Blood groups – minuses and pluses. Do the blood group antigens protect us from infectious diseases?
Marcin Czerwiński 1Abstract
Human blood can be divided into groups, which is a method of blood classification based on the presence or absence of inherited erythrocyte surface antigens that can elicit immune response. According to the International Society of Blood Transfusion, there are 341 blood group antigens collected in 35 blood group systems. These antigens can be proteins, glycoproteins or glycosphingolipids, and function as transmembrane transporters, ion channels, adhesion molecules or receptors for other proteins. The majority of blood group antigens is present also on another types of cells. Due to their localization on the surface of cells, blood group antigens can act as receptors for various pathogens or their toxins, such as protozoa (malaria parasites), bacteria (Helicobacter pylori, Vibrio cholerae and Shigella dysenteriae) and viruses (Noroviruses, Parvoviruses, HIV). If the presence of group antigen (or its variant which arised due to mutation) is beneficial for the host (e.g. because pathogens are not able to bind to the cells), the blood group may become a selection trait, leading to its dissemination in the population exposed to that pathogen. There are thirteen blood group systems that can be related to pathogen resistance, and it seems that the particular influence was elicit by malaria parasites. It is generally thought that the high incidence of blood groups such as O in the Amazon region, Fy(a-b-) in Africa and Ge(-) in Papua-New Guinea is the result of selective pressure from malaria parasite. This review summarizes the data about relationship between blood groups and resistance to pathogens.
References
- 1. Aird I.: Discussion on the ABO blood groups and disease. Proc. R.Soc. Med., 1955; 48: 139-140
Google Scholar - 2. Allen S.J., O’Donnell A., Alexander N.D., Mgone C.S., Peto T.E., CleggJ.B., Alpers M.P., Weatherall D.J.: Prevention of cerebral malaria inchildren in Papua New Guinea by southeast Asian ovalocytosis band 3 Am. J. Trop. Med. Hyg., 1999; 60: 1056-1060
Google Scholar - 3. Anstee D.J.: The relationship between blood groups and disease.Blood, 2010; 115: 4635-4643
Google Scholar - 4. Anstee D.J.: The functional importance of blood group-active moleculesin human red blood cells. Vox Sang., 2011; 100: 140-149
Google Scholar - 5. Ashline D.J., Duk M., Lukasiewicz J., Reinhold V.N., Lisowska E.,Jaskiewicz E.: The structures of glycophorin C N-glycans, a putativecomponent of the GPC receptor site for Plasmodium falciparum EBA- 140 ligand. Glycobiology, 2015; 25: 570-581
Google Scholar - 6. Aspholm-Hurtig M., Dailide G., Lahmann M., Kalia A., Ilver D., RocheN., Vikström S., Sjöström R., Lindén S., Bäckström A., Lundberg C.,Arnqvist A., Mahdavi J., Nilsson U.J., Velapatiño B. i wsp.: Functionaladaptation of BabA, the H. pylori ABO blood group antigen bindingadhesin. Science, 2004; 305: 519-522
Google Scholar - 7. Barra J.L., Monferran C.G., Balanzino L.E., Cumar F.A.: Escherichiacoli heat-labile enterotoxin preferentially interacts with blood groupA-active glycolipids from pig intestinal mucosa and A- and B-activeglycolipids from human red cells compared to H-active glycolipids.Mol. Cell. Biochem., 1992; 115: 63-70
Google Scholar - 8. Barragan A., Kremsner P.G., Wahlgren M., Carlson J.: Blood groupA antigen is a coreceptor in Plasmodium falciparum rosetting. Infect.Immun., 2000; 68: 2971-2975
Google Scholar - 9. Beddoe T., Paton A.W., Le Nours J., Rossjohn J., Paton J.C.: Structure,biological functions and applications of the AB5 toxins. TrendsBiochem. Sci., 2010; 35: 411-418
Google Scholar - 10. Bharati K., Ganguly N.K.: Cholera toxin: a paradigm of a multifunctionalprotein. Indian J. Med. Res., 2011; 133: 179-187
Google Scholar - 11. Bitzan M., Richardson S., Huang C., Boyd B., Petric M., KarmaliM.A.: Evidence that verotoxins (Shiga-like toxins) from Escherichia colibind to P blood group antigens of human erythrocytes in vitro. Infect.Immun., 1994; 62: 3337-3347
