Cannabinoids and haemostasis

COMMENTARY ON THE LAW

Cannabinoids and haemostasis

Agnieszka Zakrzeska 1 , Tomasz Grędziński 1 , Wioleta Kisiel 1 , Ewa Chabielska 1

1. Samodzielna Pracownia Biofarmacji, Uniwersytet Medyczny w Białymstoku

Published: 2016-07-07
DOI: 10.5604/17322693.1209157
GICID: 01.3001.0009.6854
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 760-774

 

Abstract

Elements of the endocannabinoid system (cannabinoid receptors CB1, CB2, CBPT and CBED, endocannabinoids, enzymes involved in the synthesis and metabolism of endocannabinoids) are located on the structures involved in the process of hemostasis. An increasing level of endocannabinoids was also observed in some pathological conditions, which may occur in disorders of hemostasis. At the same time, disconcertingly, there is an increased number of reports about incidents of cardiovascular events in smokers of marijuana. Experimental and clinical studies demonstrated multidirectional, often contradictory, effects of cannabinoids on hemostasis, including effects of the compounds on platelets, vascular endothelium, fibrinolysis and plasma coagulation systems. The mechanisms of action of cannabinoids on homeostasis depend on the cannabinoid receptors CB1, CB2, CBPT and CBED, receptors of other systems stimulated by endocannabinoids, as well as metabolites of endocannabinoids and nitrogen oxide. The range of biological functions of endo- and plant cannabinoids, expanded to include the process of hemostasis, may constitute a condition for their recognition as a new factor responsible for thromboembolism in smokers of marijuana, in pathological disorders with increased levels of endocannabinoids and in individuals with polymorphisms of FAAH C385A and A385A. On the other hand, there are compelling reasons for anti‑hemostatic action of cannabinoids.

References

  • 1. Ahn K., Johnson D.S., Mileni M., Beidler D., Long J.Z., McKinneyM.K., Weerapana E., Sadagopan N., Limatta M., Smith S.E., LazerwithS., Stiff C., Kamtekar S., Bhattacharya K., Zhang Y. i wsp.: Discoveryand characterization of a highly selective FAAH inhibitor that reducesinflammatory pain. Chem. Biol., 2009; 16: 411-420 2 Ameri A.: The effects of cannabinoids on the brain. Prog. Neurobiol.,1999; 58: 315-348
    Google Scholar
  • 2. diabetes. Diabetologia, 2008; 51: 1356-1367
    Google Scholar
  • 3. Bailly C., Merceron O., Hammoudi N., Dorent R., Michel P.L.: Cannabisinduced acute coronary syndrome in a young female. Int. J.Cardiol., 2010; 143: e4-e6
    Google Scholar
  • 4. Baldassarri S., Bertoni A., Bagarotti A., Sarasso C., Zanfa M., CataniM.V., Avigliano L., Maccarrone M., Torti M., Sinigaglia F.: The endocannabinoid2-arachidonoylglycerol activates human platelets throughnon-CB1/CB2 receptors. J. Thromb. Haemost., 2008; 6: 1772-1779
    Google Scholar
  • 5. Begg M., Pacher P., Bátkai S., Osei-Hyiaman D., Offertáler L., MoF.M., Liu J., Kunos G.: Evidence for novel cannabinoid receptors.Pharmacol. Ther., 2005; 106: 133-145
    Google Scholar
  • 6. Bishop-Bailey D.: The platelet as a model system for the acuteactions of nuclear receptors. Steroids, 2010; 75: 570-575
    Google Scholar
  • 7. Biyik I., Akturk I.F., Yalcin A.A., Tanidir I.C., Ertruk M.: Cannabisjoint triggered recurrent anterior myocardial infarction in anadolescent taking dual anti-platelet therapy. Postep. Kardiol. Inter.,2012; 2: 156-159
    Google Scholar
  • 8. Borgelt L.M., Franson K.L., Nussbaum A.M., Wang G.S.: The pharmacologicand clinical effects of medical cannabis. Pharmacotherapy,2013; 33: 195-209
    Google Scholar
  • 9. Bouchard J.F., Lépicier P., Lamontagne D.: Contribution of endocannabinoidsin the endothelial protection afforded by ischemic preconditioningin the isolated rat heart. Life Sci., 2003; 72: 1859-1870
    Google Scholar
  • 10. Brantl S.A., Khandoga A.L., Siess W.: Mechanism of platelet activationinduced by endocannabinoids in blood and plasma. Platelets,2014; 25: 151-161
    Google Scholar
  • 11. Braud S., Bon C., Touqui L., Mounier C.: Activation of rabbit bloodplatelets by anandamide through its cleavage into arachidonic acid.FEBS Lett., 2000; 471: 12-16
    Google Scholar
  • 12. Caraceni P., Viola A., Piscitelli F., Giannone F., Berzigotti A.,Cescon M., Domenicali M., Petrosino S., Giampalma E., Riili A., GraziG., Golfieri R., Zoli M., Bernardi M., Di Marzo V.: Circulating and hepaticendocannabinoids and endocannabinoid-related molecules inpatients with cirrhosis. Liver Int., 2010; 30: 816-825
    Google Scholar
  • 13. Cascio M.G., Gauson L.A., Stevenson L.A., Ross R. A., PertweeR.G.: Evidence that the plant cannabinoid cannabigerol is a highlypotent α2-adrenoceptor agonist and moderately potent 5HT1A receptorantagonist. Br. J. Pharmacol., 2010; 159: 129-141
    Google Scholar
  • 14. Chen P., Hu S., Yao J., Moore S.A., Spector A.A., Fang X.: Inductionof cyclooxygenase-2 by anandamide in cerebral microvascular endothelium. Microvasc. Res., 2005; 69: 28-35
    Google Scholar
  • 15. Chouinard F., Lefebvre J.S., Navarro P., Bouchard L., Ferland C.,Lalancette-Hébert M., Marsolais D., Laviolette M., Flamand N.: Theendocannabinoid 2-arachidonoyl-glycerol activates human neutrophils:critical role of its hydrolysis and de novo leukotriene B4biosynthesis. J. Immunol., 2011; 186: 3188-3196
    Google Scholar
  • 16. Coetzee C., Levendal R.A., van de Venter M., Frost C.L.: Anticoagulanteffects of a Cannabis extract in an obese rat model. Phytomedicine,2007; 14: 333-337
    Google Scholar
  • 17. Comelli F., Bettoni I., Colleoni M., Giagnoni G., Costa B.: Beneficialeffects of a Cannabis sativa extract treatment on diabetes-inducedneuropathy and oxidative stress. Phytother. Res., 2009; 23: 1678-1684
