Bioactive lipids in kidney physiology and pathophysiology

COMMENTARY ON THE LAW

Bioactive lipids in kidney physiology and pathophysiology

Daria Sałata 1 , Barbara Dołęgowska 1

1. Zakład Analityki Medycznej, Katedra Diagnostyki Laboratoryjnej i Medycyny Molekularnej, Pomorski Uniwersytet Medyczny, Szczecin

Published: 2014-01-24
DOI: 10.5604/17322693.1086412
GICID: 01.3001.0003.1181
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 73-83

 

Abstract

Lipids not only have structural functions, but also play an important role as signaling and regulatory molecules and participate in many cellular processes such as proliferation, differentiation, migration, and apoptosis. Bioactive lipids act both as extracellular mediators, which are associated with receptors on the surface of cells, and intracellular mediators triggering different signal pathways. They are present and active in physiological conditions, and are also involved in the pathogenesis of inflammation, asthma, cancer, diabetes, and hypertension. Bioactive lipids such as derivatives of arachidonic acid and sphingolipids have an important role in renal development, physiology and in many renal diseases. Some of them are potential indicators of kidney damage degree and/or function of the transplanted kidneys.

References

  • 1. Alonso-Galicia M., Maier K.G., Greene A.S., Cowley A.W.Jr., RomanR.J: Role of 20-hydroxyeicosatetraenoic acid in the renal and vasoconstrictoractions of angiotensin II. Am. J. Physiol. Regul. Integr.Comp. Physiol., 2002; 283: R60-R68 2 Astarita G., Piomelli D.: Lipidomic analysis of endocannabinoidmetabolism in biological samples. J. Chromatogr. B Analyt. Technol.Biomed. Life Sci., 2009; 877: 2755-2767
    Google Scholar
  • 2. receptors part of a protective system? Prog. Lipid. Res., 2011;50: 193-211
    Google Scholar
  • 3. Awad A.S., Ye H., Huang L., Li L., Foss F.W.Jr., Macdonald T.L., LynchK.R., Okusa M.D.: Selective sphingosine 1-phosphate 1 receptor activationreduces ischemia–reperfusion injury in mouse kidney. Am.J. Physiol. Renal Physiol., 2006; 290: F1516-F1524
    Google Scholar
  • 4. Basnakian A.G., Ueda N., Hong X., Galitovsky V.E., Yin X., Shah S.V.:Ceramide synthase is essential for endonuclease-mediated death ofrenal tubular epithelial cells induced by hypoxia-reoxygenation. Am.J. Physiol. Renal. Physiol., 2005; 288: F308-F314
    Google Scholar
  • 5. Basu S.: F2-isoprostanes in human health and diseases: frommolecular mechanisms to clinical implications. Antioxid. RedoxSignal., 2008; 10: 1405-1434
    Google Scholar
  • 6. Bieberich E.: It’s a lipid’s world: bioactive lipid metabolism andsignaling in neural stem cell differentiation. Neurochem. Res., 2012;37: 1208-1229
    Google Scholar
  • 7. Boini K.M., Zhang C., Xia M., Poklis J.L., Li P.L.: Role of sphingolipidmediator ceramide in obesity and renal injury in mice fed a high-fatdiet. J. Pharmacol. Exp. Ther., 2010; 334: 839-846
    Google Scholar
  • 8. Burdan F., Chałas A., Szumiło J.: Cyklooksygenaza i prostanoidy– znaczenie biologiczne. Postępy Hig. Med. Dośw., 2006; 60: 129-141
