Can mutations in the gene encoding transcription factor EKLF (Erythroid Krüppel-Like Factor) protect us against infectious and parasitic diseases?

COMMENTARY ON THE LAW

Can mutations in the gene encoding transcription factor EKLF (Erythroid Krüppel-Like Factor) protect us against infectious and parasitic diseases?

Krzysztof Mikołajczyk 1 , Radosław Kaczmarek 1 , Marcin Czerwiński 2

1. Laboratorium Immunochemii Glikokoniugatów, Instytut Immunologii i Terapii Doświadczalnej PAN im. Ludwika Hirszfelda we Wrocławiu
2. Laboratorium Immunochemii Glikokoniugatów, Instytut Immunologii i Terapii Doświadczalnej PAN im. Ludwika Hirszfelda we Wrocławiu; Wydział Wychowania Fizycznego i Fizjoterapii, Politechnika Opolska, Opole

Published: 2016-10-06
DOI: 10.5604/17322693.1221384
GICID: 01.3001.0009.6885
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 1068-1086

 

Abstract

Transcription factor EKLF (Erythroid Krüppel-Like Factor) belongs to the group of Krüppellike factors, which regulate proliferation, differentiation, development and apoptosis of mammalian cells. EKLF factor is present in erythroid cells, where it participates in regulation of hematopoiesis, expression of genes encoding transmembrane proteins (including blood group antigens), and heme biosynthesis enzymes. It is also a key factor in downregulation of γ-globins and activation of β-globin gene expression. The EKLF factor consists of two domains: proline-rich transactivation domain and DNA-binding domain containing three zinc finger motifs, which recognize DNA. EKLF can act as a transcription activator (for example in the case of β-globin gene) or repressor, which depends on the type of posttranslational modification (phosphorylation, SUMOylation, ubiquitination and acetylation). Mutations in the gene encoding EKLF may cause hemoglobinopathies, such as hereditary persistence of fetal hemoglobin and β-thalassemia intermedia, and congenital dyserythropoietic anemia type IV, which is a hematopoietic disorder. These changes may impede invasion of red blood cells by malaria merozoites and cause faster removal of invaded erythrocytes. In addition, mutations in KLF1 may decrease the number of erythrocyte surface antigens that belong to blood group systems such as MN, P1PK, Lutheran, Duffy, Diego and OK. Such antigens can be receptors for protozoans (such as Plasmodium falciparum or Plasmodium vivax), bacteria (like uropathogenic strains of Escherichia coli, Neisseria meningitidis), and toxins (Shiga toxins), which may cause several dangerous diseases including malaria, pyelonephritis, hemorrhagic colitis, hemolytic uremic syndrome (HUS) and meningitis. Here, we propose a hypothesis on possible liaisons between mutations in the gene encoding EKLF and resistance to pathogens.