    Google Scholar
  • 18. Dahdouh Z., Roule V., Lognone T., Sabatier R., Grollier G.: Cannabisand coronary thrombosis: What is the role of platelets? Platelets,2012; 23: 243-245
    Google Scholar
  • 19. de Luis D.A., Izaola O., Aller R., de La Fuente B., Pacheco D.: Effectsof C358A polymorphism of the endocannabinoid degrading enzymefatty acid amide hydrolase (FAAH) on weight loss, adipocytokineslevels, and insulin resistance after a high polyunsaturated fat dietin obese patients. J. Endocrinol. Invest., 2013; 36: 965-969
    Google Scholar
  • 20. de Luis D.A., Sagrado M.G., Aller R., Izaola O., Conde R., RomeroE.: C358A missense polymorphism of the endocannabinoid degradingenzyme fatty acid amide hydrolase (FAAH) and insulin resistancein patients with diabetes mellitus type 2. Diabetes Res. Clin.Pract., 2010; 88: 76-80
    Google Scholar
  • 21. Deanfield J.E., Halcox J.P., Rabelink T.J.: Endothelial functionand dysfunction: testing and clinical relevance. Circulation, 2007;115: 1285-1295
    Google Scholar
  • 22. Dejana E., Villa S., de Gaetano G.: Bleeding time in rats: a comparisonof different experimental conditions. Thromb. Haemost.,1982; 48: 108-111
    Google Scholar
  • 23. Deusch E., Kress H.G., Kraft B., Kozek-Langenecker S.A.: Theprocoagulatory effects of delta-9-tetrahydrocannabinol in humanplatelets. Anesth. Analg., 2004; 99: 1127-1130
    Google Scholar
  • 24. Deutsch D.G., Goligorsky M.S., Schmid P.C., Krebsbach R.J.,Schmid H.H., Das S.K., Dey S.K., Arreaza G., Thorup C., StefanoG., Moore L.C.: Production and physiological actions of anandamidein the vasculature of the rat kidney. J. Clin. Invest., 1997;100: 1538-1546
    Google Scholar
  • 25. Devane W.A., Hanus L., Breuer A., Pertwee R.G., Stevenson L.A.,Griffin G., Gibson D., Mandelbaum A., Etinger A., Mechoulam R.:Isolation and structure of a brain constituent that binds to the cannabinoidreceptor. Science, 1992; 258: 1946-1949
    Google Scholar
  • 26. Di Marzo V.: The endocannabinoid system in obesity and type
    Google Scholar
  • 27. Dlugos A.M., Hamidovic A., Hodgkinson C.A., Goldman D., PalmerA.A., de Wit H.: More aroused, less fatigued: fatty acid amide hydrolasegene polymorphisms influence acute response to amphetamine.Neuropsychopharmacology, 2010; 35: 613-622
    Google Scholar
  • 28. Domenicali M., Ros J., Fernández-Varo G., Cejudo-Martín P.,Crespo M., Morales-Ruiz M., Briones A.M., Campistol J.M., ArroyoV., Vila E., Rodés J., Jiménez W.: Increased anandamide induced relaxationin mesenteric arteries of cirrhotic rats: role of cannabinoidand vanilloid receptors. Gut, 2005; 54: 522-527
    Google Scholar
  • 29. Elikowski W., Małek M., Kurosz J., Podkowińska A., Łukasik – Głę-bocka M., Zawilska K.: Ciężka zatorowość płucna u młodego mężczyznypalącego regularnie marihuanę. Kardiol. Pol., 2011; 69: 1168-1170
    Google Scholar
  • 30. Engeli S.: Dysregulation of the endocannabinoid system in obesity.J. Neuroendocrinol., 2008; 20, Suppl. 1: 110-115
    Google Scholar
  • 31. Erhardt L.: Cigarette smoking: an undertreated risk factor forcardiovascular disease. Atherosclerosis, 2009; 205: 23-32
    Google Scholar
  • 32. Félétou M., Dellazuana O., Duhault J.: Serotoninergic receptorsubtype in coronary artery smooth muscle from young and atheroscleroticrabbit. J. Pharmacol. Exp. Ther., 1994; 268: 124-132
    Google Scholar
  • 33. Fonesca B.M., Costa M.A., Almada M., Correia-da-Silva G., TeixeiraN.A.: Endogenous cannabinoids revisited: A biochemistry perspective.Prostaglandins Other Lipid Mediat., 2013; 102-103: 13-30
    Google Scholar
  • 34. Formukong E.A., Evans A.T., Evans F.J.: The inhibitory effectsof cannabinoids, the active constituents of Cannabis sativa L., onhuman and rabbit platelet aggregation. J. Pharm. Pharmacol., 1989;41: 705-709
    Google Scholar
  • 35. Fortenberry Y.M.: Plasminogen activator inhibitor-1 inhibitors:a patent review (2006-present). Expert Opin. Ther. Pat., 2013;23: 801-815
    Google Scholar
  • 36. Frost L., Mostofsky E., Rosenbloom J.I., Mukamal K.J., MittlemanM.A.: Marijuana use and long-term mortality among survivors ofacute myocardial infarction. Am. Heart J., 2013; 165: 170-175
    Google Scholar
  • 37. Furie B., Furie B.C.: Thrombus formation in vivo. J. Clin. Invest.,2005; 115: 3355-3362
    Google Scholar
  • 38. Gallily R., Breuer A., Mechoulam R.: 2-Arachidonylglycerol, anendogenous cannabinoid, inhibits tumor necrosis factor-α productionin murine macrophages, and in mice. Eur. J. Pharmacol., 2000;406: R5-R7
    Google Scholar
  • 39. Gaoni Y., Mechoulam R.: Isolation, structure and partial synthesisof an active constituent of hashish. J. Am. Chem. Soc., 1964;86: 1646-1647
    Google Scholar
  • 40. Gebremedhin D., Lange A.R., Campbell W.B., Hillard C.J., HarderD.R.: Cannabinoid CB1 receptor of cat cerebral arterial muscle functionsto inhibit L-type Ca2+ channel current. Am. J. Physiol. HeartCirc. Physiol., 1999; 276: H2085-H2093
    Google Scholar
  • 41. Ghosh M., Wang H., Ai Y., Romeo E., Luyendyk J.P., Peters J.M.,Mackman N., Dey S.K., Hla T.: COX-2 suppresses tissue factor expressionvia endocannabinoid-directed PPARδ activation. J. Exp. Med.,2007; 204: 2053-2061
    Google Scholar
  • 42. Giuffrida A., Rodriguez de Fonseca F., Nava F., Loubet-LescouliéP., Piomelli D.: Elevated circulating levels of anandamide after administrationof the transport inhibitor, AM404. Eur. J. Pharmacol.,2000; 408: 161-168
    Google Scholar
  • 43. Golech S.A., McCarron R.M., Chen Y., Bembry J., Lenz F., MechoulamR., Shohami E., Spatz M.: Human brain endothelium: coexpressionand function of vanilloid and endocannabinoid receptors. BrainRes. Mol. Brain Res., 2004; 132: 87-92
