wsp.: BH3-only proteins are part of a regulatory network thatcontrol the sustained signalling of the unfolded protein responsesensor IRE 1α. EMBO J., 2012; 31: 2322–2335
Google Scholar - 91. Rojas-Rivera D., Hetz C.: TMBIM protein family: ancestral regulatorsof cell death. Oncogene, 2015; 34: 269–280
Google Scholar - 92. Rong Y.P., Aromolaran A.S., Bultynck G., Zhong F., Li X., McCollK., Matsuyama S., Herlitze S., Roderick H.L., Bootman M.D., MigneryG.A., Parys J.B., De Smedt H., Distelhorst C.W.: Targeting Bcl-2-IP3receptor interaction to reverse Bcl-2’s inhibition of apoptotic calciumsignals. Mol. Cell, 2008; 31: 255–265
Google Scholar - 93. Sanchez P., de Torres-Zabala M., Grant M.: AtBI-1, a plant homologueof Bax inhibitor-1, suppresses Bax-induced cell death inyeast and is rapidly upregulated during wounding and pathogenchallenge. Plant J., 2000; 21: 393–399
Google Scholar - 94. Sanders D., Pelloux J., Brownlee C., Harper J.F.: Calcium at thecrossroads of signaling. Plant Cell, 2002; 14: S401–S417
Google Scholar - 95. Sano R., Hou Y.C., Hedvat M., Correa R.G., Shu C.W., KrajewskaM., Diaz P.W., Tamble C.M., Quarato G., Gottlieb R.A., Yamaguchi M.,Nizet V., Dahl R., Thomas D.D., Tait S.W. i wsp.: Endoplasmic reticulumprotein BI-1 regulates Ca2+-mediated bioenergetics to promoteautophagy. Genes Dev., 2012; 26: 1041–1054
Google Scholar - 96. Saraiva N., Prole D.L., Carrara G., Maluquer de Motes C., JohnsonB.F., Byrne B., Taylor C.W., Smith G.L.: Human and viral Golgi anti–apoptotic proteins (GAAPs) oligomerize via different mechanismsand monomeric GAAP inhibits apoptosis and modulates calcium. J.Biol. Chem., 2013; 288: 13057–13067
Google Scholar - 97. Schenkman J.B., Jansson I.: The many roles of cytochrome b5.Pharmacol. Ther., 2003; 97: 139–152
Google Scholar - 98. Staubach S., Hanisch F.G.: Lipid rafts: signaling and sorting platformsof cells and their roles in cancer. Expert. Rev. Proteomics,2011; 8: 263–277
Google Scholar - 99. Surh Y.J., Kundu J.K., Li M.H., Na H.K., Cha Y.N.: Role of Nrf2–mediated heme oxygenase-1 upregulation in adaptive survival responseto nitrosative stress. Arch. Pharm. Res., 2009; 32: 1163–1176
Google Scholar - 100. Walter L., Marynen P., Szpirer J., Levan G., Günther E.: Identificationof a novel conserved human gene TEGT. Genomics, 1995; 28: 301–304
Google Scholar - 101. Wang J., Bayles K.W.: Programmed cell death in plants: lessonsfrom bacteria? Trends Plant Sci., 2013; 18: 133–139
Google Scholar - 102. Wang X., Tang C., Huang X., Li F., Chen X., Zhang G., Sun Y., HanD., Kang Z.: Wheat BAX inhibitor-1 contributes to wheat resistanceto Puccinia striiformis. J. Exp. Bot., 2012; 63: 4571–4584
Google Scholar - 103. Watanabe N., Lam E.: Arabidopsis Bax inhibitor-1 functionsas an attenuator of biotic and abiotic types of cell death. Plant J.,2006; 45: 884–894
Google Scholar - 104. Watanabe N., Lam E.: BAX inhibitor-1 modulates endoplasmicreticulum stress-mediated programmed cell death in Arabidopsis. J.Biol. Chem., 2008; 283: 3200–3210
Google Scholar - 105. Weis C., Pfeilmeier S., Glawischnig E., Isono E., Pachl F., HahneH., Kuster B., Eichmann R., Hückelhoven R.: Co-immunoprecipitation-based identification of putative Bax inhibitor-1-interactingproteins involved in cell death regulation and plant-powdery mildewinteractions. Mol. Plant Pathol., 2013; 14: 791–802
Google Scholar - 106. Westphalen B.C., Wessig J., Leypoldt F., Arnold S., Methner A.:BI-1 protects cells from oxygen glucose deprivation by reducingthe calcium content of the endoplasmic reticulum. Cell Death Differ.,2005; 12: 304–306
Google Scholar - 107. Xu C., Xu W., Palmer A.E., Reed J.C.: BI-1 regulates endoplasmicreticulum Ca2+ homeostasis downstream of Bcl-2 family proteins. J.Biol. Chem., 2008; 283: 11477–11484
Google Scholar - 108. Xu Q., Reed J.C.: Bax inhibitor-1, a mammalian apoptosis suppressoridentified by functional screening in yeast. Mol. Cell, 1998;1: 337–346
Google Scholar - 109. Yamada T., Ichimura K., Kanekatsu M., van Doorn W.G.: Homologsof genes associated with programmed cell death in animalcells are differentially expressed during senescence of Ipomoea nilpetals. Plant Cell Physiol., 2009; 50: 610–625
Google Scholar - 110. Yoshinaga K., Arimura S.I., Hirata A., Niwa Y., Yun D.J., TsutsumiN., Uchimiya H., Kawai-Yamada M.: Mammalian Bax initiatesplant cell death through organelle destruction. Plant Cell. Rep.,2005; 24: 408–417
Google Scholar - 111. Yu L.H., Kawai-Yamada M., Naito M., Watanabe K., Reed J.C.,Uchimiya H.: Induction of mammalian cell death by a plant Bax inhibitor.FEBS Lett., 2002; 512: 308–312
Google Scholar - 112. Yue H., Nie S., Xing D.: Over-expression of Arabidopsis Bax inhibitor- 1 delays methyl jasmonate-induced leaf senescence by suppressingthe activation of MAP kinase 6. J. Exp. Bot., 2012; 63: 4463–4474
Google Scholar - 113. Yun C.H., Chae H.J., Kim H.R., Ahn T.: Doxorubicin- and daunorubicin-induced regulation of Ca2+ and H+ fluxes through humanBax inhibitor-1 reconstituted into membranes. J. Pharm. Sci., 2012;101: 1314–1326
Google Scholar - 114. Zhang M., Li X., Zhang Y., Zhou K.: Bax inhibitor-1 mediatesapoptosis-resistance in human nasopharyngeal carcinoma cells.Mol. Cell Biochem., 2010; 333: 1–7
Google Scholar - 115. Zhou J., Zhu T., Hu C., Li H., Chen G., Xu G., Wang S., Zhou J.,Ma D.: Comparative genomics and function analysis on BI1 family.Comput. Biol. Chem., 2008; 32: 159–162
Google Scholar