    Google Scholar
  • 9. Câmara N.O., Martins J.O., Landgraf R.G., Jancar S.: Emergingroles for eicosanoids in renal diseases. Curr. Opin. Nephrol. Hypertens.,2009; 18: 21-27
    Google Scholar
  • 10. Cheng H.F., Harris R.C.: Renal effects of non-steroidal anti-inflammatorydrugs and selective cyclooxygenase-2 inhibitors. Curr.Pharm. Des., 2005; 11: 1795-1804
    Google Scholar
  • 11. de Vries B., Matthijsen R.A., van Bijnen A.A., Wolfs T.G., BuurmanW.A.: Lysophosphatidic acid prevents renal ischemia-reperfusioninjury by inhibition of apoptosis and complement activation. Am.J. Pathol., 2003; 163: 47-56
    Google Scholar
  • 12. Dirican M., Sarandol E., Serdar Z., Ocak N., Dilek K.: Oxidative statusand prevalent cardiovascular disease in patients with chronic renalfailure treated by hemodialysis. Clin. Nephrol., 2007; 68: 144-150
    Google Scholar
  • 13. Dobrian A.D., Lieb D.C., Cole B.K., Taylor-Fishwick D.A., ChakrabartiS.K., Nadler J.L.: Functional and pathological roles of the 12- and15-lipoxygenases. Prog. Lipid Res., 2011; 50: 115-131
    Google Scholar
  • 14. Dołęgowska B., Błogowski W., Domański L.: Association betweenthe perioperative antioxidative ability of platelets and early posttransplantfunction of kidney allografts: a pilot study. PLoS One,2012; 7: e29779
    Google Scholar
  • 15. Dołegowska B., Błogowski W., Kedzierska K., Safranow K.,Jakubowska K., Olszewska M., Rać M., Chlubek D., Ciechanowski K.:Platelets arachidonic acid metabolism in patients with essentialhypertension. Platelets, 2009; 20: 242-249
    Google Scholar
  • 16. Dolegowska B., Blogowski W., Safranow K., Domanski L., JakubowskaK., Olszewska M.: Lipoxygenase-derived hydroxyeicosatetraenoicacids – novel perioperative markers of early post-transplant allograftfunction? Nephrol. Dial. Transplant., 2010; 25: 4061-4067
    Google Scholar
  • 17. Dołegowska B., Chlubek D.: Izoprostany – nowe możliwości ocenynasilenia stresu oksydacyjnego. Przegl. Lek., 2005; 61: 1410-1414
    Google Scholar
  • 18. Dołęgowska B., Chlubek D.: Nadrodzina lipoksygenaz – strukturai funkcje w metabolizmie. Postępy Biochem., 2002; 48: 275-286
    Google Scholar
  • 19. Ece A., Gürkan F., Kervancioglu M., Kocamaz H., Günes A., AtamerY., Selek S.: Oxidative stress, inflammation and early cardiovasculardamage in children with chronic renal failure. Pediatr. Nephrol.,2006; 21: 545-552
    Google Scholar
  • 20. Freedman J.E.: Oxidative stress and platelets. Arterioscler.Thromb. Vasc. Biol., 2008; 28: s11-s16
    Google Scholar
  • 21. Galve-Roperh I., Sánchez C., Cortés M.L., Gómez del Pulgar T.,Izquierdo M., Guzmán M.: Anti-tumoral action of cannabinoids: involvementof sustained ceramide accumulation and extracellularsignal-regulated kinase activation. Nat. Med., 2000; 6: 313-319
    Google Scholar
  • 22. Gao J., Zhang D., Yang X., Zhang Y., Li P., Su X.: Lysophosphatidicacid and lovastatin might protect kidney in renal I/R injury by downregulatingMCP-1 in rat. Ren. Fail., 2011; 33: 805-810
    Google Scholar