    Google Scholar
  • 44. Heiden D., Rodiven R., Jones R., Mielke C.H.Jr.: Effect of oraldelta-9-tetrahydrocannabinol on coagulation. Thromb. Res., 1980;17: 885-889
    Google Scholar
  • 45. Herning R.I., Better W.E., Tate K., Cadet J.L.: Cerebrovascular perfusionin marijuana users during a month of monitored abstinence.Neurology, 2005; 64: 488-493
    Google Scholar
  • 46. Hillard C.J., Weinlander K.M., Stuhr K.L.: Contributions of endocannabinoidsignaling to psychiatric disorders in humans: geneticand biochemical evidence. Neuroscience, 2012; 204: 207-229
    Google Scholar
  • 47. Ho E., Karimi Galougahi K., Liu C.C., Bhindi R., Figtree G.A.: Biologicalmarkers of oxidative stress: applications to cardiovascularresearch and practice. Redox Biol., 2013; 1: 483-491
    Google Scholar
  • 48. Ho W.S., Gardiner S.M.: Acute hypertension reveals depressorand vasodilator effects of cannabinoids in conscious rats. Br. J. Pharmacol.,2009; 156: 94-104
    Google Scholar
  • 49. Ito T., Mishima Y., Ito A., Kameyama N., Harada H., Iwata O.,Watanabe S., Ushijima K.: Propofol protects against anandamide–induced injury in human umbilical vein endothelial cells. KurumeMed. J., 2011; 58: 15-20
    Google Scholar
  • 50. Janiak P., Poirier B., Bidouard J.P., Cadrouvele C., Pierre F., GouraudL., Barbosa I., Dedio J., Maffrand J.P., Le Fur G., O’Connor S.,Herbert J.M.: Blockade of cannabinoid CB1 receptors improves renal function, metabolic profile, and increased survival of obese Zuckerrats. Kidney Int., 2007; 72: 1345-1357
    Google Scholar
  • 51. Jin R.C., Mahoney C.E., Coleman Anderson L., Ottaviano F., CroceK., Leopold J.A., Zhang Y.Y., Tang S.S., Handy D.E., Loscalzo J.:Glutathione peroxidase-3 deficiency promotes platelet-dependentthrombosis in vivo. Circulation, 2011; 123: 1963-1973
    Google Scholar
  • 52. Jouanjus E., Lapeyre-Mestre M., Micallef J., French Associationof the Regional Abuse and Dependence Monitoring Centres (CEIP–A) Working Group on Cannabis Complications: Cannabis use: signalof increasing risk of serious cardiovascular disorders. J. Am. HeartAssoc., 2014; 3: e000638
    Google Scholar
  • 53. Karschner E.L., Schwilke E.W., Lowe R.H., Darwin W.D., HerningR.I., Cadet J.L., Huestis M.A.: Implications of plasma Δ9-tetrahydrocannabinol, 11-hydroxy-THC, and 11-nor-9-carboxy–THC concentrations in chronic cannabis smokers. J. Anal. Toxicol.,2009; 33: 469-477
    Google Scholar
  • 54. Keown O.P., Winterburn T.J., Wainwright C.L., Macrury S.M.,Neilson I., Barrett F., Leslie S.J., Megson I.L.: 2-arachidonyl glycerolactivates platelets via conversion to arachidonic acid and not bydirect activation of cannabinoid receptors. Br. J. Clin. Pharmacol.,2010; 70: 180-188
    Google Scholar
  • 55. Kotschy M., Kotschy D., Witkiewicz W.: The role of tissue factorand tissue factor pathway inhibitor in blood coagulation and inthrombotic complication. Kardiol. Pol., 2010; 68: 1158-1162
    Google Scholar
  • 56. Kozak K.R., Crews B.C., Morrow J.D., Wang L.H., Ma Y.H., WeinanderR., Jakobsson P.J., Marnett L.J.: Metabolism of the endocannabinoids,2-arachidonylglycerol and anandamide, into prostaglandin,thromboxane, and prostacyclin glycerol esters and ethanolamides.J. Biol. Chem., 2002; 277: 44877-44885
    Google Scholar
  • 57. Kozłowska H., Baranowska M., Schlicker E., Kozłowski M., LaudańskiJ., Malinowska B.: Identification of the vasodilatory endothelialcannabinoid receptor in the human pulmonary artery. J.Hypertens., 2007; 25: 2240-2248
    Google Scholar
  • 58. Lépicier P., Bouchard J.F., Lagneux C., Lamontagne D.: Endocannabinoidsprotect the rat isolated heart against ischaemia. Br. J.Pharmacol., 2003; 139: 805-815
    Google Scholar
  • 59. Levy R., Schurr A., Nathan I., Dvilanski A., Livne A.: Impairmentof ADP-induced platelet aggregation by hashish components.Thromb. Haemost., 1976; 36: 634-640
    Google Scholar
  • 60. Lobato N.S., Filgueira F.P., Prakash R., Giachini F.R., Ergul A.,Carvalho M.H., Webb R.C., Tostes R.C, Fortes Z.B.: Reduced endothelium-dependentrelaxation to anandamide in mesenteric arteriesfrom young obese Zucker rats. PLoS One, 2013; 8: e63449
    Google Scholar
  • 61. Maccarrone M., Bari M., Menichelli A., Del Principe D., Agró A.F.:Anandamide activates human platelets through a pathway independentof the arachidonate cascade. FEBS Lett., 1999; 447: 277-282
    Google Scholar
  • 62. Maccarrone M., Bari M., Menichelli A., Giuliani E., Del PrincpieD., Finazzi-Agró A.: Human platelets bind and degrade 2-arachidonoyloglycerol,which activates these cells through a cannabinoidreceptor. Eur. J. Biochem., 2001; 268: 819-825
    Google Scholar
  • 63. Maccarrone M., Finazzi-Agro A.: Platelet activation: a new vascularactivity of anandamide. FEBS Lett., 2000; 483: 84-85
    Google Scholar
  • 64. MacIntyre J., Dong A., Straiker A., Zhu J., Howlett S.E., BagherA., Denovan-Wright E., Yu D.Y., Kelly M.E.: Cannabinoid and lipid–mediated vasorelaxation in retinal microvasculature. Eur. J. Pharmacol.,2014; 735: 105-114
    Google Scholar
  • 65. Maeda N., Osanai T., Kushibiki M., Fujiwara T., Tamura Y., OowadaS., Higuma T., Sasaki S., Yokoyama J., Yoshimachi F., MatsunagaT., Hanada H., Okumura K.: Increased serum anandamide level atraptured plaque site in patients with acute myocardial infarction.Fundam. Clin. Pharmacol., 2009; 23: 351-357
    Google Scholar
  • 66. Mahfouz M., Makar A.B., Ghoneim M.T., Mikhail M.: Effect ofhashish on brain gamma aminobutyric acid system, blood fibrynolytic activity and glucose and some serum enzymes in the rat.Pharmazie, 1975; 30: 772-774