References

  • 1. Allen S.J., O’Donnell A., Alexander N.D., Mgone C.S., Peto T.E.,Clegg J.B., Alpers M.P., Weatherall D.J.: Prevention of cerebral malariain children in Papua New Guinea by southeast Asian ovalocytosisband 3. Am. J. Trop. Med. Hyg., 1999; 60: 1056-1060
    Google Scholar
  • 2. Amaratunga C., Lopera-Mesa T.M., Brittain N.J., Cholera R., ArieT., Fujioka H., Keefer J.R., Fairhurst R.M.: A role for fetal hemoglobinand maternal immune IgG in infant resistance to Plasmodium falciparummalaria. PLoS One, 2011; 6: e14798 3 Arakawa T., Kobayashi-Yurugi T., Alguel Y., Iwanari H., Hatae H.,Iwata M., Abe Y., Hino T., Ikeda-Suno C., Kuma H., Kang D., MurataT., Hamakubo T., Cameron A.D., Kobayashi T., Hamasaki N., Iwata S.:Crystal structure of the anion exchanger domain of human erythrocyteband 3. Science, 2015; 350: 680-684
    Google Scholar
  • 3. studied with the monoclonal antibody directed against an epitopeon the cytoplasmic fragment of band 3. Eur. J. Biochem., 1988;174: 647-654
    Google Scholar
  • 4. Arnaud L., Saison C., Helias V., Lucien N., Steschenko D., GiarratanaM.C., Prehu C., Foliguet B., Montout L., de Brevern A.G., FrancinaA., Ripoche P., Fenneteau O., Da Costa L., Peyrard T. i wsp.: A dominantmutation in the gene encoding the erythroid transcriptionfactor KLF1 causes a congenital dyserythropoietic anemia. Am. J.Hum. Genet., 2010; 87: 721-727
    Google Scholar
  • 5. Ayi K., Liles W.C., Gros P., Kain K.C.: Adenosine triphosphate depletionof erythrocytes simulates the phenotype associated with pyruvatekinase deficiency and confers protection against Plasmodiumfalciparum in vitro. J. Infect. Dis., 2009; 200: 1288-1299
    Google Scholar
  • 6. Barragan A., Kremsner P.G., Wahlgren M., Carlson J.: Blood groupA antigen is a coreceptor in Plasmodium falciparum rosetting. Infect.Immun., 2000; 68: 2971-2975
    Google Scholar
  • 7. Ben-Ismail R., Rouger P., Carme B., Gentilini M., Salmon C.: Comparativeautomated assay of anti-P1 antibodies in acute hepatic distomiasis(fascioliasis) and in hydatidosis. Vox Sang., 1980; 38: 165-168
    Google Scholar
  • 8. Bieker J.J.: Isolation, genomic structure, and expression of humanerythroid Krüppel-like factor (EKLF). DNA Cell Biol., 1996; 15: 347-352
    Google Scholar
  • 9. Borg J., Papadopoulos P., Georgitsi M., Gutiérrez L., i wsp: Haploinsufficiencyfor the erythroid transcription factor KLF1 causes hereditarypersistence of fetal hemoglobin. Nat. Genet., 2010; 42: 801-805
    Google Scholar
  • 10. Bruce L.J.: Hereditary stomatocytosis and cation-leaky red cells– recent developments. Blood Cells Mol. Dis., 2009; 42: 216-222
    Google Scholar
  • 11. Cameron G.L., Staveley J.M.: Blood group P substance in hydatidcyst fluids. Nature, 1957; 179: 147-148
    Google Scholar
  • 12. Cartron J.P., Colin Y.: Structural and functional diversity of bloodgroup antigens. Transfus. Clin. Biol., 2001; 8: 163-199
    Google Scholar
  • 13. Cholera R., Brittain N.J., Gillrie M.R., Lopera-Mesa T.M., DiakitéS.A., Arie T., Krause M.A., Guindo A., Tubman A., Fujioka H., DialloD.A., Doumbo O.K., Ho M., Wellems T.E., Fairhurst R.M.: Impaired cytoadherenceof Plasmodium falciparum-infected erythrocytes containingsickle hemoglobin. Proc. Natl. Acad. Sci. USA, 2008; 105: 991-996