  • 23. Gault C.R., Obeid L.M., Hannun Y.A.: An overview of sphingolipidmetabolism: from synthesis to breakdown. Adv. Exp. Med. Biol.,2010; 688: 1-23
    Google Scholar
  • 24. Gawaz M., Langer H., May A.E.: Platelets in inflammation andatherogenesis. J. Clin. Invest., 2005; 115: 3378-3384
    Google Scholar
  • 25. González R.M., Puchades M.J., García R.R., Saez G., Tormos M.C.,Miquel A.: Effect of oxidative stress in patients with chronic renalfailure. Nefrologia, 2006; 26: 218-225
    Google Scholar
  • 26. González-Núnez D., Claria J., Rivera F., Poch E.: Increased levelsof 12(S)-HETE in patients with essential hypertension. Hypertension,2001; 37: 334-338
    Google Scholar
  • 27. Goto S., Nakamura H., Morooka H., Terao Y., Shibata O., SumikawaK.: Role of reactive oxygen in phospholipase A2 activationby ischemia/reperfusion of the rat kidney. J. Anesth., 1999; 13: 90-93
    Google Scholar
  • 28. Hannun Y.A., Obeid L.M.: Principles of bioactive lipid signalling:lessons from sphingolipids. Nat. Rev. Mol. Cell Biol., 2008; 9: 139-150
    Google Scholar
  • 29. Hao C.M., Breyer M.D.: Physiologic and pathophysiologic rolesof lipid mediators in the kidney. Kidney Int., 2007; 71: 1105-1115
    Google Scholar
  • 30. Hao C.M., Breyer M.D.: Roles of lipid mediators in kidney injury.Semin. Nephrol., 2007; 27: 338-351
    Google Scholar
  • 31. Harris R.C., McKanna J.A., Akai Y., Jacobson H.R., Dubois R.N.,Breyer M.D.: Cyclooxygenase-2 is associated with the macula densaof rat kidney and increases with salt restriction. J. Clin. Invest.,1994; 94: 2504-2510
    Google Scholar
  • 32. Hernández-Corbacho M.J., Jenkins R.W., Clarke C.J., HannunY.A., Obeid L.M., Snider A.J., Siskind L.J.: Accumulation of long-chainglycosphingolipids during aging is prevented by caloric restriction.PLoS One, 2011; 6: e20411
    Google Scholar
  • 33. Imig J.D.: Eicosanoids and renal damage in cardiometabolic syndrome.Expert Opin. Drug Metab. Toxicol., 2008; 4: 165-174
    Google Scholar
  • 34. Imig J.D.: Eicosanoids and renal vascular function in diseases.Clin. Sci., 2006; 111: 21-34
    Google Scholar
  • 35. Imig J.D.: Epoxide hydrolase and epoxygenase metabolites astherapeutic targets for renal diseases. Am. J. Physiol. Renal Physiol.,2005; 289: F496-F503
    Google Scholar
  • 36. Jo S.K., Bajwa A., Awad A.S., Lynch K.R., Okusa M.D.: Sphingosine-1-phosphate receptors: biology and therapeutic potential in kidneydisease. Kidney Int., 2008; 73: 1220-1230
    Google Scholar
  • 37. Kamanna V.S., Bassa B.V., Ganji S.H., Roh D.D.: Bioactive lysophospholipidsand mesangial cell intracellular signaling pathways: role in thepathobiology of kidney disease. Histol. Histopathol., 2005; 20: 603-613
    Google Scholar
  • 38. Katsuma S., Hada Y., Ueda T., Shiojima S., Hirasawa A., TanoueA., Takagaki K., Ohgi T., Yano J., Tsujimoto G.: Signalling mechanismsin sphingosine 1-phosphate-promoted mesangial cell proliferation.Genes Cells, 2002; 7: 1217-1230
    Google Scholar
  • 39. Khan K.N., Paulson S.K., Verburg K.M., Lefkowith J.B., MaziaszT.J.: Pharmacology of cyclooxygenase-2 inhibition in the kidney.Kidney Int., 2002; 61: 1210-1219