    Google Scholar
  • 67. Malenczyk K., Jazurek M., Keimpema E., Silvestri C., JanikiewiczJ., Mackie K., Di Marzo V., Redowicz M.J., Harkany T., Dobrzyn A.: CB1cannabinoid receptors couple to focal adhesion kinase to controlinsulin release. J. Biol. Chem., 2013; 288: 32685-32699
    Google Scholar
  • 68. McCollum T., Howlett A.C., Mukhopadhyay S.: Anandamide–mediated CB1/CB2 receptor-independent nitric oxide productionin rabbit aortic endothelial cells. J. Pharmacol. Exp. Ther., 2007;321: 930-937
    Google Scholar
  • 69. McEver R.P.: Adhesive interactions of leukocytes, platelets, andthe vessel wall during hemostasis and inflammation. Thromb. Haemost.,2001; 86: 746-756
    Google Scholar
  • 70. McHugh D., Tanner C., Mechoulam R., Pertwee R.G., Ross R.A.:Inhibition of human neutrophil chemotaxis by endogenous cannabinoidsand phytocannabinoids: evidence for a site distinct fromCB1 and CB2. Mol. Pharmacol., 2008; 73: 441-450
    Google Scholar
  • 71. Mishima K., Hayakawa K., Abe K., Ikeda T., Egashira N., IwasakiK., Fujiwara M.: Cannabidiol prevents cerebral infarction via a serotonergic5-hydroxytryptamine1A receptor-dependent mechanism.Stroke, 2005; 36: 1077-1082
    Google Scholar
  • 72. Mittleman M.A., Lewis R.A., Maclure M., Sherwood J.B., MullerJ.E.: Triggering myocardial infarction by marijuana. Circulation,2001; 103: 2805-2809
    Google Scholar
  • 73. Montisci M., Thiene G., Ferrara S.D., Basso C.: Cannabis and cocaine:a lethal cocktail triggering coronary sudden death. Cardiovasc.Pathol., 2008; 17: 344-346
    Google Scholar
  • 74. O’Sullivan S.E., Kendall D.A., Randall M.D.: The effects of Δ9-tetrahydrocannabinol in rat mesenteric vasculature, and its interactionswith the endocannabinoid anandamide. Br. J. Pharmacol.,2005; 145: 514-526
    Google Scholar
  • 75. O’Sullivan S.E., Randall M.D., Gardiner S.M.: The in vitro andin vivo cardiovascular effects of Δ9-tetrahydrocannabinol in ratsmade hypertensive by chronic inhibition of nitric-oxide synthase.J. Pharmacol. Exp. Ther., 2007; 321: 663-672
    Google Scholar
  • 76. O’Sullivan S.E., Sun Y., Bennett A.J., Randall M.D., Kendall D.A.:Time-dependent vascular actions of cannabidiol in the rat aorta.Eur. J. Pharmacol., 2009; 612: 61-68
    Google Scholar
  • 77. Pacher P., Bátkai S., Kunos G.: The endocannabinoid system asan emerging target of pharmacotherapy. Pharmacol. Rev., 2006;58: 389-462
    Google Scholar
  • 78. Pertwee R.G.: The pharmacology of cannabinoid receptors andtheir ligands: an overview. Int. J. Obes., 2006; 30: S13-S18
    Google Scholar
  • 79. Pertwee R.G., Howlett A.C., Abood M.E., Alexander S.P., Di MarzoV., Elphick M.R., Greasley P.J., Hansen H.S., Kunos G., Mackie K.,Mechoulam R., Ross R.A.: International Union of Basic and ClinicalPharmacology. LXXIX. Cannabinoid receptors and their ligands: beyondCB1 and CB2. Pharmacol. Rev., 2010; 62: 588-631
    Google Scholar
  • 80. Peyrot I., Garsaud A.M., Saint-Cyr I., Quitman O., Sanchez B.,Quist D.: Cannabis arteritis: a new case report and review of literature.J. Eur. Acad. Dermatol. Venereol., 2007; 21: 388-391
    Google Scholar
  • 81. Potter D.J.: A review of the cultivation and processing of cannabis(Cannabis sativa L.) for production of prescription medicinesin the UK. Drug Test. Anal., 2014; 6: 31-38
    Google Scholar
  • 82. Quercioli A., Pataky Z., Vincenti G., Makoundou V., Di Marzo V.,Montecucco F., Carballo S., Thomas A., Staub C., Steffens S., SeimbilleY., Golay A., Ratib O., Harsh E., Mach F., Schindler T.H.: Elevated endocannabinoidplasma levels are associated with coronary circulatorydysfunction in obesity. Eur. Heart J., 2011; 32: 1369-1378
    Google Scholar
  • 83. Rajesh M., Mukhopadhyay P., Haskó G., Liaudet L., Mackie K.,Pacher P.: Cannabinoid-1 receptor activation induces reactive oxygenspecies-dependent and -independent mitogen-activated protein kinase activation and cell death in human coronary artery endothelialcells. Br. J. Pharmacol., 2010; 160: 688-700
    Google Scholar
  • 84. Robson P.: Therapeutic aspects of cannabis and cannabinoids.Br. J. Psychiatry, 2001; 178: 107-115
    Google Scholar
  • 85. Ross R.A., Craib S.J., Stevenson L.A., Pertwee R.G., HendersonA., Toole J., Ellington H.C.: Pharmacological characterization of theanandamide cyclooxygenase metabolite: prostaglandin E2 ethanoloamide.J. Pharmacol. Exp. Ther., 2002; 301: 900-907
    Google Scholar
  • 86. Ruggeri Z.M., Mendolicchio G.L.: Adhesion mechanisms in plateletfunction. Circ. Res., 2007; 100: 1673-1685
    Google Scholar
  • 87. Russell J.C., Kelly S.E., Diane A., Wang Y., Mangat R., Novak S.,Vine D.F., Proctor S.D.: Rimonabant-mediated changes in intestinallipid metabolism and improved renal vascular dysfunction inthe JCR:LA-cp rat model of prediabetic metabolic syndrome. Am. J.Physiol. Gastrointest. Liver Physiol., 2010; 299: 507-516
    Google Scholar
  • 88. Sallusto F., Mackay C.R.: Chemoattractants and their receptorsin homeostasis and inflammation. Curr Opin. Immunol., 2004; 16:724-731
    Google Scholar
  • 89. Sativex. GW Pharmaceuticals. www.gwpharm.com/Sativex.aspx(19.03.2016)
    Google Scholar
  • 90. Sauvanier M., Constans J., Skopinski S., Barcat D., Berard A.,Parrot F., Guerin V., Vergnes C., Midy D., Baste J.C., Conri C.: Lowerlimb occlusive arteriopathy: retrospective analysis of 73 patientswith onset before the age of 50 years. J. Mal. Vasc., 2002; 27: 69-76
    Google Scholar
  • 91. Schrör K., Bretschneider E., Fischer K., Fischer J.W., Pape R.,Rauch B.H., Rosenkranz A.C., Weber A.A.: Thrombin receptors in vascularsmooth muscle cells – function and regulation by vasodilatoryprostaglandins. Thromb. Haemost., 2010; 103: 884-890
