Cancer chemoprevention – selected molecular mechanisms
Katarzyna Walczak 1 , Sebastian Marciniak 1 , Grażyna Rajtar 1Abstract
The effect of diet on cancer formation and prevention of carcinogenesis has attracted considerable attention for years and is the subject of several studies. Some components of the daily diet, such as resveratrol, curcumin, genistein, gingerol, can significantly reduce the risk of cancer or affect the rate of tumor progression. Cancer chemoprevention assumes the use of natural or synthetic biologically active substances in order to prevent, inhibit or reverse the progression of cancer. There are many biologically active compounds in several natural products, i.e. garlic, ginger, soy, curcuma, tomatoes, cruciferous plants or green tea. Their chemopreventive activity is based on the inhibition of processes underlying carcinogenesis (inflammation, transformation and proliferation), but also affects the final phase of carcinogenesis – angiogenesis and metastasis. Despite the relatively low toxicity of chemopreventive agents, their molecular targets often coincide with the objectives of the currently used cancer therapies. The widespread use of chemopreventive agents may contribute to reduction of the rate of cancer incidence, and increase the effectiveness of conventional cancer therapies. In the present study, selected molecular mechanisms of the chemopreventive activity have been discussed, especially their involvement in the regulation of signal transduction, cell cycle regulation, apoptosis, metastasis and angiogenesis. The role of chemopreventive agents in the inflammatory process, the metabolism of xenobiotics and multidrug resistance has been also characterized.
References
- 1. Aggarwal B.B., Shishodia S.: Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol., 2006; 71: 1397-1421
Google Scholar - 2. Ahn K.S., Noh E.J., Zhao H.L., Jung S.H., Kang S.S., Kim Y.S.: Inhibition of inducible nitric oxide synthase and cyclooxygenase II by Platycodon grandiflorum saponins via suppression of nuclear factor-kappaB activation in RAW 264.7 cells. Life Sci., 2005; 76: 2315-2328
Google Scholar - 3. Ansell P.J., Espinosa-Nicholas C., Curran E.M., Judy B.M., Philips B.J., Hannink M., Lubahn D.B.: In vitro and in vivo regulation of antioxidant response element-dependent gene expression by estrogens. Endocrinology, 2004; 145: 311-317
Google Scholar - 4. Anuchapreeda S., Leechanachai P., Smith M.M., Ambudkar S.V., Limtrakul P.N.: Modulation of P-glycoprotein expression and function by curcumin in multidrug-resistant human KB cells. Biochem. Pharmacol., 2002; 64: 573-582
Google Scholar - 5. Baer-Dubowska W., Szaefer H.: Modulation of carcinogen-metabolizing cytochromes P450 by phytochemicals in humans. Expert Opin. Drug Metab. Toxicol., 2013; 9: 927-941
Google Scholar - 6. Balkwill F., Mantovani A.: Inflammation and cancer: back to Virchow? Lancet, 2001; 357: 539-545
Google Scholar - 7. Bayala B., Bassole I.H., Scifo R., Gnoula C., Morel L., Lobaccaro J.M., Simpore J.: Anticancer activity of essential oils and their chemical components – a review. Am. J. Cancer Res., 2014; 4: 591-607
Google Scholar - 8. Beedanagari S.R., Bebenek I., Bui P., Hankinson O.: Resveratrol inhibits dioxin-induced expression of human CYP1A1 and CYP1B1 by inhibiting recruitment of the aryl hydrocarbon receptor complex and RNA polymerase II to the regulatory regions of the corresponding genes. Toxicol. Sci., 2009; 110: 61-67
Google Scholar - 9. Behan L.A., Amir E., Casper R.F.: Aromatase inhibitors for prevention of breast cancer in postmenopausal women: a narrative review. Menopause, 2015; 22: 342-350
Google Scholar - 10. Bharti A.C,. Donato N., Singh S., Aggarwal B.B.: Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-κB and IκBα kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood, 2003; 101: 1053-1062