    Google Scholar
  • 14. Cilmi S.A., Karalius B.J., Choy W., Smith R.N., Butterton J.R.:Fabry disease in mice protects against lethal disease caused by Shigatoxin-expressing enterohemorrhagic Escherichia coli. J. Infect. Dis.,2006; 194: 1135-1140
    Google Scholar
  • 15. Cooling L.: Blood groups in infection and host susceptibility.Clin. Microbiol. Rev., 2015; 28: 801-870
    Google Scholar
  • 16. Crawford M.N., Tippett P., Sanger R.: Antigens Aua, i and P1 ofcells of the dominant type of Lu(a-b-). Vox Sang., 1974; 26: 283-287
    Google Scholar
  • 17. Crosnier C., Bustamante L.Y., Bartholdson S.J., Bei A.K., TheronM., Uchikawa M., Mboup S., Ndir O., Kwiatkowski D.P., DuraisinghM.T., Rayner J.C., Wright G.J.: Basigin is a receptor essential for erythrocyteinvasion by Plasmodium falciparum. Nature, 2011; 480: 534-537
    Google Scholar
  • 18. Crowley J., Vege S., Lukasavage P. i wsp.: Novel mutations inEKLF/KLF1 encoding In(Lu) phenotype. Transfusion, 2010; 50: 47A-48A [Abstract]
    Google Scholar
  • 19. Cserti-Gazdewich C.M.: Plasmodium falciparum malaria and carbohydrateblood group evolution. ISBT Sci. Ser., 2010; 5: 256-266
    Google Scholar
  • 20. Czerwinski M.: Grupy krwi – minusy i plusy. Czy antygeny grupowekrwi chronią nas przed chorobami zakaźnymi? Postępy Hig.Med. Dośw., 2015; 69: 703-722
    Google Scholar
  • 21. Czerwinski M., Kaczmarek R.: Genetyczne podstawy syntezycukrowych antygenów grupowych krwi. Acta Haematol. Pol., 2013;44: 251-259
    Google Scholar
  • 22. Czerwinski M., Waśniowska K., Steuden I., Duk M., Wiedłocha A.,Lisowska E.: Degradation of the human erythrocyte membrane band
    Google Scholar
  • 23. Daniels G.: Human Blood Groups, 3rd. Edition. Wiley-Blackwell,Oxford, UK 2013
    Google Scholar
  • 24. Daniels G.: Lutheran. Immunohematology, 2009; 25: 152-159
    Google Scholar
  • 25. Dotz V., Wuhrer M.: Histo-blood group glycans in the contextof personalized medicine. Biochim. Biophys. Acta, 2016; 1860: 1596-1607
    Google Scholar
  • 26. Figueroa D.: The Diego blood group system: a review. Immunohematology,2013; 29: 73-81
    Google Scholar
  • 27. Flint J., Hill A.V., Bowden D.K., Oppenheimer S.J., Sill P.R., SerjeantsonS.W., Bana-Koiri J., Bhatia K., Alpers M.P., Boyce A.J., WeatherallD.J., Clegg J.B.: High frequencies of α-thalassaemia are the resultof natural selection by malaria. Nature, 1986; 321: 744-750
    Google Scholar
  • 28. Fraser G.R., Giblett E.R., Motulsky A.G.: Population genetic studiesin the Congo. 3. Blood groups (ABO, MNSs, Rh, Jsa). Am. J. Hum.Genet., 1966; 18: 546-552
    Google Scholar
  • 29. Friedman M.J.: Oxidant damage mediates variant red cell resistanceto malaria. Nature, 1979; 280: 245-247
    Google Scholar
  • 30. Gallienne A.E., Dréau H.M., Schuh A., Old J.M., Henderson S.:Ten novel mutations in the erythroid transcription factor KLF1 geneassociated with increased fetal hemoglobin levels in adults. Haematologica,2012; 97: 340-343
    Google Scholar
  • 31. Gibson T.: Two kindred with the rare dominant inhibitor of thelutheran and p1 red cell antigens. Hum. Hered., 1976; 26: 171-174
    Google Scholar
  • 32. Grodecka M., Waśniowska K.: Interceptory – “ciche” receptorychemokin. Postępy Hig. Med. Dośw., 2007; 61: 231-239