    Google Scholar
  • 92. Signorello M.G., Giacobbe E., Leoncini G.: Activation by 2-arachinoylglycerolof platelet p38MAPK/cPLA2 pathway. J. Cell. Biochem.,2011; 112: 2794-2802
    Google Scholar
  • 93. Silverman A.Y., Darnell B.J., Montiel M.M., Smith C.G., Asch R.H.:Response of rhesus monkey lymphocytes to short-term administrationof THC. Life Sci., 1982; 30: 107-115
    Google Scholar
  • 94. Sipe J.C., Scott T.M., Murray S., Harismendy O., Simon G.M., CravattB.F., Waalen J.: Biomarkers of endocannabinoid system activationin severe obesity. PLoS One, 2010; 5: e8792
    Google Scholar
  • 95. Sipe J.C., Waalen J., Gerber A., Beutler E.: Overweight and obesityassociated with a missense polymorphism in fatty acid amidehydrolase (FAAH). Int. J. Obes., 2005; 29: 755-759
    Google Scholar
  • 96. Solomon D.H., Schneeweiss S., Glynn R.J., Kiyota Y., Levin R., MoqunH., Avorn J.: Relationship between selective cyclooxygenase-2inhibitors and acute myocardial infarction in older adults. Circulation,2004, 109: 2068-2073
    Google Scholar
  • 97. Stanley C., O’Sullivan S.E.: Vascular targets for cannabinoids:animal and human studies. Br. J. Pharmacol., 2014; 171: 1361-1378
    Google Scholar
  • 98. Starowicz K.M., Cristino L., Matias I., Capasso R., Racioppi A.,Izzo A.A., Di Marzo V.: Endocannabinoid dysregulation in the pancreasand adipose tissue of mice fed with a high-fat diet. Obesity,2008; 16: 553-565
    Google Scholar
  • 99. Stefano G.B., Bilfinger T.V., Rialas C.M., Deutsch D.G.: 2-arachidonyl-glycerolstimulates nitric oxide release from human immuneand vascular tissues and invertebrate immunocytes by cannabinoidreceptor 1. Pharmacol. Res., 2000; 42: 317-322
    Google Scholar
  • 100. Sugiura T., Kobayashi Y., Oka S., Waku K.: Biosynthesis anddegradation of anandamide and 2-arachidonoylglycerol and their possible physiological significance. Prostaglandins Leukot. Essent.Fatty Acids, 2002; 66: 173-192
    Google Scholar
  • 101. Sugiura T., Kondo S., Sukagawa A., Nakane S., Shinoda A., ItohK., Yamashita A., Waku K.: 2-Arachidonoylglycerol: a possible endogenouscannabinoid receptor ligand in brain. Biochem. Biophys.Res. Commun., 1995; 215: 89-97
    Google Scholar
  • 102. Ueda N., Tsuboi K., Uyama T.: Metabolism of endocannabinoidsand related N-acylethanolamines: Canonical and alternative pathways.FEBS J., 2013; 280: 1874-1894
    Google Scholar
  • 103. Wagner J.A., Varga K., Kunos G.: Cardiovascular actions of cannabinoidsand their generation during shock. J. Mol. Med., 1998;76: 824-836
    Google Scholar
  • 104. Warzecha Z., Dembinski A., Ceranowicz P., Dembinski M., CieszkowskiJ., Kownacki P., Konturek P.C.: Role of sensory nerves in gastroprotectiveeffect of anandamide in rats. J. Physiol. Pharmacol.,2011; 62: 207-217
    Google Scholar
  • 105. Watson S., Berlanga O., Best D., Frampton J.: Update on collagenreceptor interactions in platelets: is the two-state model still valid?Platelets, 2000; 11: 252-258
    Google Scholar
  • 106. Wheal A.J., Bennett T., Randall M.D., Gardiner S.M.: Effectsof chronic nitric oxide synthase inhibition on the cardiovascularresponses to cannabinoids in vivo and in vitro. Br. J. Pharmacol.,2007; 150: 662-671
    Google Scholar
  • 107. Wheal A.J., Randall M.D.: Effects of hypertension on vasorelaxationto endocannabinoids in vitro. Eur. J. Pharmacol., 2009; 603: 79-85
    Google Scholar
  • 108. Yamaji K., Sarker K.P., Kawahara K., Iino S., Yamakuchi M., AbeyamaK., Hashiguchi T., Murayama I.: Ananadamide induces apoptosisin human endothelial cells: its regulation system and clinical implications.Thromb. Haemost., 2003; 89: 875-884
    Google Scholar
  • 109. Zakrzeska A., Bogucka S., Szemraj J., Chabielska E.: Effect ofendocannabinoid – anandamide on oxidative stress during the formationof an arterial thrombus in rats – preliminary study. Conference“Analytical methods to study oxidative damage, antioxidantsand drugs” Bialystok, 10-13 November 2011. Book of Programmeand Abstracts
    Google Scholar
  • 110. Zakrzeska A., Bogucka S., Szemraj J., Grędziński T., ChabielskaE.: Effect of endocannabinoid – anandamide on venous thrombus forformation in rats. New Frontiers in Basic Cardiovascular Research2012, S. 53-54, P-23. 10th Meeting of France – New EU Countries,Hradec Kralove, Czech Republic, June 12-15, 2012
    Google Scholar
  • 111. Zakrzeska A., Szoka P., Muszyńska A., Grędziński T., Kisiel W.,Chabielska E.: Antithrombotic effect of rimonabant – selective CB1cannabinoid receptor antagonist in experimental models of thrombosis.Book of Abstracts 6th European Workshop on CannabinoidResearch; P057, Trinity College Dublin, Ireland, 18-20 April 2013
    Google Scholar
  • 112. Zamengo L., Frison G., Bettin C., Sciarrone R.: Variability ofcannabis potency in the Venice area (Italy): a survey over the period2010-2012. Drug Test Anal., 2014; 6: 46-51
    Google Scholar
  • 113. Zhang R., Brennan M.L., Fu X., Aviles R.J., Pearce G.L., PennM.S., Topol E.J., Sprecher D.L., Hazen S.L.: Association between myeloperoxidaselevels and risk of coronary artery disease. JAMA, 2001;286: 2136-2142
    Google Scholar
  • 114. Zhang X., Maor Y., Wang J.F., Kunos G., Groopman J.E.: Endocannabinoid-likeN-arachidonoyl serine is a novel pro-angiogenicmediator. Br. J. Pharmacol., 2010; 160: 1583-1594
    Google Scholar

References

  • 1. Ahola A.J., Yli-Knuuttila H., Suomalainen T., Poussa T., AhlströmA., Meurman J.H., Korpela R.: Short-term consumption of probiotic–containing cheese and its effect on dental caries risk factors. Arch.Oral Biol., 2002; 47: 799-804
    Google Scholar