Google Scholar - 11. Birch P.J., Grossman C.J., Hayes A.G.: Kynurenate and FG9041 have both competitive and non-competitive antagonist actions at excitatory amino acid receptors. Eur. J. Pharmacol., 1988; 151: 313- 315
Google Scholar - 12. Bode A.M., Ma W.Y., Surh Y.J., Dong Z.: Inhibition of epidermal growth factor-induced cell transformation and activator protein 1 activation by [6]-gingerol. Cancer Res., 2001; 61: 850-853
Google Scholar - 13. Bøhn S.K., Blomhoff R., Paur I.: Coffee and cancer risk, epidemiological evidence, and molecular mechanisms. Mol. Nutr. Food Res., 2014; 58: 915-930
Google Scholar - 14. Bråkenhielm E., Cao R., Cao Y.: Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J., 2001; 15: 1798-1800
Google Scholar - 15. ] Bu-Abbas A., Clifford M.N., Ioannides C., Walker R.: Stimulation of rat hepatic UDP-glucuronosyl transferase activity following treatment with green tea. Food Chem. Toxicol., 1995; 33: 27-30
Google Scholar - 16. Cavin C., Delannoy M., Malnoe A., Debefve E., Touché A., Courtois D., Schilter B.: Inhibition of the expression and activity of cyclooxygenase-2 by chicory extract. Biochem. Biophys. Res. Commun., 2005; 327: 742-749
Google Scholar - 17. Chang H.P., Sheen L.Y., Lei Y.P.: The protective role of carotenoids and polyphenols in patients with head and neck cancer. J. Chin. Med. Assoc., 2015; 78: 89-95
Google Scholar - 18. Chapple K.S., Cartwright E.J., Hawcroft G., Tisbury A., Bonifer C., Scott N., Windsor A.C., Guillou P.J., Markham A.F., Coletta P.L., Hull M.A.: Localization of cyclooxygenase-2 in human sporadic colorectal adenomas. Am. J. Pathol., 2000; 156: 545-553
Google Scholar - 19. ] Chen H.W., Yu S.L., Chen J.J., Li H.N., Lin Y.C., Yao P.L., Chou H.Y., Chien C.T., Chen W.J., Lee Y.T., Yang P.C.: Anti-invasive gene expression profile of curcumin in lung adenocarcinoma based on a high throughput microarray analysis. Mol. Pharmacol., 2004; 65: 99-110
Google Scholar - 20. Ciolino H.P., Yeh G.C.: Inhibition of aryl hydrocarbon-induced cytochrome P-450 1A1 enzyme activity and CYP1A1 expression by resveratrol. Mol. Pharmacol., 1999; 56: 760-767
Google Scholar - 21. Conney A.H.: Enzyme induction and dietary chemicals as approaches to cancer chemoprevention: the Seventh DeWitt S. Goodman Lecture. Cancer Res., 2003; 63: 7005-7031
Google Scholar - 22. Cory S., Adams J.M.: The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer, 2002; 2: 647-656
Google Scholar - 23. Cragg G.M., Newman D.J.: Plants as a source of anti-cancer agents. J. Ethnopharmacol., 2005; 100: 72-79
Google Scholar - 24. Cross M.J., Claesson-Welsh L.: FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci., 2001; 22: 201-207
Google Scholar - 25. Dave B., Eason R.R., Till S.R., Geng Y., Velarde M.C., Badger T.M., Simmen R.C.: The soy isoflavone genistein promotes apoptosis in mammary epithelial cells by inducing the tumor suppressor PTEN. Carcinogenesis, 2005; 26: 1793-1803
Google Scholar - 26. Den Hollander P., Savage M.I., Brown P.H.: Targeted therapy for breast cancer prevention. Front. Oncol., 2013; 3: 250
Google Scholar - 27. Dilly A.K., Ekambaram P., Guo Y., Cai Y., Tucker S.C., Fridman R., Kandouz M., Honn K.V.: Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/ NF-κB. Int. J. Cancer, 2013; 133: 1784-1791
Google Scholar - 28. Dorai T., Aggarwal B.B.: Role of chemopreventive agents in cancer therapy. Cancer Lett., 2004; 215: 129-140
Google Scholar - 29. Eferl R., Wagner E.F.: AP-1: a double-edged sword in tumorigenesis. Nat. Rev. Cancer, 2003; 3: 859-868
Google Scholar - 30. Enayat S., Banerjee S.: The ethanolic extract of bark from Salix aegyptiaca L. inhibits the metastatic potential and epithelial to mesenchymal transition of colon cancer cell lines. Nutr. Cancer, 2014; 66: 999-1008