    Google Scholar
  • 33. Gruszczyk J., Lim N.T., Arnott A., He W.Q., Nguitragool W., RoobsoongW., Mok Y.F., Murphy J.M., Smith K.R., Lee S., Bahlo M., MuellerI., Barry A.E., Tham W.H.: Structurally conserved erythrocyte-bindingdomain in Plasmodium provides a versatile scaffold for alternatereceptor engagement. Proc. Natl. Acad. Sci. USA, 2016; 113: E191-E200
    Google Scholar
  • 34. Hadley T.J., Peiper S.C.: From malaria to chemokine receptor:the emerging physiologic role of the Duffy blood group antigen.Blood, 1997; 89: 3077-3091
    Google Scholar
  • 35. Heimpel H., Wendt F.: Congenital dyserythropoietic anemiawith karyorrhexis and multinuclearity of erythroblasts. Helv. Med.Acta, 1968; 34: 103-115
    Google Scholar
  • 36. Helias V., Saison C., Peyrard T., Vera E., Prehu C., Cartron J.P.,Arnaud L.: Molecular analysis of the rare In(Lu) blood type: towarddecoding the phenotype outcome of haploinsufficiency for the transcriptionfactor KLF1. Hum. Mutat., 2013; 34: 221-228
    Google Scholar
  • 37. Hellberg Å., Westman J.S., Thuresson B., Olsson M.L.: P1PK: Theblood group system that changed its name and expanded. Immunohematology,2013; 29: 25-33
    Google Scholar
  • 38. Hodge D., Coghill E., Keys J., Maguire T., Hartmann B., McDowallA., Weiss M., Grimmond S., Perkins A.: A global role for EKLF indefinitive and primitive erythropoiesis. Blood, 2006; 107: 3359-3370
    Google Scholar
  • 39. Huang J., Zhang X., Liu D., Wei X., Shang X., Xiong F., Yu L., YinX., Xu X.: Compound heterozygosity for KLF1 mutations is associatedwith microcytic hypochromic anemia and increased fetal hemoglobin.Eur. J. Hum. Genet., 2015; 23: 1341-1348
    Google Scholar
  • 40. Iolascon A., Heimpel H., Wahlin A., Tamary H.: Congenital dyserythropoieticanemias: molecular insights and diagnostic approach.Blood, 2013; 122: 2162-2166
    Google Scholar
  • 41. Jaffray J.A., Mitchell W.B., Gnanapragasam M.N., Seshan S.V.,Guo X., Westhoff C.M., Bieker J.J., Manwani D.: Erythroid transcriptionfactor EKLF/KLF1 mutation causing congenital dyserythropoieticanemia type IV in a patient of Taiwanese origin: review of allreported cases and development of a clinical diagnostic paradigm.Blood Cells Mol. Dis., 2013; 51: 71-75
    Google Scholar
  • 42. Johannes L., Römer W.: Shiga toxins – from cell biology to biomedicalapplications. Nat. Rev. Microbiol., 2010; 8: 105-116
    Google Scholar
  • 43. Kaczmarek R., Buczkowska A., Mikolajewicz K., Krotkiewski H.,Czerwinski M.: P1PK, GLOB, and FORS blood group systems and GLOBcollection: biochemical and clinical aspects. Do we understand it allyet? Transfus. Med. Rev, 2014; 28: 126-136
    Google Scholar
  • 44. Kaczmarek R., Duk M., Szymczak K., Korchagina E., TyborowskaJ., Mikolajczyk K., Bovin N., Szewczyk B., Jaskiewicz E., CzerwinskiM.: Human Gb3/CD77 synthase reveals specifity toward two or fourdifferent acceptors depending on amino acid at position 211, creatingPk, P1 and NOR blood group antigens. Biochem. Biophys. Res.Commun., 2016; 470: 168-174
    Google Scholar
  • 45. Kimura M.: The Neutral Theory of Molecular Evolution. CambridgeUniversity Press, Cambridge, UK 1983
    Google Scholar