Google Scholar - 12. Black R.E., Levine M.M., Clements M.L., Hughes T., O’Donnell S.:Association between O blood group and occurrence and severity ofdiarrhoea due to Escherichia coli. Trans. R. Soc. Trop. Med. Hyg., 1987;81: 120-123
Google Scholar - 13. Blanchard D., Capon C., Leroy Y., Cartron J.P., Fournet B.: Comparativestudy of glycophorin A derived O-glycans from human Cad, Sd(a+)and Sd(a-) erythrocytes. Biochem. J., 1985; 232: 813-818
Google Scholar - 14. Blumenfeld O.O., Adamany A.M., Puglia K.V.: Amino acid andcarbohydrate structural variants of glycoprotein products (M-N glycoproteins)of the M-N allelic locus. Proc. Natl. Acad. Sci. USA, 1981;78: 747-751
Google Scholar - 15. Borén T., Falk P., Roth K.A., Larson G., Normark S.: Attachmentof Helicobacter pylori to human gastric epithelium mediated by bloodgroup antigens. Science, 1993, 262: 1892-1895
Google Scholar - 16. Branch D.R.: Blood groups and susceptibility to virus infection:new developments. Curr. Opin. Hematol., 2010; 17: 558-564
Google Scholar - 17. Brekke O.L., Hellerud B.C., Christiansen D., Fure H., Castellheim A.,Nielsen E.W., Pharo A., Lindstad J.K., Bergseth G., Leslie G., Lambris J.D.,Brandtzaeg P., Mollnes T.E.: Neisseria meningitidis and Escherichia coli areprotected from leukocyte phagocytosis by binding to erythrocyte complementreceptor 1 in human blood. Mol. Immunol., 2011; 48: 2159-2169
Google Scholar - 18. Brodbeck W.G., Liu D., Sperry J., Mold C., Medof M.E.: Localizationof classical and alternative pathway regulatory activity within the decay-acceleratingfactor. J. Immunol., 1996; 156: 2528-2533
Google Scholar - 19. Brodsky R.A.: Paroxysmal nocturnal hemoglobinuria. Blood, 2014;124: 2804-2811
Google Scholar - 20. Brown K.E., Hibbs J.R., Gallinella G., Anderson S.M., Lehman E.D.,McCarthy P., Young N.S.: Resistance to parvovirus B19 infection due to lack of virus receptor (erythrocyte P antigen). N. Engl. J. Med.,1994; 330: 1192-1196
Google Scholar - 21. Bruce L.J.: Hereditary stomatocytosis and cation-leaky red cells -recent developments. Blood Cells Mol. Dis., 2009; 42: 216-222
Google Scholar - 22. Burton N.M., Anstee D.J.: Structure, function and significance ofRh proteins in red cells. Curr. Opin. Hematol., 2008; 15: 625-630
Google Scholar - 23. Cartron J.P., Blanchard D.: Association of human erythrocytemembrane glycoproteins with blood-group Cad specificity. Biochem.J., 1982; 207: 497-504 24 Cartron J.P., Colin Y.: Structural and functional diversity of bloodgroup antigens. Transfus. Clin. Biol., 2001; 8: 163-199
Google Scholar - 24. (Suppl.1): S70-S75
Google Scholar - 25. Cartron J.P., Prou O., Luilier M., Soulier J.P.: Susceptibility to invasionby Plasmodium falciparum of some human erythrocytes carryingrare blood group antigens. Br. J. Haematol., 1983; 55: 639-647
Google Scholar - 26. Chen Y., Tan M., Xia M., Hao N., Zhang X.C., Huang P., Jiang X., LiX., Rao Z.: Crystallography of a Lewis-binding norovirus, elucidationof strain-specificity to the polymorphic human histo-blood groupantigens. PLoS Pathog., 2011; 7: e1002152
Google Scholar - 27. Cilmi S.A., Karalius B.J., Choy W., Smith R.N., Butterton J.R.: Fabrydisease in mice protects against lethal disease caused by Shigatoxin-expressing enterohemorrhagic Escherichia coli. J. Infect. Dis.,2006; 194: 1135-1140
Google Scholar - 28. Combs M.R.: Lewis blood group system review. Immunohematology,2009; 25: 112-118
Google Scholar - 29. Cooper N.R.: Complement evasion strategies of microorganisms.Immunol. Today, 1991; 12: 327-331
Google Scholar - 30. Cowman A.F., Crabb B.S.: Invasion of red blood cells by malariaparasites. Cell, 2006; 124: 755–766
Google Scholar - 31. Crosnier C., Bustamante L.Y., Bartholdson S.J., Bei A.K., Theron M.,Uchikawa M., Mboup S., Ndir O., Kwiatkowski D.P., Duraisingh M.T.,Rayner J.C., Wright G.J.: Basigin is a receptor essential for erythrocyteinvasion by Plasmodium falciparum. Nature, 2011; 480: 534-537
Google Scholar - 32. Cserti C.M., Dzik W.H.: The ABO blood group system and Plasmodiumfalciparum malaria. Blood, 2007; 110: 2250-2258
Google Scholar - 33. Cserti-Gazdewich C.M.: Plasmodium falciparum malaria and carbohydrateblood group evolution. ISBT Sci. Ser., 2010; 5: 255-266