Google Scholar - 31. Fang C.Y., Wu C.C., Hsu H.Y., Chuang H.Y., Huang S.Y., Tsai C.H., Chang Y., Tsao G.S., Chen C.L., Chen J.Y.: EGCG inhibits proliferation, invasiveness and tumor growth by up-regulation of adhesion molecules, suppression of gelatinases activity, and induction of apoptosis in nasopharyngeal carcinoma cells. Int. J. Mol. Sci., 2015; 16: 2530-2558
Google Scholar - 32. Ferrara N., Kerbel R.S.: Angiogenesis as a therapeutic target. Nature, 2005; 438: 967-974
Google Scholar - 33. Gasparini C., Celeghini C., Monasta L., Zauli G.: NF-κB pathways in hematological malignancies. Cell. Mol. Life Sci., 2014; 71: 2083-2102
Google Scholar - 34. Ge J., Liu Y., Li Q., Guo X., Gu L., Ma Z.G., Zhu Y.P.: Resveratrol induces apoptosis and autophagy in T-cell acute lymphoblastic leukemia cells by inhibiting Akt/mTOR and activating p38-MAPK. Biomed. Environ. Sci., 2013; 26: 902-911
Google Scholar - 35. Goel A., Jhurani S., Aggarwal B.B.: Multi-targeted therapy by curcumin: how spicy is it? Mol. Nutr. Food Res., 2008; 52: 1010-1030
Google Scholar - 36. Gross-Steinmeyer K., Stapleton P.L., Tracy J.H., Bammler T.K., Strom S.C., Buhler D.R., Eaton D.L.: Modulation of aflatoxin B1-mediated genotoxicity in primary cultures of human hepatocytes by diindolylmethane, curcumin, and xanthohumols. Toxicol. Sci., 2009; 112: 303-310
Google Scholar - 37. Gupta S., Hussain T., Mukhtar H.: Molecular pathway for (-)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch. Biochem. Biophys., 2003; 410: 177-185
Google Scholar - 38. Hahn W.C., Weinberg R.A.: Rules for making human tumor cells. N. Engl. J. Med., 2002; 347: 1593-1603
Google Scholar - 39. Hartwell L.H., Weinert T.A.: Checkpoints: controls that ensure the order of cell cycle events. Science, 1989; 246: 629-634
Google Scholar - 40. Hong J., Lambert J.D., Lee S.H., Sinko P.J., Yang C.S.: Involvement of multidrug resistance-associated proteins in regulating cellular levels of (-)-epigallocatechin-3-gallate and its methyl metabolites. Biochem. Biophys. Res. Commun., 2003; 310: 222-227
Google Scholar - 41. Hong R.L., Spohn W.H., Hung M.C.: Curcumin inhibits tyrosine kinase activity of p185neu and also depletes p185neu. Clin. Cancer Res., 1999; 5: 1884-1891
Google Scholar - 42. Hu G., Zhang L., Rong Y., Ni X., Sun Y.: Downstream carcinogenesis signaling pathways by green tea polyphenols: a translational perspective of chemoprevention and treatment for cancers. Curr. Drug Metab., 2014; 15: 14-22
Google Scholar - 43. Hu X., Han Z., Wyche J.H., Hendrickson E.A.: Helix 6 of tBid is necessary but not sufficient for mitochondrial binding activity. Apoptosis, 2003; 8: 277-289
Google Scholar - 44. Huang W.C., Hsu R.M., Chi L.M., Leu Y.L., Chang Y.S., Yu J.S.: Selective downregulation of EGF receptor and downstream MAPK pathway in human cancer cell lines by active components partially purified from the seeds of Livistona chinensis R. Brown. Cancer Lett., 2007; 248: 137-146
Google Scholar - 45. Huang Y.T., Hwang J.J., Lee P.P., Ke F.C., Huang J.H., Huang C.J., Kandaswami C., Middleton E. Jr., Lee M.T.: Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br. J. Pharmacol., 1999; 128: 999-1010
Google Scholar - 46. Iñiguez M.A., Rodríguez A., Volpert O.V., Fresno M., Redondo J.M.: Cyclooxygenase-2: a therapeutic target in angiogenesis. Trends Mol. Med., 2003; 9: 73-78
Google Scholar - 47. Isshiki M., Ohta H., Tamura H.: Coffee reduces SULT1E1 expression in human colon carcinoma Caco-2 cells. Biol. Pharm. Bull., 2013; 36: 299-304
Google Scholar - 48. Jankun J., Selman S.H., Swiercz R., Skrzypczak-Jankun E.: Why drinking green tea could prevent cancer. Nature, 1997; 387: 561