  • 46. Kouki A., Haataja S., Loimaranta V., Pulliainen A.T., Nilsson U.J.,Finne J.: Identification of a novel streptococcal adhesin P (SadP) proteinrecognizing galactosyl-α1-4-galactose-containing glycoconjugates:convergent evolution of bacterial pathogens to binding of thesame host receptor. J. Biol. Chem., 2011; 286: 38854-38864
    Google Scholar
  • 47. Kulozik A.E., Bellan-Koch A., Kohne E., Kleihauer E.: A deletion/inversion rearrangement of the β-globin gene cluster in a Turkishfamily with δ β zero-thalassemia intermedia. Blood, 1992; 79:2455-2459
    Google Scholar
  • 48. Lai M.I, Jiang J., Silver N., Best S., Menzel S., Mijovic A., Colella S.,Ragoussis J., Garner C., Weiss M.J., Thein S.L.: α-Haemoglobin stabilisingprotein is a quantitative trait gene that modifies the phenotypeof β-thalassaemia. Br. J. Haematol., 2006; 133: 675-682
    Google Scholar
  • 49. Lisowska E.: Antigenic properties of human glycophorins – anupdate. Adv. Exp. Med. Biol., 2001; 491: 155-169
    Google Scholar
  • 50. Liu D., Zhang X., Yu L., Cai R., Ma X., Zheng C., Zhou Y., Liu Q., WeiX., Lin L., Yan T., Huang J., Mohandas N., An X., Xu X.: KLF1 mutationsare relatively more common in a thalassemia endemic region andameliorate the severity of β-thalassemia. Blood, 2014; 124: 803-811
    Google Scholar
  • 51. Lou J.W., Li D.Z., Zhang Y., He Y., Sun M.N., Ye W.L., Liu Y.H.:Delineation of the molecular basis of borderline hemoglobin A2 inChinese individuals. Blood Cells Mol. Dis., 2014; 53: 261-264
    Google Scholar
  • 52. Łukasik E., Waśniowska K.: Duffy blood group antigens: structure,serological properties and function. Postępy Hig. Med. Dośw.,2016; 70: 143-161
    Google Scholar
  • 53. Magor G.W.., Tallack M.R. Gillinder K.R., Bell C.C., McCallum N.,Williams B., Perkins A.C.: KLF1-null neonates display hydrops fetalisand a deranged erythroid transcriptome. Blood, 2015; 125: 2405-2417
    Google Scholar
  • 54. Maier A.G., Cooke B.M., Cowman A.F., Tilley L.: Malaria parasiteproteins that remodel the host erythrocyte. Nat. Rev. Microbiol.,2009; 7: 341-354
    Google Scholar
  • 55. Makni S., Ayed K.H., Dalix A.M., Oriol R.: Immunological localization of blood P1 antigen in tissues of Echinococcus granulosus. Ann.Trop. Med. Parasitol., 1992; 86: 87-88
    Google Scholar
  • 56. Mas C., Lussier-Price M., Soni S., Morse T., Arseneault G., DiLello P., Lafrance-Vanasse J., Bieker J.J., Omichinski J.G.: Structuraland functional characterization of an atypical activation domainin erythroid Krüppel-like factor (EKLF). Proc. Natl. Acad. Sci. USA,2011; 108: 10484-10489
    Google Scholar
  • 57. McConnell B.B., Yang V.W.: Mammalian Krüppel-like factors inhealth and diseases. Physiol. Rev., 2010; 90: 1337-1381
    Google Scholar
  • 58. Muramatsu T.: Basigin (CD147), a multifunctional transmembraneglycoprotein with various binding partners. J. Biochem., 2016;159: 481-490
    Google Scholar
  • 59. Nasimuzzaman M., Khandros E., Wang X., Kong Y., Zhao H., WeissD., Rivella S., Weiss M.J., Persons D.A.: Analysis of α hemoglobinstabilizing protein overexpression in murine β-thalassemia. Am. J.Hematol., 2010; 85: 820-822
    Google Scholar