    Google Scholar
  • 40. Khan K.N., Stanfield K.M., Harris R.K., Baron D.A.: Expression ofcyclooxygenase-2 in the macula densa of human kidney in hypertension,congestive heart failure, and diabetic nephropathy. Ren.Fail., 2001; 23: 321-330
    Google Scholar
  • 41. Komers R., Lindsley J.N., Oyama T.T., Schutzer W.E., Reed J.F.,Mader S.L., Anderson S.: Immunohistochemical and functional correlationsof renal cyclooxygenase-2 in experimental diabetes. J. Clin.Invest., 2001; 107: 889-898
    Google Scholar
  • 42. Koura Y., Ichihara A., Tada Y., Kaneshiro Y., Okada H., Temm C.J.,Hayashi M., Saruta T.: Anandamide decreases glomerular filtrationrate through predominant vasodilation of efferent arterioles in ratkidneys. J. Am. Soc. Nephrol., 2004; 15: 1488-1494
    Google Scholar
  • 43. Kremmyda L.S., Tvrzicka E., Stankova B., Zak A.: Fatty acids asbiocompounds: their role in human metabolism, health and disease:a review. part 2: fatty acid physiological roles and applications inhuman health and disease. Biomed. Pap. Med. Fac. Univ. PalackyOlomouc Czech Repub., 2011; 155: 195-218
    Google Scholar
  • 44. Lai L.W., Yong K.C., Igarashi S., Lien Y.H.: A sphingosine-1-phosphatetype 1 receptor agonist inhibits the early T-cell transientfollowing renal ischemia–reperfusion injury. Kidney Int., 2007; 71:1223-1231
    Google Scholar
  • 45. Larrinaga G., Varona A., Pérez I., Sanz B., Ugalde A., CándenasM.L., Pinto F.M., Gil J., López J.I.: Expression of cannabinoid receptorsin human kidney. Histol. Histopathol., 2010; 25: 1133-1138
    Google Scholar
  • 46. Lee J.P., Yang S.H., Lee H.Y., Kim B., Cho J.Y., Paik J.H., Oh Y.J.,Kim D.K., Lim C.S., Kim Y.S.: Soluble epoxide hydrolase activity determinesthe severity of ischemia-reperfusion injury in kidney. PLoSOne, 2012; 7: e37075
    Google Scholar
  • 47. Lin M.E., Herr D.R., Chun J.: Lysophosphatidic acid (LPA) receptors:signaling properties and disease relevance. ProstaglandinsOther Lipid Mediat., 2010; 91: 130-138
    Google Scholar
  • 48. Liscovitch M., Czarny M., Fiucci G., Tang X.: Phospholipase D:molecular and cell biology of a novel gene family. Biochem. J., 2000;345: 401-415
    Google Scholar
  • 49. Liu J., Hsu A., Lee J.F., Cramer D.E., Lee M.J.: To stay or to leave:stem cells and progenitor cells navigating the S1P gradient. WorldJ. Biol. Chem., 2011; 2: 1-13
    Google Scholar
  • 50. Luo P., Wang M.H.: Eicosanoids, β-cell function, and diabetes.Prostaglandins Other Lipid Mediat., 2011; 95: 1-10
    Google Scholar
  • 51. Mair K.M., Robinson E., Kane K.A., Pyne S., Brett R.R., PyneN.J., Kennedy S.: Interaction between anandamide and sphingosine-1-phosphate in mediating vasorelaxation in rat coronary artery. Br.J. Pharmacol., 2010; 161: 176-192
    Google Scholar
  • 52. Makinen V.P., Tynkkynen T., Soininen P., Forsblom C., PeltolaT., Kangas A.J., Groop P.H., Ala-Korpela M.: Sphingomyelin is associatedwith kidney disease in type 1 diabetes (The FinnDiane Study).Metabolomics, 2012; 8: 369-375
    Google Scholar