Google Scholar - 34. Czerwinski M., Kaczmarek R.: Genetyczne podstawy syntezy cukrowychantygenów grupowych krwi. Acta Haematol. Pol., 2013; 44:251-259
Google Scholar - 35. Czerwinski M., Kern J., Grodecka M., Paprocka M., Krop-WatorekA., Wasniowska K.: Mutational analysis of the N-glycosylation sitesof Duffy antigen/receptor for chemokines. Biochem. Biophys. Res.Commun., 2007; 356: 816-821
Google Scholar - 36. Daniels G.: Human Blood Groups, 3rd. Edition. Wiley-Blackwell,Oxford, UK 2013
Google Scholar - 37. Delézay O., Hammache D., Fantini J., Yahi N.: SPC3, a V3 loop-derivedsynthetic peptide inhibitor of HIV-1 infection, binds to cell surfaceglycosphingolipids. Biochemistry, 1996; 35: 15663-15671
Google Scholar - 38. Denomme G.A.: Molecular basis of blood group expression. Transfus.Apher. Sci., 2011; 44: 53-63
Google Scholar - 39. Dudley J.T., Kim Y., Liu L., Markov G.J., Gerold K., Chen R., ButteA.J., Kumar S.: Human genomic disease variants: a neutral evolutionaryexplanation. Genome Res., 2012; 22: 1383-1394
Google Scholar - 40. Duk M., Reinhold B.B., Reinhold V.N., Kusnierz-Alejska G., LisowskaE.: Structure of a neutral glycosphingolipid recognized by humanantibodies in polyagglutinable erythrocytes from the rare NOR phenotype.J. Biol. Chem., 2001; 276: 40574-40582
Google Scholar - 41. Duk M., Westerlind U., Norberg T., Pazynina G., Bovin N.N., LisowskaE.: Specificity of human anti-NOR antibodies, a distinct species of“natural” anti-α-galactosyl antibodies. Glycobiology, 2003; 13: 279-284
Google Scholar - 42. Eder A.F.: Update on HDFN: new information on long-standingcontroversies. Immunohematology, 2006; 22: 188-195
Google Scholar - 43. Elliott S.P., Yu M., Xu H., Haslam D.B.: Forssman synthetase expressionresults in diminished shiga toxin susceptibility: a role for glycolipidsin determining host-microbe interactions. Infect. Immun.2003; 71: 6543-6552
Google Scholar - 44. Field S.P., Hempelmann E., Mendelow B.V., Fleming A.F.: Glycophorinvariants and Plasmodium falciparum: protective effect of the Dantuphenotype in vitro. Hum. Genet., 1994; 93: 148-150
Google Scholar - 45. Figueroa D.: The Diego blood group system: a review. Immunohematology,2013; 29: 73-81
Google Scholar - 46. Fitness J., Floyd S., Warndorff D.K., Sichali L., Mwaungulu L., CrampinA.C., Fine P.E., Hill A.V.: Large-scale candidate gene study of leprosysusceptibility in the Karonga district of northern Malawi. Am. J. Trop.Med. Hyg., 2004; 71: 330-340
Google Scholar - 47. Flegel W.A.: Molecular genetics and clinical applications for Rh.Transfus. Apher. Sci., 2011; 44: 81-91
Google Scholar - 48. Flegr J.: How and why Toxoplasma makes us crazy. Trends Parasitol.,2013; 29: 156-163
Google Scholar - 49. Flegr J., Klose J., Novotná M., Berenreitterová M., Havlícek J.: Increasedincidence of traffic accidents in Toxoplasma-infected militarydrivers and protective effect RhD molecule revealed by a large-scaleprospective cohort study. BMC Infect. Dis., 2009; 9: 72
Google Scholar - 50. Fraser G.R., Giblett E.R., Motulsky A.G.: Population genetic studiesin the Congo. 3. Blood groups (ABO, MNSs, Rh, Jsa). Am. J. Hum.Genet., 1966; 18: 546-552
Google Scholar - 51. Gallagher P.G.: Abnormalities of the erythrocyte membrane. Pediatr.Clin. North Am., 2013; 60: 1349-1362
Google Scholar - 52. Gillard B.K., Blanchard D., Bouhours J.F., Cartron J.P., van Kuik J.A.,Kamerling J.P., Vliegenthart J.F., Marcus D.M.: Structure of a gangliosidewith Cad blood group antigen activity. Biochemistry, 1988; 27: 4601-4606
Google Scholar - 53. Glass R.I., Holmgren J., Haley C.E., Khan M.R., Svennerholm A.M.,Stoll B.J., Belayet Hossain K.M., Black R.E., Yunus M., Barua D.: Predispositionfor cholera of individuals with O blood group. Possible evolutionarysignificance. Am. J. Epidemiol., 1985; 121: 791-796
Google Scholar - 54. Grodecka M., Bertrand O., Karolak E., Lisowski M., Waśniowska K.:One-step immunopurification and lectinochemical characterizationof the Duffy atypical chemokine receptor from human erythrocytes.Glycoconj. J., 2012; 29: 93-105
Google Scholar - 55. Grodecka M., Czerwinski M., Duk M., Lisowska E., Waśniowska K.:Analysis of recombinant Duffy protein-linked N-glycans using lectinsand glycosidases. Acta Biochim. Pol., 2010; 57: 49-53