  • 60. Ngo D., Bae H., Steinberg M.H., Sebastiani P., Solovieff N., BaldwinC.T., Melista E., Safaya S., Farrer L.A., Al-Suliman A.M., AlbualiW.H., Al Bagshi M.H., Naserullah Z., Akinsheye I., Gallagher P. i wsp.:Fetal hemoglobin in sickle cell anemia: genetic studies of the ArabIndianhaplotype. Blood Cells Mol. Dis., 2013; 51: 22-26
    Google Scholar
  • 61. Nielsen R., Hellmann I., Hubisz M., Bustamante C., Clark A.G.:Recent and ongoing selection in the human genome. Nat. Rev. Genet.,2007; 8: 857-868
    Google Scholar
  • 62. Nitta T., Kawano F., Yamashiro Y., Takagi F., Murata T., TanakaT., Ferania M., Adhiyanto C., Hattori Y.: A new Krüppel-like factor 1 mutation (c.947G>A or p.C316Y) in humans causes β-thalassemiaminor. Hemoglobin, 2015; 39: 121-126
    Google Scholar
  • 63. Ogasawara K., Tsuneyama H., Uchikawa M., Okazaki H., TadokoroK.: KLF1 mutations in Japanese individuals with In(Lu) phenotype.Vox Sang., 2012; 103, Suppl. 1: 214 [Abstract]
    Google Scholar
  • 64. Orkin, S.H., Kazazian H.H. Jr, Antonarakis S.E., Goff S.C., BoehmC.D., Sexton J.P., Waber P.G., Giardina P.J.: Linkage of beta-thalassaemiamutations and β-globin gene polymorphisms with DNA polymorphismsin human β-globin gene cluster. Nature, 1982; 296: 627-631
    Google Scholar
  • 65. Parsons S.F., Spring F.A., Chasis J.A., Anstee D.J.: Erythroid celladhesion molecules Lutheran and LW in health and disease. BaillieresBest. Pract. Res. Clin. Haematol., 1999; 12: 729-745
    Google Scholar
  • 66. Pasvol G., Wainscoat J.S., Weatherall D.J.: Erythrocytes deficiencyin glycophorin resist invasion by the malarial parasite Plasmodiumfalciparum. Nature, 1982; 297: 64-66
    Google Scholar
  • 67. Perkins A., Xu X., Higgs D.R., Patrinos G.P., Arnaud L., BiekerJ.J., Philipsen S. and the KLF1 Consensus Workgroup: “Krüppeling”erythropoiesis: an unexpected broad spectrum of human red bloodcell disorders due to KLF1 variants. Blood, 2016; 127: 1856-1862
    Google Scholar
  • 68. Perseu L., Satta S., Moi P., Demartis F.R., Manunza L., SollainoM.C., Barella S., Cao A., Galanello R.: KLF1 gene mutations causeborderline HbA2. Blood, 2011; 118: 4454-4458
    Google Scholar
  • 69. Ponce de León P., Valverde J.: P system antigenic determinersexpression in Ascaris lumbricoides. Rev. Inst. Med. Trop. Sao Paulo,2003; 45: 53-54
    Google Scholar
  • 70. Radmilovic M., Zukic B., Petrovic M.S., Bartsakoulia M., StankovicB., Kotur N., Dokmanovic L., Georgitsi M., Patrinos G.P., PavlovicS.: Functional analysis of a novel KLF1 gene promoter variationassociated with hereditary persistence of fetal hemoglobin. Ann.Hematol., 2013; 92: 53-58
    Google Scholar
  • 71. Rochette J., Craig J.E., Thein S.L.: Fetal hemoglobin levels inadults. Blood Rev., 1994; 8: 213-224
    Google Scholar
  • 72. Rowe G.P., Gale S.A., Daniels G.L., Green C.A., Tippett P.: A studyon Lu-null families in South Wales. Ann. Hum. Genet., 1992; 56: 267-272
    Google Scholar
  • 73. Satta S., Perseu L., Moi P., Asunis I., Cabriolu A., Maccioni L.,Demartis F.R., Manunza L., Cao A., Galanello R.: Compound heterozygosityfor KLF1 mutations associated with remarkable increaseof fetal hemoglobin and red cell protoporphyrin. Haematologica,2011; 96: 767-770
    Google Scholar
  • 74. Shawky R.M., Kamal T.M.: Thalassemia intermedia: An overview.Egyptian J. Med. Human Genetics, 2012; 13: 245-255