Google Scholar - 49. Juin P., Geneste O., Raimbaud E., Hickman J.A.: Shooting at survivors: Bcl-2 family members as drug targets for cancer. Biochim. Biophys. Acta, 2004; 1644: 251-260
Google Scholar - 50. Jung Y.D., Ellis L.M.: Inhibition of tumour invasion and angiogenesis by epigallocatechin gallate (EGCG), a major component of green tea. Int. J. Exp. Pathol., 2001; 82: 309-316
Google Scholar - 51. Karin M.: Nuclear factor-κB in cancer development and progression. Nature, 2006; 441: 431-436
Google Scholar - 52. Key T.J., Schatzkin A., Willett W.C., Allen N.E., Spencer E.A., Travis R.C.: Diet, nutrition and the prevention of cancer. Public Health Nutr., 2004; 7: 187-200
Google Scholar - 53. Khan N., Mukhtar H.: Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett., 2008; 269: 269-280
Google Scholar - 54. Khoi P.N., Park J.S., Kim J.H., Xia Y., Kim N.H., Kim K.K., Jung Y.D.: (-)-Epigallocatechin-3-gallate blocks nicotine-induced matrix metalloproteinase-9 expression and invasiveness via suppression of NF-κB and AP-1 in endothelial cells. Int. J. Oncol., 2013; 43: 868-876
Google Scholar - 55. Klampfer L.: The role of signal transducers and activators of transcription in colon cancer. Front. Biosci., 2008; 13: 2888-2899
Google Scholar - 56. Kuc D., Rahnama M., Tomaszewski T., Rzeski W., Wejksza K., Urbanik-Sypniewska T., Parada-Turska J., Wielosz M., Turski W.A.: Kynurenic acid in human saliva – does it influence oral microflora? Pharmacol. Rep., 2006; 58: 393-398
Google Scholar - 57. Kuc D., Zgrajka W., Parada-Turska J., Urbanik-Sypniewska T., Turski W.A.: Micromolar concentration of kynurenic acid in rat small intestine. Amino Acids, 2008; 35: 503-505
Google Scholar - 58. Kundu J., Chun K., Aruoma O.I., Kundu J.K.: Mechanistic perspectives on cancer chemoprevention/chemotherapeutic effects of thymoquinone. Mutat. Res., 2014; 768: 22-34
Google Scholar - 59. Kundu J.K., Chun K.S., Kim S.O., Surh Y.J.: Resveratrol inhibits phorbol ester-induced cyclooxygenase-2 expression in mouse skin: MAPKs and AP-1 as potential molecular targets. Biofactors, 2004; 21: 33-39
Google Scholar - 60. Kundu J.K., Surh Y.J.: Breaking the relay in deregulated cellular signal transduction as a rationale for chemoprevention with anti-inflammatory phytochemicals. Mutat. Res., 2005; 591: 123-146
Google Scholar - 61. Kundu J.K., Surh Y.J.: Molecular basis of chemoprevention by resveratrol: NF-κB and AP-1 as potential targets. Mutat. Res., 2004; 555: 65-80
Google Scholar - 62. Kutchera W., Jones D.A., Matsunami N., Groden J., McIntyre T.M., Zimmerman G.A., White R.L., Prescott S.M.: Prostaglandin H synthase 2 is expressed abnormally in human colon cancer: evidence for a transcriptional effect. Proc. Natl. Acad. Sci. USA, 1996; 93: 4816-4820
Google Scholar - 63. Kuwajerwala N., Cifuentes E., Gautam S., Menon M., Barrack E.R., Reddy G.P.: Resveratrol induces prostate cancer cell entry into s phase and inhibits DNA synthesis. Cancer Res., 2002; 62: 2488-2492
Google Scholar - 64. Lea M.A., Randolph V.M., Patel M.: Increased acetylation of histones induced by diallyl disulfide and structurally related molecules. Int. J. Oncol., 1999; 15: 347-352
Google Scholar - 65. ] Leu T.H., Su S.L., Chuang Y.C., Maa M.C.: Direct inhibitory effect of curcumin on Src and focal adhesion kinase activity. Biochem. Pharmacol., 2003; 66: 2323-2331
Google Scholar - 66. Leung H.Y., Yung L.H., Poon C.H., Shi G., Lu A.L., Leung L.K.: Genistein protects against polycyclic aromatic hydrocarbon-induced oxidative DNA damage in non-cancerous breast cells MCF-10A. Br. J. Nutr., 2009; 101: 257-262
Google Scholar - 67. Li A., Li S., Zhang Y., Xu X., Chen Y., Li H.: Resources and biological activities of natural polyphenols. Nutrients, 2014; 6: 6020-6047