Google Scholar - 56. Grodecka M., Waśniowska K.: Interceptory – “ciche” receptorychemokin. Postępy Hig. Med. Dośw., 2007; 61: 231-239
Google Scholar - 57. Hadley T.J., Peiper S.C.: From malaria to chemokine receptor: theemerging physiologic role of the Duffy blood group antigen. Blood,1997; 89: 3077-3091
Google Scholar - 58. Halperin T., Vennema H., Koopmans M., Kahila Bar-Gal G., KayoufR., Sela T., Ambar R., Klement E.: No association between histo-bloodgroup antigens and susceptibility to clinical infections with genogroupII norovirus. J. Infect. Dis., 2008; 197: 63-65
Google Scholar - 59. Hamblin M.T., Di Rienzo A.: Detection of the signature of naturalselection in humans: evidence from the Duffy blood group locus. Am.J. Hum. Genet., 2000; 66: 1669-1679
Google Scholar - 60. Hansson H.H., Kurtzhals J.A., Goka B.Q., Rodriques O.P., NkrumahF.N., Theander T.G., Bygbjerg I.C., Alifrangis M.: Human genetic polymorphismsin the Knops blood group are not associated with a protectiveadvantage against Plasmodium falciparum malaria in SouthernGhana. Malar. J., 2013; 12: 400
Google Scholar - 61. Harris J.B., Khan A.I., LaRocque R.C., Dorer D.J., Chowdhury F.,Faruque A.S., Sack D.A., Ryan E.T., Qadri F., Calderwood S.B.: Blood group, immunity, and risk of infection with Vibrio cholerae in an areaof endemicity. Infect. Immun., 2005; 73: 7422-7427
Google Scholar - 62. He W., Neil S., Kulkarni H., Wright E., Agan B.K., Marconi V.C.,Dolan M.J., Weiss R.A., Ahuja S.K.: Duffy antigen receptor for chemokinesmediates trans-infection of HIV-1 from red blood cells totarget cells and affects HIV-AIDS susceptibility. Cell Host Microbe,2008; 4: 52-62
Google Scholar - 63. Heathcote D.J., Carroll T.E., Flower R.L.: Sixty years of antibodiesto MNS system hybrid glycophorins: what have we learned? Transfus.Med. Rev., 2011; 25: 111-124
Google Scholar - 64. Henry S., Oriol R., Samuelsson B.: Lewis histo-blood group systemand associated secretory phenotypes. Vox Sang., 1995; 69: 166-182
Google Scholar - 65. Hirschfeld L., Hirschfeld H.: Serological differences between theblood of different races. Lancet, 1919; 2: 675-679
Google Scholar - 66. Holmner A., Askarieh G., Okvist M., Krengel U.: Blood group antigenrecognition by Escherichia coli heat-labile enterotoxin. J. Mol.Biol., 2007; 371: 754-764
Google Scholar - 67. Holmner A., Lebens M., Teneberg S,. Angström J., Okvist M.,Krengel U.: Novel binding site identified in a hybrid between choleratoxin and heat-labile enterotoxin: 1.9 A crystal structure reveals thedetails. Structure, 2004; 12: 1655-1667
Google Scholar - 68. Holmner A., Mackenzie A., Krengel U.: Molecular basis of cholerablood-group dependence and implications for a world characterizedby climate change. FEBS Lett., 2010; 584: 2548-2555
Google Scholar - 69. Huang C.H., Blumenfeld O.O.: Characterization of a genomic hybridspecifying the human erythrocyte antigen Dantu: Dantu gene isduplicated and linked to a δ glycophorin gene deletion. Proc. Natl.Acad. Sci. USA, 1988; 85: 9640-9644
Google Scholar - 70. Ilver D., Arnqvist A., Ogren J., Frick I.M., Kersulyte D., IncecikE.T., Berg D.E., Covacci A., Engstrand L., Borén T.: Helicobacter pyloriadhesin binding fucosylated histo-blood group antigens revealedby retagging. Science, 1998; 279: 373-377
Google Scholar - 71. Iodice S., Maisonneuve P., Botteri E., Sandri M.T., LowenfelsA.B.: ABO blood group and cancer. Eur. J. Cancer, 2010; 46: 3345-3350
Google Scholar - 72. Jaśkiewicz E.: Glikoforyny ludzkich erytrocytów jako receptorydla zarodźca sierpowego malarii (Plasmodium falciparum). PostępyHig. Med. Dośw., 2007; 61: 718-724
Google Scholar - 73. Johannes L., Römer W.: Shiga toxins – from cell biology to biomedicalapplications. Nat. Rev. Microbiol., 2010; 8: 105-116
Google Scholar - 74. Kaczmarek R.: Zmiany ekspresji antygenów grupowych układuLewis w komórkach nowotworowych. Postępy Hig. Med. Dośw.,2010; 64: 87-99
Google Scholar - 75. Kaczmarek R., Buczkowska A., Mikołajewicz K., Krotkiewski H.,Czerwinski M.: P1PK, GLOB, and FORS blood group systems and GLOBcollection: biochemic and clinical aspects. Do we understand it allyet? Transfus. Med. Rev., 2014; 28: 126-136