  • 2. Badet C., Thebaud N.B.: Ecology of lactobacilli in the oral cavity:a review of literature. Open Microbiol. J., 2008; 2: 38-48
    Google Scholar
  • 3. Balakrishnan M., Simmonds R.S., Tagg J.R.: Dental caries is a preventableinfectious disease. Aust. Dent. J., 2000; 45: 235-245
    Google Scholar
  • 4. Barretto C., Alvarez-Martin P., Foata F., Renault P., Berger B.: Genomesequence of the lantibiotic bacteriocin producer Streptococcussalivarius strain K12. J. Bacteriol., 2012; 194: 5959-5960
    Google Scholar
  • 5. Bayrak S., Okte Z., Fidanci U.R.: Relationship between caries anddental plaque composition. Am. J. Dent., 2011; 24: 45-48
    Google Scholar
  • 6. Burton J.P., Chilcott C.N., Tagg J.R.: The rationale and potentialfor the reduction of oral malodour using Streptococcus salivariusprobiotics. Oral Dis., 2005; 11: S29-S31
    Google Scholar
  • 7. Burton J.P., Drummond B.K., Chilcott C.N., Tagg J.R., ThomsonW.M., Hale J.D., Wescombe P.A.: Influence of the probiotic Streptococcussalivarius strain M18 on indices of dental health in children:a randomized double-blind, placebo-controlled trial. J. Med. Microbiol.,2013; 62: 875-884
    Google Scholar
  • 8. Burton J.P, Wescombe P.A., Macklaim J.M., Chai M.H., MacDonaldK., Hale J.D., Tagg J.R., Reid G., Gloor G.B., Cadieux P.A.: Persistenceof the oral probiotic Streptococcus salivarius M18 is dose dependentand megaplasmid transfer can augment their bacteriocin productionand adhesion characteristics. PLoS One, 2013; 8: e65991
    Google Scholar
  • 9. Caglar E., Kuscu O.O., Cildir S.K., Kuvvetli S.S., Sandalli N.: A probioticlozenge administered medical device and its effect on salivarymutans streptococci and lactobacilli. Int. J. Paediatr. Dent.,2008; 18: 35-39
    Google Scholar
  • 10. Caglar E., Topcuoglu N., Cildir S.K., Sandalli N., Kulekci G.: Oralcolonization by Lactobacillus reuteri ATCC 55730 after exposure toprobiotics. Int. J. Paediatr. Dent., 2009; 19: 377-381
    Google Scholar
  • 11. Chang H.S., Walsh L.J., Freer T.J.: The effect of orthodontic treatmenton salivary flow, pH, buffer capacity, and levels of mutansstreptococci and lactobacilli. Aust. Orthod. J., 1999; 15: 229-234
    Google Scholar
  • 12. Characklis W.G., Marshall K.C. (eds.): Biofilms, John Wiley &Sons, Inc. New York 1990
    Google Scholar
  • 13. Chhour K.L., Nadkarni M.A., Byun R., Martin F.E., Jacques N.A.,Hunter N.: Molecular analysis of microbial diversity in advancedcaries. J. Clin. Microbiol., 2005; 43: 843-849
    Google Scholar
  • 14. Chiang S.S., Pan T.M.: Beneficial effects of Lactobacillus paracaseisubsp. paracasei NTU 101 and its fermented products. Appl.Microbiol. Biotechnol., 2012; 93: 903-916
    Google Scholar
  • 15. Chilcott C.N., Tagg J.R.: Antimicrobial composition. Patent No.WO2003070919 (2007)
    Google Scholar
  • 16. Choudhari S., Mopagar V.: Probiotic way of dental caries prevention.Int. J. Contemp. Dent., 2011; 2: 59-64
    Google Scholar
  • 17. Clarke J.K.: On the bacterial factor in the aetiology of dental caries. Br. J. Exp. Pathol., 1924; 5: 141-147
    Google Scholar
  • 18. Czerwionka-Szaflarska M., Łoś-Rycharska E.: Co należy wiedziećo Lactobacillus reuteri. Pediatr. Pol., 2011; 86: 410-420
    Google Scholar
  • 19. Darveau R.P.: Periodontitis: a polymicrobial disruption of hosthomeostasis. Nat. Rev. Microbiol., 2010; 8: 481-490
    Google Scholar
  • 20. Darveau R.P., Hajshengallis G., Curtis M.A.: Porphyromonas gingivalisas a potential community activist for disease. J. Dent. Res.,2012; 91: 816-820
    Google Scholar
  • 21. de Vrese M., Schrezenmeir J.: Probiotics, prebiotics, and synbiotics.Adv. Biochem. Eng. Biotechnol., 2008; 111: 1-66
    Google Scholar
  • 22. Fejerskov O., Kidd E.: Dental Caries. The disease and its clinicalmanagement, Blackwell Munksgaard, 2008
    Google Scholar
  • 23. Forssten S.D., Björklund M., Ouwehand A.C.: Streptococcus mutans,caries and simulation models. Nutrients, 2010; 2: 290-298
    Google Scholar
  • 24. Frederick J.R., Sarkar J., McDowell J.V., Marconi R.T.: Molecularsignaling mechanisms of the periopathogen, Treponema denticola.J. Dent. Res., 2011; 90: 1155-1163
    Google Scholar
  • 25. Garrido D., Ruiz-Moyano S., Jimenez-Espinoza R., Eom H.J., BlockD.E., Mills D.A: Utilization of galactooligosaccharides by Bifidobacteriumlongum subsp. infantis isolates. Food Microbiol., 2013; 33:262-270
    Google Scholar
  • 26. Graves D.T., Oates T., Garlet G.P.: Review of osteoimmunologyand the host response in endodontic and periodontal lesions. J. OralMicrobiol., 2011; 3: 5304
    Google Scholar
  • 27. Guidelines for the Evaluation of Probiotics in Food. Report ofa Joint FAO/WHO Working Group. London Ontario, Canada 2002;April 30 and May 1
    Google Scholar
  • 28. Guyonnet D., Chassany O., Ducrotte P., Picard C., Mouret M.,Mercier C.H., Matuchansky C.: Effect of a fermented milk containingBifidobacterium animalis DN-173 010 on the health-related qualityof life and symptoms in irritable bowel syndrome in adults in primarycare: a multicentre, randomized, double-blind, controlled trial.Aliment. Pharmacol. Ther., 2007; 26: 475-486
    Google Scholar
  • 29. Hahn C.L., Falkler W.A. Jr., Minah G.E.: Microbiological studies ofcarious dentine from human teeth with irreversible pulpitis. Arch.Oral Biol., 1991; 36: 147-153
    Google Scholar
  • 30. Hajishengallis G., Lambris J.D.: Microbial manipulation of receptorcrosstalk in innate immunity. Nat. Rev. Immunol., 2011; 11:187-200
    Google Scholar
  • 31. Hasslöf P., West C.E., Videhult F.K., Brandelius C., Stecksén-BlicksC.: Early intervention with probiotic Lactobacillus paracasei F19has no long-term effect on caries experience. Caries Res., 2013; 47:559-565
    Google Scholar