    Google Scholar
  • 75. Siatecka M., Bieker J.J.: The multifunctional role of EKLF/KLF1during erythropoiesis. Blood, 2011; 118: 2044-2054
    Google Scholar
  • 76. Siatecka M., Soni S., Planutis A., Bieker J.J.: Transcriptional activityof erythroid Krüppel-like factor (EKLF/KLF1) modulated byPIAS3 (protein inhibitor of activated STAT3). J. Biol. Chem., 2015;290: 9929-9940
    Google Scholar
  • 77. Singleton B.K., Burton N.M., Green C., Brady R.L., Anstee D.J.:Mutations in EKLF/KLF1 form the molecular basis of the rare bloodgroup In(Lu) phenotype. Blood, 2008; 112: 2081-2088
    Google Scholar
  • 78. Singleton B.K., Lau W., Fairweather V.S., Burton N.M., WilsonM.C., Parsons S.F., Richardson B.M., Trakarnsanga K., Brady R.L.,Anstee D.J., Frayne J.: Mutations in the second zinc finger of humanEKLF reduce promoter affinity but give rise to benign and diseasephenotypes. Blood, 2011; 118: 3137-3145
    Google Scholar
  • 79. Soni S., Pchelintsev N., Adams P.D., Bieker J.J.: Transcriptionfactor EKLF (KLF1) recruitment of the histone chaperone HIRA isessential for β-globin gene expression. Proc. Natl. Acad. Sci. USA,2014; 111: 13337-13342
    Google Scholar
  • 80. Special Issue: Abstracts of the 32nd International Congress ofthe International Society of Blood Transfusion in joint cooperationwith the 10th Congress of AMMTAC, Cancun, Mexico, July 7-12, 2012.Vox Sang., 2012; 103, Suppl. 1: 1-289
    Google Scholar
  • 81. Special Issue: Abstract Presentations from the AABB AnnualMeeting and CTTXPO, Baltimore, Maryland, USA, October 9-12, 2010.Transfusion, 2010; 50, Suppl. 2: 1A-231A
    Google Scholar
  • 82. Suchanowska A., Kaczmarek R., Duk M., Lukasiewicz J., SmolarekD., Majorczyk E., Jaskiewicz E., Laskowska A., Wasniowska K.,Grodecka M., Lisowska E., Czerwinski M.: A single point mutationin the gene encoding Gb3/CD77 synthase causes a rare inheritedpolyagglutination syndrome. J. Biol. Chem., 2012; 287: 38220-38230
    Google Scholar
  • 83. Taliano V., Guévin R.M., Tippett P.: The genetics of a dominantinhibitor of the Lutheran antigens. Vox Sang., 1973; 24: 42-47
    Google Scholar
  • 84. Tang W., Cai S.P., Eng B., Poon M.C., Waye J.S., Illum N., Chui D.H.:Expression of embryonic ζ-globin and ε-globin chains in a 10-year–old girl with congenital anemia. Blood, 1993; 81: 1636-1640
    Google Scholar
  • 85. Tepakhan W., Yamsri S., Fucharoen G., Sanchaisuriya K., FucharoenS.: Krüppel-like factor 1 mutations and expression of hemoglobinsF and A2 in homozygous hemoglobin E syndrome. Ann.Hematol., 2015; 94: 1093-1098
    Google Scholar
  • 86. Thein S.L., Menzel S.: Discovering the genetics underlying foetalhaemoglobin production in adults. Br. J. Haematol., 2009; 145:455-467
    Google Scholar
  • 87. Thuresson B., Westman J.S., Olsson M.L.: Identification of a novelA4GALT exon reveals the genetic basis of the P1/P2 histo-bloodgroups. Blood, 2011; 117: 678-687
    Google Scholar
  • 88. Tournamille C., Colin Y., Cartron J.P., Le Van Kim C.: Disruptionof a GATA motif in the Duffy gene promoter abolishes erythroidgene expression in Duffy-negative individuals. Nat. Genet., 1995;10: 224-228
    Google Scholar