Google Scholar - 76. Kimura M.: The Neutral Theory of Molecular Evolution. CambridgeUniversity Press, Cambridge, UK 1983
Google Scholar - 77. Kościelak J.: The hypothesis on function of glycosphingolipidsand ABO blood groups revisited. Neurochem. Res., 2012; 37: 1170-1184
Google Scholar - 78. Kouki A., Haataja S., Loimaranta V., Pulliainen A.T., Nilsson U.J.,Finne J.: Identification of a novel streptococcal adhesin P (SadP) proteinrecognizing galactosyl-α1-4-galactose-containing glycoconjugates:convergent evolution of bacterial pathogens to binding of thesame host receptor. J. Biol. Chem., 2011; 286: 38854-38864
Google Scholar - 79. Kudo S., Fukuda M.: Structural organization of glycophorinA and B genes: glycophorin B gene evolved by homologous recombinationat Alu repeat sequences. Proc. Natl. Acad. Sci. USA, 1989;86: 4619-4623
Google Scholar - 80. Kwiatkowska M., Krajewski P., Pokrzywnicka M.: Choroba hemolitycznaRh noworodków jako nadal aktualny problem w perinatologii– wybrane aspekty zagadnienia, ilustrowane opisem przypadkukonfliktu serologicznego Rh o ciężkim przebiegu klinicznym u noworodka.Perinatol. Neonatol. Ginek., 2009; 2: 17-22
Google Scholar - 81. Lai Y.J., Wu W.Y., Yang C.M., Yang L.R., Chu C.C., Chan Y.S., LinM., Yu L.C.: A systematic study of single-nucleotide polymorphismsin the A4GALT gene suggests a molecular genetic basis for the P1/P2blood groups. Transfusion, 2014; 54: 3222-3231
Google Scholar - 82. Landsteiner K.: Zur Kenntnis des antifermentativen, lytischenund agglutinierenden Wirkungen des Blutserums und der Lymphe.Zentralbl. Bakteriol., 1900; 27: 357–362
Google Scholar - 83. Lea S.: Interactions of CD55 with non-complement ligands. Biochem.Soc. Trans., 2002; 30: 1014-1019
Google Scholar - 84. Le Pendu J., Nyström K., Ruvoën-Clouet N.: Host-pathogen co–evolution and glycan interactions. Curr. Opin. Virol., 2014; 7: 88-94
Google Scholar - 85. Lindesmith L., Moe C., Marionneau S., Ruvoen N., Jiang X., LindbladL., Stewart P., LePendu J., Baric R.: Human susceptibility andresistance to Norwalk virus infection. Nat. Med., 2003; 9: 548-553
Google Scholar - 86. Lingwood C.A., Branch D.R.: The role of glycosphingolipids inHIV/AIDS. Discov. Med., 2011; 11: 303-313
Google Scholar - 87. Lisowska E.: Antigenic properties of human glycophorins–anupdate. Adv. Exp. Med. Biol., 2001; 491: 155-169
Google Scholar - 88. Liumbruno G.M., Franchini M.: Beyond immunohaematology:The role of the ABO blood group in human diseases. Blood Transfus.,2013; 11: 491-499
Google Scholar - 89. Lund N., Branch D.R., Sakac D., Lingwood C.A., Siatskas C., RobinsonC.J. Brady R.O, Medin J.A.: Lack of susceptibility of cells frompatients with Fabry disease to productive infection with R5 humanimmunodeficiency virus. AIDS, 2005; 19: 1543-1546
Google Scholar - 90. Lund N., Olsson M.L., Ramkumar S., Sakac D., Yahalom V., LeveneC, Hellber A., Ma X.Z., Binnington B., Jung D., Lingwood C.A., BranchD.R.: The human Pk histo-blood group antigen provides protectionagainst HIV-1 infection. Blood, 2009; 113: 4980-4991
Google Scholar - 91. Luzzatto L., Seneca E.: G6PD deficiency: a classic example ofpharmacogenetics with on-going clinical implications. Br. J. Haematol.,2014; 164: 469-480
Google Scholar - 92. Maier A.G., Duraisingh M.T., Reeder J.C., Patel S.S., Kazura J.W.,Zimmerman P.A., Cowman A.F.: Plasmodium falciparum erythrocyteinvasion through glycophorin C and selection for Gerbich negativityin human populations. Nat. Med., 2003; 9: 87-92
Google Scholar - 93. Mandal P.K., Branson T.R., Hayes E.D., Ross J.F., Gavín J.A., DaranasA.H., Turnbull W.B.: Towards a structural basis for the relationshipbetween blood group and the severity of El Tor cholera. Angew.Chem. Int. Ed. Engl., 2012; 51: 5143-5146
Google Scholar - 94. Mayer D.C., Jiang L., Achur R.N., Kakizaki I., Gowda D.C., MillerL.H.: The glycophorin C N-linked glycan is a critical component ofthe ligand for the Plasmodium falciparum erythrocyte receptor BAEBL.Proc. Natl. Acad. Sci. USA, 2006; 103: 2358-2362