Google Scholar - 68. Li F., Ye L., Lin S., Leung L.K.: Dietary flavones and flavonones display differential effects on aromatase (CYP19) transcription in the breast cancer cells MCF-7. Mol. Cell. Endocrinol., 2011; 344: 51-58
Google Scholar - 69. Lin A., Karin M.: NF-κB in cancer: a marked target. Semin. Cancer Biol., 2003; 13: 107-114
Google Scholar - 70. Lin C.W., Chen P.N., Chen M.K., Yang W.E., Tang C.H., Yang S.F., Hsieh Y.S.: Kaempferol reduces matrix metalloproteinase-2 expression by down-regulating ERK1/2 and the activator protein-1 signaling pathways in oral cancer cells. PLoS One, 2013; 8: e80883
Google Scholar - 71. Lin F.Y., Hsieh Y.H., Yang S.F., Chen C.T., Tang C.H., Chou M.Y., Chuang Y.T., Lin C.W., Chen M.K.: Resveratrol suppresses TPA-induced matrix metalloproteinase-9 expression through the inhibition of MAPK pathways in oral cancer cells. J. Oral Pathol. Med., 2015; 44: 699-706
Google Scholar - 72. Lin J.K., Liang Y.C., Lin-Shiau S.Y.: Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochem. Pharmacol., 1999; 58: 911-915
Google Scholar - 73. Loatan R.: Cell invasion as a target for chemoprevention. W: Cellular and molecular targets for chemoprevention, red.: V.E. Steele , G.D. Stoner , G.J. Kelloff , C.W. Boone. CRC Press, USA, 1992: 339-340
Google Scholar - 74. Majewska A., Hoser G., Furmanowa M., Urbańska N., Pietrosiuk A., Zobel A., Kuraś M.: Antiproliferative and antimitotic effect, S phase accumulation and induction of apoptosis and necrosis after treatment of extract from Rhodiola rosea rhizomes on HL-60 cells. J. Ethnopharmacol., 2006; 103: 43-52
Google Scholar - 75. Meeran S.M., Katiyar S.K.: Cell cycle control as a basis for cancer chemoprevention through dietary agents. Front. Biosci., 2008; 13: 2191-2202
Google Scholar - 76. Mohammadi-Bardbori A., Bengtsson J., Rannug U., Rannug A., Wincent E.: Quercetin, resveratrol, and curcumin are indirect activators of the aryl hydrocarbon receptor (AHR). Chem. Res. Toxicol., 2012; 25: 1878-1884
Google Scholar - 77. Moon Y.J., Wang X., Morris M.E.: Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol. In Vitro, 2006; 20: 187-210
Google Scholar - 78. Nakshatri H., Goulet R.J. Jr.: NF-κB and breast cancer. Curr. Probl. Cancer, 2002; 26: 282-309
Google Scholar - 79. Natarajan K., Singh S., Burke T.R. Jr., Grunberger D., Aggarwal B.B.: Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-κB. Proc. Natl. Acad. Sci. USA, 1996; 93: 9090-9095
Google Scholar - 80. Neergheen V.S., Bahorun T., Taylor E.W., Jen L.S., Aruoma O.I.: Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention. Toxicology, 2010; 278: 229-241
Google Scholar - 81. Nguyen D.P., Li J., Yadav S.S., Tewari A.K.: Recent insights into NF-κB signaling pathways and the link between inflammation and prostate cancer. BJU Int., 2014; 114: 168-176
Google Scholar - 82. Orlowski R.Z., Baldwin A.S. Jr.: NF-κB as a therapeutic target in cancer. Trends Mol. Med., 2002; 8: 385-389
Google Scholar - 83. Oyagbemi A.A., Azeez O.I., Saba A.B.: Interactions between reactive oxygen species and cancer: the roles of natural dietary antioxidants and their molecular mechanisms of action. Asian Pac. J. Cancer Prev., 2009; 10: 535-544
Google Scholar - 84. Oyagbemi A.A., Saba A.B., Azeez O.I.: Capsaicin: a novel chemopreventive molecule and its underlying molecular mechanisms of action. Indian J. Cancer, 2010; 47: 53-58
Google Scholar - 85. Paluszkiewicz P., Zgrajka W., Saran T., Schabowski J., Piedra J.L., Fedkiv O., Rengman S., Pierzynowski S.G., Turski W.A.: High concentration of kynurenic acid in bile and pancreatic juice. Amino Acids, 2009; 37: 637-641
Google Scholar - 86. Park M.J., Kim E.H., Park I.C., Lee H.C., Woo S.H., Lee J.Y., Hong Y.J., Rhee C.H., Choi S.H., Shim B.S., Lee S.H., Hong S.I.: Curcumin inhibits cell cycle progression of immortalized human umbilical vein endothelial (ECV304) cells by up-regulating cyclin-dependent kinase inhibitor, p21WAF1/CIP1, p27KIP1 and p53. Int. J. Oncol., 2002; 21: 379-383