  • 89. Tournamille C., Le Van Kim C., Gane P., Cartron J.P., Colin Y.:Molecular basis and PCR-DNA typing of the Fya/fyb blood grouppolymorphism. Hum. Genet., 1995; 95: 407-410
    Google Scholar
  • 90. Viprakasit V., Ekwattanakit S., Riolueang S., Chalaow N., FisherC., Lower K., Kanno H., Tachavanich K., Bejrachandra S., Saipin J., JuntharaniyomM., Sanpakit K., Tanphaichitr V.S., Songdej D., Babbs C.,Gibbons R.J., Philipsen S., Higgs D.R.: Mutations in Krüppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistenceof embryonic globin gene expression. Blood, 2014; 123: 1586-1595
    Google Scholar
  • 91. Wanaguru M., Liu W., Hahn B.H., Rayner J.C., Wright G.J.: RH5–Basigin interaction plays a major role in the host tropism of Plasmodiumfalciparum. Proc. Natl. Acad. Sci. USA, 2013; 110: 20735-20740
    Google Scholar
  • 92. Wang T., He Y., Zhou J.Y., Xie X. M., Li J., Liao C., Li D.Z.: KLF1gene mutations in Chinese adults with increased fetal hemoglobin.Hemoglobin, 2013; 37: 501-506
    Google Scholar
  • 93. Wang Z., Luo G., Ji Y.: A novel 519_525dup mutation of KLF1gene identified in a Chinese blood donor with Lu(a-b-) phenotype.Transfusion, 2013; 53: 1619-1620
    Google Scholar
  • 94. Wasniowska K., Czerwinski M., Jachymek W., Lisowska E.: Expressionand binding properties of a soluble chimeric protein containingthe N-terminal domain of Duffy antigen. Biochem. Biophys. Res.Commun., 2000; 273: 705-711
    Google Scholar
  • 95. Wasniowska K., Drzeniek Z., Lisowska E.: The amino acids of Mand N blood group glycopeptides are different. Biochem. Biophys.Res. Commun., 1977; 76: 385-390
    Google Scholar
  • 96. Wassmer S.C., Carlton J.M.: Glycophorins, blood groups, and protectionfrom severe malaria. Trends Parasitol., 2016; 32: 5-7
    Google Scholar
  • 97. Waye J.S., Eng B.: Krüppel-like factor 1: hematologic phenotypesassociated with KLF1 gene mutations. Int. J. Lab. Hematol., 2015;37, Suppl. 1: 78-84
    Google Scholar
  • 98. Weatherall D.: Thalassaemias. Nature Publishing Group, Encyclopediaof Life Sciences, 2001
    Google Scholar
  • 99. Wickramasinghe S.N.: Congenital dyserythropoietic anaemias:clinical features, haematological morphology and new biochemicaldata. Blood Rev., 1998; 12: 178-200
    Google Scholar
  • 100. Wickramasinghe S.N., Wood W.G.: Advances in the understandingof the congenital dyserythropoietic anaemias. Br. J. Haematol.,2005; 131: 431-446
    Google Scholar
  • 101. Williams T.N.: How do hemoglobins S and C result in malariaprotection? J. Infect. Dis., 2011; 204: 1651-1653
    Google Scholar
  • 102. Yosief H.O., Iyer S.S., Weiss A.A.: Binding of Pk-trisaccharideanalogs of globotriaosylceramide to Shiga toxin variants. Infect.Immun., 2013; 81: 2753-2760
    Google Scholar
  • 103. Yu L.H., Liu D., Cai R., Shang X., Zhang X.H., Ma X.X., Yan S.H.,Fang P., Zheng C.G., Wei X.F., Liu Y.H., Zhou T.B., Xu X.M.: Changesin hematological parameters in α-thalassemia individuals co-inheritedwith erythroid Krüppel-like factor mutations. Clin. Genet.,2015; 88: 56-61
    Google Scholar
  • 104. Zenonos Z.A., Dummler S.K., Müller-Sienerth N., Chen J., PreiserP.R., Rayner J.C., Wright G.J.: Basigin is a druggable target forhost oriented antimalarial interventions. J. Exp. Med., 2015; 212:1145-1151
    Google Scholar

Full text

Skip to content