Google Scholar - 95. Meny G.M.: The Duffy blood group system: a review. Immunohematology,2010; 26: 51-56
Google Scholar - 96. Miller L.H., Baruch D.I., Marsh K., Doumbo O.K.: The pathogenicbasis of malaria. Nature, 2002; 415: 673-679
Google Scholar - 97. Miller L.H., Mason S.J., Clyde D.F., McGinniss M.H.: The resistancefactor to Plasmodium vivax in blacks. The Duffy-blood-groupgenotype, FyFy. N. Engl. J. Med., 1976; 295: 302-304
Google Scholar - 98. Moulds J.M.: The Knops blood-group system: a review. Immunohematology,2010; 26: 2-7
Google Scholar - 99. Nakache R., Levene C., Sela R., Kaufman S., Shapira Z.: Dra (Cromer-relatedblood group antigen)-incompatible renal transplantation.Vox Sang., 1998; 74: 106-108
Google Scholar - 100. Nei M., Suzuki Y., Nozawa M.: The neutral theory of molecularevolution in the genomic era. Annu. Rev. Genomics Hum. Genet.,2010; 11: 265-289
Google Scholar - 101. Nielsen R., Hellmann I., Hubisz M., Bustamante C., Clark A.G.:Recent and ongoing selection in the human genome. Nat. Rev. Genet.,2007; 8: 857-868
Google Scholar - 102. Nordgren J., Kindberg E., Lindgren P.E., Matussek A., SvenssonL.: Norovirus gastroenteritis outbreak with a secretor-independentsusceptibility pattern, Sweden. Emerg. Infect. Dis., 2010; 16: 81-87
Google Scholar - 103. Norja P., Lassila R., Makris M.: Parvovirus transmission by bloodproducts – a cause for concern? Br. J. Haematol., 2012; 159: 385-393
Google Scholar - 104. Noumsi G.T., Tounkara A., Diallo H., Billingsley K., Moulds J.J.,Moulds J.M.: Knops blood group polymorphism and susceptibility toMycobacterium tuberculosis infection. Transfusion, 2011; 51: 2462-2469
Google Scholar - 105. Novotná M., Havlícek J., Smith A.P., Kolbeková P., Skallová A.,Klose J., Gasová Z., Písacka M., Sechovská M., Flegr J.: Toxoplasma andreaction time: role of toxoplasmosis in the origin, preservation andgeographical distribution of Rh blood group polymorphism. Parasitology,2008; 135: 1253-1261
Google Scholar - 106. Nowicki B., Hart A., Coyne K.E., Lublin D.M., Nowicki S.: Shortconsensus repeat-3 domain of recombinant decay-accelerating factoris recognized by Escherichia coli recombinant Dr adhesin in a model ofa cell-cell interaction. J. Exp. Med., 1993; 178: 2115-2121
Google Scholar - 107. Nowicki B., Moulds J., Hull R., Hull S.: A hemagglutinin of uropathogenicEscherichia coli recognizes the Dr blood group antigen. Infect.Immun., 1988; 56: 1057-1060
Google Scholar - 108. Olsson M.L., Chester M.A.: Polymorphism and recombinationevents at the ABO locus: a major challenge for genomic ABO bloodgrouping strategies. Transfus. Med.. 2001; 11: 295-313
Google Scholar - 109. Pasvol G., Wainscoat J.S., Weatherall D.J.: Erythrocytes deficiencyin glycophorin resist invasion by the malarial parasite Plasmodiumfalciparum. Nature, 1982; 297: 64-66
Google Scholar - 110. Ramsuran V., Kulkarni H., He W., Mlisana K., Wright E.J., WernerL., Castiblanco J., Dhanda R., Le T., Dolan M.J., Guan W., Weiss R.A.,Clark R.A., Karim S.S., Ahuja S.K., Ndung’u T.: Duffy-null-associated lowneutrophil counts influence HIV-1 susceptibility in high-risk SouthAfrican black women. Clin. Infect. Dis., 2011; 52: 1248-1256
Google Scholar - 111. Rowe J.A., Moulds J.M., Newbold C.I., Miller L.H.: P. falciparum rosettingmediated by a parasite-variant erythrocyte membrane proteinand complement-receptor 1. Nature, 1997; 388: 292-295
Google Scholar - 112. Ruvoën-Clouet N., Belliot G., Le Pendu J.: Noroviruses and histo–blood groups: the impact of common host genetic polymorphisms onvirus transmission and evolution. Rev. Med. Virol., 2013; 23: 355-366
Google Scholar - 113. Rydzak J., Kaczmarek R., Czerwinski M., Lukasiewicz J., TyborowskaJ., Szewczyk B., Jaskiewicz E.: The baculovirus-expressed bindingregion of Plasmodium falciparum EBA-140 ligand and its glycophorinC binding specificity. PLoS One, 2015; 10: e0115437
Google Scholar - 114. Rydzak J., Kmiecik A.M., Jaśkiewicz E.: Glikoforyna C erytrocytówludzkich jako receptor dla liganda EBA-140 merozoitów Plasmodiumfalciparum. Postępy Hig. Med. Dośw., 2013; 67: 1331-1339
Google Scholar - 115. Sack D.A., Sack R.B., Nair G.B., Siddique A.K.: Cholera. Lancet,2004; 363: 223-233