  • 53. Matsuyama M., Nakatani T., Hase T., Kawahito Y., Sano H.,Kawamura M., Yoshimura R.: The expression of cyclooxygenasesand lipoxygenases in renal ischemia-reperfusion injury. Transplant.Proc., 2004; 36: 1939-1942
    Google Scholar
  • 54. Mukhopadhyay P., Rajesh M., Pan H., Patel V., MukhopadhyayB., Bátkai S., Gao B., Haskó G., Pacher P.: Cannabinoid-2 receptorlimits inflammation, oxidative/nitrosative stress, and cell death innephropathy. Free Radic. Biol. Med., 2010; 48: 457-467
    Google Scholar
  • 55. Natarajan R., Nadler J.L.: Lipid inflammatory mediators in diabeticvascular disease. Arterioscler. Thromb. Vasc. Biol., 2004; 24:1542-1548
    Google Scholar
  • 56. Nithipatikom K., Moore J.M., Isbell M.A., Falck J.R., Gross G.J.:Epoxyeicosatrienoic acids in cardioprotection: ischemic versusreperfusion injury. Am. J. Physiol. Heart Circ. Physiol., 2006; 291:H537-H542
    Google Scholar
  • 57. Nowak D.M., Ansell I., Hjelle J.T., Ross J.A., Miller-Hjelle M.A.,Dobbie J.D., Dombrink-Kurtzman M.A.: Sphingosine and sphinganinelevels in human mesothelial cells in vitro as a potential index of signaltransduction pathways impacted by microbes and osmolality. Adv.Perit. Dial., 1998; 14: 158-163
    Google Scholar
  • 58. Otto-Buczkowska E.: Układ endokanabinoidowy i kontrola homeostazyglukozy. Prz. Med. Uniw. Rzesz. Inst. Leków, 2011; 9: 359-364
    Google Scholar
  • 59. Pacher P., Mechoulam R.: Is lipid signaling through cannabinoid
    Google Scholar
  • 60. Ratajczak M.Z., Lee H., Wysoczynski M., Wan W., Marlicz W., LaughlinM.J., Kucia M., Janowska-Wieczorek A., Ratajczak J.: Novel insightinto stem cell mobilization-plasma sphingosine-1-phosphate is a majorchemoattractant that directs the egress of hematopoietic stemprogenitor cells from the bone marrow and its level in peripheralblood increases during mobilization due to activation of complementcascade/membrane attack complex. Leukemia, 2010: 24: 976-985
    Google Scholar
  • 61. Reinhold S.W., Vitzthum H., Filbeck T., Wolf K., Lattas C., RieggerG.A., Kurtz A., Krämer B.K.: Gene expression of 5-, 12-, and 15-lipoxygenasesand leukotriene receptors along the rat nephron. Am.J. Physiol. Renal Physiol., 2006; 290: F864-F872
    Google Scholar
  • 62. Romano M.: Lipoxin and aspirin-triggered lipoxins. ScientificWorld Journal, 2010; 10: 1048-1064
    Google Scholar
  • 63. Rutkowski B.: Przewlekła choroba nerek (p.ch.n.) – wyzwanieXXI wieku. Przew. Lek., 2007; 2: 80-88
    Google Scholar
  • 64. Sasagawa T., Suzuki K., Shiota T., Kondo T., Okita M.: The significanceof plasma lysophospholipids in patients with renal failure onhemodialysis. J. Nutr. Sci. Vitaminol., 1998; 44: 809-818
    Google Scholar
  • 65. Shimizu T., Ohto T., Kita Y.: Cytosolic phospholipase A2: biochemicalproperties and physiological roles. IUBMB Life, 2006; 58:328-333
    Google Scholar
  • 66. Singh H., Schwartzman M.L.: Renal vascular cytochrome P450-derived eicosanoids in androgen-induced hypertension. Pharmacol.Rep., 2008; 60: 29-37
    Google Scholar
  • 67. Small D.M., Coombes J.S., Bennett N., Johnson D.W., Gobe G.C.:Oxidative stress, anti-oxidant therapies and chronic kidney disease.Nephrology, 2012; 17: 311-321