  • 32. Hata S., Mayanagi H.: Acid diffusion through extracellular polysaccharidesproduced by various mutants of Streptococcus mutans.Arch. Oral Biol., 2003; 48: 431-438
    Google Scholar
  • 33. Haukioja A.: Probiotics and oral health. Eur. J. Dent., 2010; 4:348-355
    Google Scholar
  • 34. Hojo K., Nagaoka S., Ohshima T., Maeda N.: Bacterial interactionsin dental biofilm development. J. Dent. Res., 2009; 88: 982-990
    Google Scholar
  • 35. Huang R., Li M., Gregory R.L.: Bacterial interactions in dentalbiofilm. Virulence, 2011; 2: 435-444
    Google Scholar
  • 36. Isselbacher K.J.: Irritable bowel syndrome: the possible benefitsof probiotics. Postgrad. Med., 2005; 117: 7
    Google Scholar
  • 37. Jańczuk Z.: Stomatologia zachowawcza. Zarys kliniczny. PZWL,Warszawa 2007
    Google Scholar
  • 38. Jones S.E., Versalovic J.: Probiotic Lactobacillus reuteri biofilmsproduce antimicrobial and anti-inflammatory factors. BMC Microbiol.,2009; 9: 35
    Google Scholar
  • 39. Kaci G., Goudercourt D., Dennin V., Pot B., Doré J., Ehrlich S.D.,Renault P., Blottiere H.M., Daniel C., Delorme C.: Anti-Inflammatoryproperties of Streptococcus salivarius, a commensal bacterium ofthe oral cavity and digestive tract. Appl. Environ. Microbiol., 2014;80: 928-934
    Google Scholar
  • 40. Kankainen M., Paulin L., Tynkkynen S., von Ossowski I., ReunanenJ., Partanen P., Satokari R., Vesterlund S., Hendrickx A.P.,Lebeer S., De Keersmaecker S.C., Vanderleyden J., Hämäläinen T.,Laukkanen S., Salovuori N. i wsp.: Comparative genomic analysis ofLactobacillus rhamnosus GG reveals pili containing a human-mucusbinding protein. Proc. Natl. Acad. Sci. USA, 2009; 106: 17193-17198
    Google Scholar
  • 41. Kekkonen R.A., Lummela N., Karjalainen H., Latvala S., TynkkynenS., Jarvenpaa S., Kautiainen H., Julkunen I. Vapaatalo H., KorpelaR.: Probiotic intervention has strain-specific anti-inflammatory effectsin healthy adults. World J. Gastroenterol., 2008; 14: 2029-2036
    Google Scholar
  • 42. Kleerebezem M., Boekhorst J., van Kranenburg R., Molenaar D.,Kuipers O.P., Leer R., Tarchini R., Peters S.A., Sandbrink H.M., FiersM.W., Stiekema W., Lankhorst R.M., Bron P.A., Hoffer S.M., GrootM.N. i wsp.: Complete genome sequence of Lactobacillus plantarumWCFS1. Proc. Natl. Acad. Sci. USA, 2003; 100: 1990-1995
    Google Scholar
  • 43. Kolenbrander P.E., Andersen R.N., Blehert D.S., Egland P.G., FosterJ.S., Palmer R.J. Jr.: Communication among oral bacteria. Microbiol.Mol. Biol. Rev., 2002; 66: 486-505
    Google Scholar
  • 44. Kragen H.: The treatment of inflammatory affections of the oralmucosa with a lactic acid bacterial culture preparation. Zahnarztl.Welt., 1954; 9: 306-308
    Google Scholar
  • 45. Krawczyk D.: Permanent tooth caries and the bacterial countin saliva and dental plaque. Dent. Med. Probl., 2009; 46: 202-207
    Google Scholar
  • 46. Kutsch V.K., Young D.A.: New directions in the etiology of dentalcaries disease. J. Calif. Dent. Assoc., 2011; 39: 716-721
    Google Scholar
  • 47. Laleman I., Detailleur V., Slot D.E., Slomka V., Quirynen M., TeughelsW.: Probiotics reduce mutans streptococci counts in humans:a systematic review and meta-analysis. Clin. Oral Investig., 2014;18: 1539-1552
    Google Scholar
  • 48. Lee S.H., Kim Y.J.: A comparative study of the effect of probioticson cariogenic biofilm model for preventing dental caries. Arch.Microbiol., 2014; 196: 601-609
    Google Scholar
  • 49. Lilly D.M., Stillwell R.H.: Probiotics: growth-promoting factorsproduced by microorganisms. Science, 1965; 147: 747-748
    Google Scholar
  • 50. Lin M.Y., Chang F.J.: Antioxidative effect of intestinal bacteriaBifidobacterium longum ATCC 15708 and Lactobacillus acidophilusATCC 4356. Dig. Dis. Sci., 2000; 45: 1617-1622
    Google Scholar
  • 51. Lipiński T., Jones C., Lemercinier X., Korzeniowska-Kowal A.,Strus M., Rybka J., Gamian A., Heczko P.B.: Structural analysis ofthe Lactobacillus rhamnosus strain KL37C exopolysaccharide. Carbohydr.Res., 2003; 338: 605-609
    Google Scholar
  • 52. Ljungh A., Wadström T.: Lactic acid bacteria as probiotics. Curr.Issues Intest. Microbiol., 2006; 7: 73-89
    Google Scholar
  • 53. Loesche W.J., Eklund S., Earnest R., Burt B.: Longitudinal investigationof bacteriology of human fissure decay: epidemiologicalstudies in molars shortly after eruption. Infect. Immun., 1984; 46:765-772
    Google Scholar
  • 54. Makras L., Van Acker G., De Vuyst L.: Lactobacillus paracaseisubsp. paracasei 8700:2 degrades inulin-type fructans exhibitingdifferent degrees of polymerization. Appl. Environ. Microbiol., 2005;71: 6531-6537
    Google Scholar
  • 55. Mandell G., Bennett J., Dolin R.: Mandell, Douglas, and Bennett’sPrinciples and Practice of Infectious Diseases, 7th Edition. ChurchillLivingstone Elsevier 2010
    Google Scholar
  • 56. Manley K.J., Fraenkel M.B., Mayall B.C., Power D.A.: Probiotictreatment of vancomycin-resistant enterococci: a randomised controlledtrial. Med. J. Aust., 2007; 186: 454-457
    Google Scholar
  • 57. Marsh P.D.: Microbial ecology of dental plaque and its significancein health and disease. Adv. Dent. Res., 1994; 8: 263-271
    Google Scholar
  • 58. Meurman J.H.: Probiotics: do they have a role in oral medicineand dentistry? Eur. J. Oral Sci., 2005; 113: 188-196
    Google Scholar
  • 59. Oh P.L., Benson A.K., Peterson D.A., Patil P.B., Moriyama E.N.,Roos S., Walter J.: Diversification of the gut symbiont Lactobacillusreuteri as a result of host-driven evolution. ISME J., 2010; 4: 377-387
    Google Scholar