Google Scholar - 87. Pistollato F., Giampieri F., Battino M.: The use of plant-derived bioactive compounds to target cancer stem cells and modulate tumor microenvironment. Food Chem. Toxicol., 2015; 75: 58-70
Google Scholar - 88. Poltronieri J., Becceneri A.B., Fuzer A.M., Filho J.C., Martin A.C., Vieira P.C., Pouliot N., Cominetti M.R.: [6]-gingerol as a cancer chemopreventive agent: a review of its activity on different steps of the metastatic process. Mini Rev. Med. Chem., 2014; 14: 313-321
Google Scholar - 89. Pozo-Guisado E., Alvarez-Barrientos A., Mulero-Navarro S., Santiago-Josefat B., Fernandez-Salguero P.M.: The antiproliferative activity of resveratrol results in apoptosis in MCF-7 but not in MDA- -MB-231 human breast cancer cells: cell-specific alteration of the cell cycle. Biochem. Pharmacol., 2002; 64: 1375-1386
Google Scholar - 90. Rajamanickam S., Agarwal R.: Natural products and colon cancer: current status and future prospects. Drug Dev. Res., 2008; 69: 460-471
Google Scholar - 91. Ramamoorthi G., Sivalingam N.: Molecular mechanism of TGF-β signaling pathway in colon carcinogenesis and status of curcumin as chemopreventive strategy. Tumour Biol., 2014; 35: 7295-7305
Google Scholar - 92. Reddy S., Aggarwal B.B.: Curcumin is a non-competitive and selective inhibitor of phosphorylase kinase. FEBS Lett., 1994; 341: 19-22
Google Scholar - 93. Reed J.C.: Apoptosis-targeted therapies for cancer. Cancer Cell., 2003; 3: 17-22
Google Scholar - 94. Ribeiro F.A., Gomes de Moura C.F., Aguiar O. Jr., de Oliveira F., Spadari R.C., Oliveira N.R., Oshima C.T., Ribeiro D.A.: The chemopreventive activity of apple against carcinogenesis: antioxidant activity and cell cycle control. Eur. J. Cancer Prev., 2014; 23: 477-480
Google Scholar - 95. Rossi R.E., Pericleous M., Mandair D., Whyand T., Caplin M.E.: The role of dietary factors in prevention and progression of breast cancer. Anticancer Res., 2014; 34: 6861-6875
Google Scholar - 96. Schimmer A.D., Welsh K., Pinilla C., Wang Z., Krajewska M., Bonneau M.J., Pedersen I.M., Kitada S., Scott F.L., Bailly-Maitre B., Glinsky G., Scudiero D., Sausville E., Salvesen G., Nefzi A., Ostresh J.M., Houghten R.A., Reed J.C.: Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell, 2004; 5: 25-35
Google Scholar - 97. Schwartz B., Hadar Y.: Possible mechanisms of action of mushroom-derived glucans on inflammatory bowel disease and associated cancer. Ann. Transl. Med., 2014; 2: 19
Google Scholar - 98. Schwingshackl L., Hoffmann G.: Adherence to Mediterranean diet and risk of cancer: a systematic review and meta-analysis of observational studies. Int. J. Cancer, 2014; 135: 1884-1897
Google Scholar - 99. Sergent T., Dupont I., Van der Heiden E., Scippo M.L., Pussemier L., Larondelle Y., Schneider Y.J.: CYP1A1 and CYP3A4 modulation by dietary flavonoids in human intestinal Caco-2 cells. Toxicol. Lett., 2009; 191: 216-222
Google Scholar - 100. Shaw R.J., Cantley L.C.: Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature, 2006; 441: 424-430
Google Scholar - 101. Shen L., Ji H.F.: Contribution of degradation products to the anticancer activity of curcumin. Clin. Cancer Res., 2009; 15: 7108-7109
Google Scholar - 102. Shishodia S.: Molecular mechanisms of curcumin action: gene expression. Biofactors, 2013; 39: 37-55
Google Scholar - 103. Shishodia S., Majumdar S., Banerjee S., Aggarwal B.B.: Ursolic acid inhibits nuclear factor-κB activation induced by carcinogenic agents through suppression of IκBα kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res., 2003; 63: 4375-4383