Google Scholar - 116. Selvarangan R., Goluszko P., Popov V., Singhal J., Pham T., LublinD.M., Nowicki S., Nowicki B.: Role of decay-accelerating factor domainsand anchorage in internalization of Dr-fimbriated Escherichia coli.Infect. Immun., 2000; 68: 1391-1399
Google Scholar - 117. Semino O., Passarino G., Oefner P.J., Lin A.A., Arbuzova S., BeckmanL.E., De Benedictis G., Francalacci P., Kouvatsi A., LimborskaS., Marcikiae M., Mika A., Mika B., Primorac D., Santachiara-BenerecettiA.S. i wsp.: The genetic legacy of Paleolithic Homo sapiensin extant Europeans: a Y chromosome perspective. Science, 2000;290: 1155-1159
Google Scholar - 118. Shirey R.S., Ness P.M., Kickler T.S., Rock J.A., Callan N.A., SchlaffW.D, Niebyl J.: The association of anti-P and early abortion. Transfusion,1987; 27: 189-191
Google Scholar - 119. Smolarek D., Krop-Wątorek A., Waśniowska K., Czerwinski M.:Molekularne podstawy układu grupowego ABO. Postępy Hig. Med.Dośw., 2008; 62: 4-17
Google Scholar - 120. Storry J.R.: Five new blood group systems – what next? ISBT Sci.Ser., 2014; 9: 136-140
Google Scholar - 121. Storry J.R., Reid M.E., Yazer M.H.: The Cromer blood group system:a review. Immunohematology, 2010; 26: 109-118
Google Scholar - 122. Stoute J.A.: Complement receptor 1 and malaria. Cell. Microbiol.,2011; 13: 1441-1450
Google Scholar - 123. Suchanowska A., Czerwiński M.: Dlaczego u człowieka i małpwąskonosych nie ma epitopu Galα1-3Gal, którego obecność u zwierzątjest związana z odrzucaniem ksenoprzeszczepów u ludzi? Postępy Hig.Med. Dośw. 2009; 63: 250-257
Google Scholar - 124. Suchanowska A., Kaczmarek R., Duk M., Lukasiewicz J., SmolarekD., Majorczyk E., Jaskiewicz E., Laskowska A., Wasniowska K., GrodeckaM., Lisowska E., Czerwinski M.: A single point mutation in the geneencoding Gb3/CD77 synthase causes a rare inherited polyagglutinationsyndrome. J. Biol. Chem., 2012; 287: 38220-38230
Google Scholar - 125. Suchanowska A., Smolarek D., Czerwinski M.: A new isoform ofSta gene found in a family with NOR polyagglutination. Transfusion,2010; 50: 514-515
Google Scholar - 126. Svensson L., Hult A.K., Stamps R., Ångström J., Teneberg S.,Storry J.R., Jørgensen R., Rydberg L., Henry S.M., Olsson M.L.: Forssmanexpression on human erythrocytes: biochemical and geneticevidence of a new histo-blood group system. Blood, 2013; 121:1459-1468
Google Scholar - 127. Tan M., Jin M., Xie H., Duan Z., Jiang X., Fang Z.: Outbreak studiesof a GII-3 and a GII-4 norovirus revealed an association between HBGAphenotypes and viral infection. J. Med. Virol., 2008; 80: 1296-1301
Google Scholar - 128. Tarr P.I., Gordon C.A., Chandler W.L.: Shiga-toxin-producingEscherichia coli and haemolytic uraemic syndrome. Lancet, 2005; 365:1073-1086
Google Scholar - 129. Tetteh-Quarcoo P.B., Schmidt C.Q., Tham W.H., Hauhart R., MertensH.D., Rowe A., Atkinson J.P., Cowman A.F., Rowe J.A., Barlow P.N.:Lack of evidence from studies of soluble protein fragments that Knopsblood group polymorphisms in complement receptor-type 1 are drivenby malaria. PLoS One, 2012; 7: e34820
Google Scholar - 130. Thathy V., Moulds J.M., Guyah B., Otieno W., Stoute J.A.: Complementreceptor 1 polymorphisms associated with resistance to severemalaria in Kenya. Malar. J., 2005; 4: 54
Google Scholar - 131. Thuresson B., Westman J.S., Olsson M.L.: Identification of a novelA4GALT exon reveals the genetic basis of the P1/P2 histo-blood groups.Blood, 2011; 117: 678-687
Google Scholar - 132. Tournamille C., Colin Y., Cartron J.P., Le Van Kim C.: Disruptionof a GATA motif in the Duffy gene promoter abolishes erythroid geneexpression in Duffy-negative individuals. Nat. Genet., 1995; 10: 224-228
Google Scholar - 133. Tournamille C., Le Van Kim C., Gane P., Cartron J.P., Colin Y.:Molecular basis and PCR-DNA typing of the Fya/fyb blood group polymorphism.Hum. Genet., 1995; 95: 407-410
Google Scholar - 134. Trégouët D.A., Heath S., Saut N., Biron-Andreani C., Schved J.F.,Pernod G., Galan P., Drouet L., Zelenika D., Juhan-Vague I., Alessi M.C.,Tiret L., Lathrop M., Emmerich J., Morange P.E.: Common susceptibilityalleles are unlikely to contribute as strongly as the FV and ABO loci toVTE risk: results from a GWAS approach. Blood, 2009; 113: 5298-5303