  • 60. Paineau D., Carcano D., Leyer G., Darquy S., Alyanakian M.A.,Simoneau G., Bergmann J.F., Brassart D., Bornet F., Ouwehand A.C.:Effects of seven potential probiotic strains on specific immune responsesin healthy adults: a double-blind, randomized, controlledtrial. FEMS Immunol. Med. Microbiol., 2008; 53: 107-113
    Google Scholar
  • 61. Pasich E., Walczewska M., Pasich A., Marcinkiewicz J.: Mechanismand risk factors of oral biofilm formation. Postępy Hig. Med.Dośw., 2013; 67: 736-741
    Google Scholar
  • 62. Polonskaya M.S.: Antibiotic from acidophilus. Microbiologiya1952; 21: 303-310
    Google Scholar
  • 63. Rajkowska K., Kunicka-Styczyńska A., Rygała A.: Probiotic activityof Saccharomyces cerevisiae var. boulardii against human pathogens.Food Technol. Biotech., 2012; 50: 230-236
    Google Scholar
  • 64. Rautava S., Kalliomäki M., Isolauri E.: Probiotics during pregnancyand breast-feeding might confer immunomodulatory protectionagainst atopic disease in the infant. J. Allergy Clin. Immunol., 2002;109: 119-121
    Google Scholar
  • 65. Riccia DN., Bizzini F., Perilli M.G., Polimeni A., Trinchieri V.,Amicosante G., Cifone MG.: Anti-inflammatory effects of Lactobacillusbrevis (CD2) on periodontal disease. Oral Dis., 2007; 13: 376-385
    Google Scholar
  • 66. Ridwan B.U., Koning C.J., Besselink M.G., Timmerman H.M.,Brouwer E.C., Verhoef J., Gooszen H.G., Akkermans L.M.: Antimicrobialactivity of a multispecies probiotic (Ecologic 641) againstpathogens isolated from infected pancreatic necrosis. Lett. Appl.Microbiol., 2008; 46: 61-67
    Google Scholar
  • 67. Schell M.A., Karmirantzou M., Snel B., Vilanova D., Berger B.,Pessi G., Zwahlen M.C., Desiere F., Bork P., Delley M., Pridmore R.D.,Arigoni F.: The genome sequence of Bifidobacterium longum reflectsits adaptation to the human gastrointestinal tract. Proc. Natl. Acad.Sci. USA, 2002; 99: 14422-14427
    Google Scholar
  • 68. Shellis R.P., Dibdin G.H.: Analysis of the buffering systems indental plaque. J. Dent. Res., 1988; 67: 438-446
    Google Scholar
  • 69. Shimauchi H., Mayanagi G., Nakaya S., Minamibuchi M., ItoY., Yamaki K., Hirata H.: Improvement of periodontal condition byprobiotics with Lactobacillus salivarius WB21: a randomized, double–blind, placebo-controlled study. J. Clin. Periodontol., 2008; 35: 897-905
    Google Scholar
  • 70. Sinkiewicz G., Ljunggren L.: Ocurrence of Lactobacillus reuteriin human breast milk. Microb. Ecol. Health Dis., 2008; 20: 122-126
    Google Scholar
  • 71. Soccol C.R., Vandenberghe L.P., Spier M.R., Medeiros A.B., YamaguishiC.T., Lindner J.D., Pandey A., Thomaz-Soccol V.: The potentialof probiotics: a review. Food Technol. Biotechnol., 2010; 48: 413-434
    Google Scholar
  • 72. Straetemans M.M., van Loveren C., de Soet J.J., de Graaff J., tenCate J.M.: Colonization with mutans streptococci and lactobacilliand the caries experience of children after the age of five. J. Dent.Res., 1998; 77: 1851-1855
    Google Scholar
  • 73. Tanzer J.M., Kurasz A.B., Clive J.: Competitive displacement ofmutans streptococci and inhibition of tooth decay by Streptococcussalivarius TOVE-R. Infect. Immun., 1985; 48: 44-50
    Google Scholar
  • 74. Tanzer J.M., Kurasz A.B., Clive J.: Inhibition of ecological emergenceof mutans streptococci naturally transmitted between ratsand consequent caries inhibition by Streptococcus salivarius TOVE-Rinfection. Infect. Immun., 1985; 49: 76-83
    Google Scholar
  • 75. Teughels W., Loozen G., Quirynen M.: Do probiotics offer opportunitiesto manipulate the periodontal oral microbiota? J. Clin.Periodontol., 2011; 38: 159-177
    Google Scholar
  • 76. Tsubura S., Mizunuma H., Ishikawa S., Oyake I., Okabayashi M.,Katoh K., Shibata M., Iizuka T., Toda T., Iizuka T.: The effect of Bacillussubtilis mouth rinsing in patients with periodontitis. Eur. J. Clin.Microbiol. Infect. Dis., 2009; 28: 1353-1356
    Google Scholar
  • 77. Twetman S.: Treatment protocols: nonfluoride managementof the caries disease process and available diagnostics. Dent. Clin.North Am., 2010; 54: 527-540
    Google Scholar
  • 78. Twetman S., Derawi B., Keller M., Ekstrand K., Yucel-LindbergT., Stecksen-Blicks C.: Short-term effect of chewing gums containingprobiotic Lactobacillus reuteri on the levels of inflammatory mediatorsin gingival crevicular fluid. Acta Odontol. Scand., 2009; 67: 19-24
    Google Scholar
  • 79. Vadillo-Rodríguez V., Busscher H.J., van der Mei H.C., de VriesJ., Norde W.: Role of lactobacillus cell surface hydrophobicity as probedby AFM in adhesion to surfaces at low and high ionic strength.Colloids Surf. B. Biointerfaces., 2005; 41: 33-41
    Google Scholar
  • 80. Walter J.: Ecological role of lactobacilli in the gastrointestinaltract: implications for fundamental and biomedical research. Appl.Environ. Microbiol., 2008; 74: 4985-4996
    Google Scholar
  • 81. Wescombe P.A., Hale J.D., Heng N.C., Tagg J.R.: Developing oralprobiotics from Streptococcus salivarius. Future Microbiol., 2012; 7:1355-1371
    Google Scholar
  • 82. Wescombe P.A., Upton M., Renault P., Wirawan R.E., Power D.,Burton J.P., Chilcott C.N., Tagg J.R.: Salivaricin 9, a new lantibioticproduced by Streptococcus salivarius. Microbiology, 2011; 157: 1290-1299
    Google Scholar
  • 83. Wilson M., Martin R., Walk S.T., Young C., Grossman S., McKeanE.L., Aronoff D.M.: Clinical and laboratory features of Streptococcussalivarius meningitis: a case report and literature review. Clin. Med.Res., 2012; 10: 15-25
    Google Scholar
  • 84. Zisu B., Shah N.P.: Effects of pH, temperature, supplementationwith whey protein concentrate, and adjunct cultures on the productionof exopolysaccharides by Streptococcus thermophilus 1275. J.Dairy Sci., 2003; 86: 3405-3415
    Google Scholar

Full text

Skip to content