Google Scholar - 104. Sohn O.S., Surace A., Fiala E.S., Richie J.P. Jr., Colosimo S., Zang E., Weisburger J.H.: Effects of green and black tea on hepatic xenobiotic metabolizing systems in the male F344 rat. Xenobiotica, 1994; 24: 119-127
Google Scholar - 105. Son Y.O., Kim J., Lim J.C., Chung Y., Chung G.H., Lee J.C.: Ripe fruit of Solanum nigrum L. inhibits cell growth and induces apoptosis in MCF-7 cells. Food Chem. Toxicol., 2003; 41: 1421-1428
Google Scholar - 106. Sporn M.B.: Approaches to prevention of epithelial cancer during the preneoplastic period. Cancer Res., 1976; 36: 2699-2702
Google Scholar - 107. Stein R.C., Waterfield M.D.: PI3-kinase inhibition: a target for drug development? Mol. Med. Today, 2000; 6: 347-357
Google Scholar - 108. Subbaramaiah K., Dannenberg A.J.: Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol. Sci., 2003; 24: 96-102
Google Scholar - 109. Sun X.Y., Plouzek C.A., Henry J.P., Wang T.T., Phang J.M.: Increased UDP-glucuronosyltransferase activity and decreased prostate specific antigen production by biochanin A in prostate cancer cells. Cancer Res., 1998; 58: 2379-2384
Google Scholar - 110. Sundaram S.G., Milner J.A.: Diallyl disulfide induces apoptosis of human colon tumor cells. Carcinogenesis, 1996; 17: 669-673
Google Scholar - 111. Surh Y.J.: Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer, 2003; 3: 768-780
Google Scholar - 112. Tan M.L., Ooi J.P., Ismail N., Moad A.I., Muhammad T.S.: Programmed cell death pathways and current antitumor targets. Pharm. Res., 2009; 26: 1547-1560
Google Scholar - 113. Tang N.P., Li H., Qiu Y.L., Zhou G.M., Ma J.: Tea consumption and risk of endometrial cancer: a metaanalysis. Am. J. Obstet. Gynecol., 2009; 201: 605.e1-605.e8
Google Scholar - 114. Tárraga López P.J., Albero J.S., Rodríguez-Montes J.A.: Primary and secondary prevention of colorectal cancer. Clin. Med. Insights Gastroenterol., 2014; 7: 33-46
Google Scholar - 115. Tilli C.M., Stavast-Kooy A.J., Vuerstaek J.D., Thissen M.R., Krekels G.A., Ramaekers F.C., Neumann H.A.: The garlic-derived organosulfur component ajoene decreases basal cell carcinoma tumor size by inducing apoptosis. Arch. Dermatol. Res., 2003; 295: 117-123
Google Scholar - 116. Tosetti F., Ferrari N., De Flora S., Albini A.: Angioprevention: angiogenesis is a common and key target for cancer chemopreventive agents. FASEB J., 2002; 16: 2-14
Google Scholar - 117. Tsao A.S., Kim E.S., Hong W.K.: Chemoprevention of cancer. CA. Cancer J. Clin., 2004; 54: 150-180
Google Scholar - 118. Turski M.P., Turska M., Zgrajka W., Kuc D., Turski W.A.: Presence of kynurenic acid in food and honeybee products. Amino Acids, 2009; 36: 75-80
Google Scholar - 119. Turski W.A., Nakamura M., Todd W.P., Carpenter B.K., Whetsell W.O. Jr., Schwarcz R.: Identification and quantification of kynurenic acid in human brain tissue. Brain Res., 1988; 454: 164-169
Google Scholar - 120. Uda Y., Price K.R., Williamson G., Rhodes M.J.: Induction of the anticarcinogenic marker enzyme, quinone reductase, in murine hepatoma cells in vitro by flavonoids. Cancer Lett., 1997; 120: 213-216
Google Scholar - 121. Vaiopoulos A.G., Athanasoula K.C., Papavassiliou A.G.: NF-κB in colorectal cancer. J. Mol. Med., 2013; 91: 1029-1037
Google Scholar - 122. van Breemen R.B., Pajkovic N.: Multitargeted therapy of cancer by lycopene. Cancer Lett., 2008; 269: 339-351
Google Scholar - 123. van der Logt E.M., Roelofs H.M., Nagengast F.M., Peters W.H.: Induction of rat hepatic and intestinal UDP-glucuronosyltransferases by naturally occurring dietary anticarcinogens. Carcinogenesis, 2003; 24: 1651-1656
Google Scholar - 124. van Zanden J.J., Ben Hamman O., van Iersel M.L., Boeren S., Cnubben N.H., Lo Bello M., Vervoort J., van Bladeren P.J., Rietjens I.M.: Inhibition of human glutathione S-transferase P1- 1 by the flavonoid quercetin. Chem. Biol. Interact., 2003; 145: 139-148