Google Scholar - 135. Turnbull J.E., Field RA.: Emerging glycomics technologies. Nat.Chem. Biol., 2007; 3: 74-77
Google Scholar - 136. Urbaniak S.J., Greiss M.A.: RhD haemolytic disease of the fetusand the newborn. Blood Rev., 2000; 14: 44-61
Google Scholar - 137. Vamvakas E.C., Blajchman M.A.: Transfusion-related mortality:the ongoing risks of allogeneic blood transfusion and the availablestrategies for their prevention. Blood, 2009; 113: 3406-3417
Google Scholar - 138. Varki A.: Colloquium paper: uniquely human evolution of sialicacid genetics and biology. Proc. Natl. Acad. Sci. USA, 2010; 107 (Suppl.2): 8939-8946
Google Scholar - 139. Varki A., Sharon N.: Historical background and overview. W: Essentialsof glycobiology. 2nd edition, red.: Varki A., Cummings R.D.,Esko J.D., Freeze H.H., Stanley P., Bertozzi C.R., Hart G.W., Etzler M.E..Cold Spring Harbor Laboratory Press, NY 2009
Google Scholar - 140. von Dungern E., Hirszfeld L.: Uber Vererbung gruppenspezifischerStrukturen des Blutes. Z. Immun. Forsch. Exper. Ther., 1910; 6: 284–292
Google Scholar - 141. Walker P.S., Reid M.E.: The Gerbich blood group system: a review.Immunohematology, 2010; 26: 60-65
Google Scholar - 142. Walley N.M., Julg B., Dickson S.P., Fellay J., Ge D., Walker B.D.,Carrington M., Cohen M.S., de Bakker P.I., Goldstein D.B., Shianna K.V.,Haynes B.F., Letvin N.L., McMichael A.J., Michael N.L., Weintrob A.C.:The Duffy antigen receptor for chemokines null promoter variantdoes not influence HIV-1 acquisition or disease progression. Cell HostMicrobe, 2009; 5: 408-410
Google Scholar - 143. Waśniowska K., Czerwinski M., Jachymek W., Lisowska E.: Expressionand binding properties of a soluble chimeric protein containingthe N-terminal domain of the Duffy antigen. Biochem. Biophys. Res.Commun., 2000; 273: 705-711
Google Scholar - 144. Waśniowska K., Drzeniek Z., Lisowska E.: The amino acids of Mand N blood group glycopeptides are different. Biochem. Biophys.Res. Commun., 1977; 76: 385-390
Google Scholar - 145. Weatherall D.J.: Genetic variation and susceptibility to infection:the red cell and malaria. Br. J. Haematol., 2008; 141: 276-286
Google Scholar - 146. Williams B.P., Daniels G.L., Pym B., Sheer D., Povey S., OkuboY., Andrews P.W., Goodfellow P.N.: Biochemical and genetic analysisof the Oka blood group antigen. Immunogenetics, 1988; 27: 322-329
Google Scholar - 147. Williamson R.C., Toye A.M.: Glycophorin A: Band 3 aid. BloodCells Mol. Dis., 2008; 41: 35-43
Google Scholar - 148. Wolofsky K.T., Ayi K., Branch D.R., Hult A.K., Olsson M.L., LilesW.C., Cserti-Gazdewich C.M., Kain K.C.: ABO blood groups influencemacrophage-mediated phagocytosis of Plasmodium falciparum-infectederythrocytes. PLoS Pathog., 2012; 8: e1002942
Google Scholar - 149. Woolhouse M.E., Webster J.P., Domingo E., Charlesworth B., LevinB.R.: Biological and biomedical implications of the co-evolution ofpathogens and their hosts. Nat. Genet., 2002; 32: 569-577
Google Scholar - 150. Wright K.E., Hjerrild K.A., Bartlett J., Douglas A.D., Jin J., BrownR.E., Illingworth J.J., Ashfield R., Clemmensen S.B., de Jongh W.A.,Draper S.J., Higgins M.K.: Structure of malaria invasion protein RH5with erythrocyte basigin and blocking antibodies. Nature, 2014; 515:427-430
Google Scholar - 151. Yamamoto F., Cid E., Yamamoto M., Saitou N., Bertranpetit J.,Blancher A.: An integrative evolution theory of histo-blood groupABO and related genes. Sci. Rep., 2014; 4: 6601
Google Scholar - 152. Yazdanbakhsh K., Lomas-Francis C., Reid M.E.: Blood groups anddiseases associated with inherited abnormalities of the red blood cellmembrane. Transfus. Med. Rev., 2000; 14: 364-374
Google Scholar - 153. Yosief H.O., Iyer S.S., Weiss A.A.: Binding of Pk-trisaccharideanalogs of globotriaosylceramide to Shiga toxin variants. Infect. Immun.,2013; 81: 2753-2760
Google Scholar - 154. Ziegler T., Jacobsohn N., Fünfstück R.: Correlation between bloodgroup phenotype and virulence properties of Escherichia coli in patientswith chronic urinary tract infection. Int. J. Antimicrob. Agents, 2004;
Google Scholar