    Google Scholar
  • 68. Smyth E.M., Burke A., FitzGerald G.A.: Autakoidy – pochodnelipidów: eikozanoidy i czynnik aktywujący płytki. W: FarmakologiaGoodmana and Gilmana, L.L. Brunton, J.S. Lazo, K.L. Parker, redakcjanaukowa wydania polskiego W. Buczko, T.F. Krzemiński, S.J. Czuczwar,T. 1, Lublin; Wydawnictwo Czelej, 2007; 695-713
    Google Scholar
  • 69. Solhaug M.J., Bolger P.M., Jose P.A.: The developing kidney andenvironmental toxins. Pediatrics, 2004; 113 (Suppl. 4): 1084-1091
    Google Scholar
  • 70. Spector A.A., Fang X., Snyder G.D., Weintraub N.L.: Epoxyeicosatrienoicacids (EETs): metabolism and biochemical function. Prog.Lipid Res., 2004; 43: 55-90
    Google Scholar
  • 71. Stables M.J., Gilroy D.W.: Old and new generation lipid mediatorsin acute inflammation and resolution. Prog. Lipid Res., 2011; 50: 35-51
    Google Scholar
  • 72. Swan C.E., Breyer R.M.: Prostaglandin E2 modulation of bloodpressure homeostasis: studies in rodent models. Prostaglandins OtherLipid Mediat., 2011; 96: 10-13
    Google Scholar
  • 73. Szefel J., Piotrowska M., Kruszewski W.J., Jankun J., ŁysiakSzydłowskaW., Skrzypczak-Jankun E.: Eicosanoids in preventionand management of diseases. Curr. Mol. Med., 2011; 11: 13-25
    Google Scholar
  • 74. Szumiło M., Rahden-Staroń I.: Fosfolipaza D w komórkach ssaków– budowa, właściwości, rola fizjologiczna i patologiczna. PostępyHig. Med. Dośw., 2006; 60: 421-430
    Google Scholar
  • 75. Tokarz A., Jelińska M., Ozga A.: Izoprostany – nowe biomarkerylipidowej peroksydacji in vivo. Biul. Wydz. Farm. AMW, 2004; 2: 10-17
    Google Scholar
  • 76. Troncoso P., Ortiz M., Martinez L., Kahan B.D.: FTY 720 preventsischemic reperfusion damage in rat kidneys. Transplant. Proc., 2001;33: 857-859
    Google Scholar
  • 77. Ueda N., Camargo S.M., Hong X., Basnakian A.G., Walker P.D.,Shah S.V.: Role of ceramide synthase in oxidant injury to renal tubularepithelial cells. J. Am. Soc. Nephrol., 2001; 12: 2384-2391
    Google Scholar
  • 78. Xu S., Jiang B., Maitland K.A., Bayat H., Gu J., Nadler J.L., CordaS., Lavielle G., Verbeuren T.J., Zuccollo A., Cohen R.A.: The thromboxanereceptor antagonist S18886 attenuates renal oxidant stressand proteinuria in diabetic apolipoprotein E-deficient mice. Diabetes,2006; 55: 110-119
    Google Scholar
  • 79. Xu Z.G., Li S.L., Lanting L., Kim Y.S., Shanmugam N., Reddy M.A.,Natarajan R.: Relationship between 12/15-lipoxygenase and COX-2in mesangial cells: potential role in diabetic nephropathy. KidneyInt., 2006; 69: 512-519
    Google Scholar
  • 80. Ye W., Zhang H., Hillas E., Kohan D.E., Miller R.L., Nelson R.D.,Honeggar M., Yang T.: Expression and function of COX isoforms inrenal medulla: evidence for regulation of salt sensitivity and bloodpressure. Am. J. Physiol. Renal Physiol., 2006; 290: F542-F549
    Google Scholar
  • 81. Zhang F., Hong S., Stone V., Smith P.J.: Expression of cannabinoidCB1 receptors in models of diabetic neuropathy. J. Pharmacol. Exp.Ther., 2007; 323: 508-515
    Google Scholar

Full text

Skip to content