Google Scholar - 125. Walczak K., Dąbrowski W., Langner E., Zgrajka W., Piłat J., Kocki T., Rzeski W., Turski W.A.: Kynurenic acid synthesis and kynurenine aminotransferases expression in colon derived normal and cancer cells. Scand. J. Gastroenterol., 2011; 46: 903-912
Google Scholar - 126. Walczak K., Deneka-Hannemann S., Jarosz B., Zgrajka W., Stoma F., Trojanowski T., Turski W.A., Rzeski W.: Kynurenic acid inhibits proliferation and migration of human glioblastoma T98G cells. Pharmacol. Rep., 2014; 66: 130-136
Google Scholar - 127. Walczak K., Turski W.A., Rajtar G.: Kynurenic acid inhibits colon cancer proliferation in vitro: effects on signaling pathways. Amino Acids, 2014; 46: 2393-2401
Google Scholar - 128. Walczak K., Turski W.A., Rzeski W.: Kynurenic acid enhances expression of p21 Waf1/Cip1 in colon cancer HT-29 cells. Pharmacol. Rep., 2012; 64: 745-750
Google Scholar - 129. Walczak K., Zurawska M., Kiś J., Starownik R., Zgrajka W., Bar K., Turski W.A., Rzeski W.: Kynurenic acid in human renal cell carcinoma: its antiproliferative and antimigrative action on Caki-2 cells. Amino Acids, 2012; 43: 1663-1670
Google Scholar - 130. Walle T., Otake Y., Galijatovic A., Ritter J.K., Walle U.K.: Induction of UDP-glucuronosyltransferase UGT1A1 by the flavonoid chrysin in the human hepatoma cell line hep G2. Drug Metab. Dispos., 2000; 28: 1077-1082
Google Scholar - 131. Wattenberg L.W.: Chemoprevention of cancer. Cancer Res., 1985; 45: 1-8
Google Scholar - 132. Williams J.A., Ring B.J., Cantrell V.E., Campanale K., Jones D.R., Hall S.D., Wrighton S.A.: Differential modulation of UDP-glucuronosyltransferase 1A1 (UGT1A1)-catalyzed estradiol-3-glucuronidation by the addition of UGT1A1 substrates and other compounds to human liver microsomes. Drug Metab. Dispos., 2002; 30: 1266-1273
Google Scholar - 133. Williams S.N., Pickwell G.V., Quattrochi L.C.: A combination of tea (Camellia senensis) catechins is required for optimal inhibition of induced CYP1A expression by green tea extract. J. Agric. Food Chem., 2003; 51: 6627-6634
Google Scholar - 134. Workman P.: Drug discovery strategies: technologies to accelerate translation from target to drug. J. Chemother., 2004; 16, Suppl. 4: 13-15
Google Scholar - 135. Wu C.Y., Lee W.H., Wang J.Y., Chiang H., Chang J.L., Tsai W.C., Sheu L.F., Jin J.S.: Tissue microarray-determined expression profiles of cyclooxygenase-2 in colorectal adenocarcinoma: association with clinicopathological parameters. Chin. J. Physiol., 2006; 49: 298-304
Google Scholar - 136. Xiao D., Choi S., Johnson D.E., Vogel V.G., Johnson C.S., Trump D.L., Lee Y.J., Singh S.V.: Diallyl trisulfide-induced apoptosis in human prostate cancer cells involves c-Jun N-terminal kinase and extracellular-signal regulated kinase-mediated phosphorylation of Bcl-2. Oncogene, 2004; 23: 5594-5606
Google Scholar - 137. Ye F., Wu J., Dunn T., Yi J., Tong X., Zhang D.: Inhibition of cyclooxygenase-2 activity in head and neck cancer cells by genistein. Cancer Lett., 2004; 211: 39-46
Google Scholar - 138. Youn J., Lee J.S., Na H.K., Kundu J.K., Surh Y.J.: Resveratrol and piceatannol inhibit iNOS expression and NF-κB activation in dextran sulfate sodium-induced mouse colitis. Nutr. Cancer, 2009; 61: 847-854
Google Scholar - 139. Yu X., Zhu J., Mi M., Chen W., Pan Q., Wei M.: Anti-angiogenic genistein inhibits VEGF-induced endothelial cell activation by decreasing PTK activity and MAPK activation. Med. Oncol., 2012; 29: 349-357
Google Scholar - 140. Zhen L., Fan D., Yi X., Cao X., Chen D., Wang L.: Curcumin inhibits oral squamous cell carcinoma proliferation and invasion via EGFR signaling pathways. Int. J. Clin. Exp. Pathol., 2014; 7: 6438-6446
Google Scholar