Caramel colors in terms of scientific research, with particular consideration of their toxicity

REVIEW ARTICLE

Caramel colors in terms of scientific research, with particular consideration of their toxicity

Marta Buczkowska 1 , Kamila Paciorek 2 , Anna Kapcińska 2 , Michał Górski 3

1. Zakład Toksykologii i Ochrony Zdrowia w Środowisku Pracy, Katedra Toksykologii i Uzależnień, Wydział Nauk o Zdrowiu w Bytomiu, Śląski Uniwersytet Medyczny w Katowicach,
2. Drugie Koło Naukowe przy Zakładzie Toksykologii i Ochrony Zdrowia w Środowisku Pracy, Katedra Toksykologii i Uzależnień,
3. Szkoła Doktorska Śląskiego Uniwersytetu Medycznego w Katowicach, Wydział Nauk o Zdrowiu w Bytomiu Śląski Uniwersytet Medyczny,

Published: 2021-04-23
DOI: 10.5604/01.3001.0014.8497
GICID: 01.3001.0014.8497
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2021; 75 : 246-264

 

Abstract

Caramel colors, the most common food additives in the world, are divided into four classes (IIV), marked with the symbols E150 a-d, respectively. Individual classes of caramel colors differ from each other in physico-chemical properties and the method of preparation, which affects the formation of various compounds that are important for the assessment of food safety A number of studies on all caramel classes of have been performed, including toxicokinetic, genotoxic, carcinogenic and reproductive and developmental toxicity studies, which have not shown harmful effects of these additives at doses not exceeding ADI. However, there is an increasing number of scientific reports of the possible toxic effects present in caramels of low-molecular compounds. Currently, three compounds are considered to be toxicologically important and resulting from the possible concentration in the final product: 5-HMF (present in all classes), 4(5)-MeI (present in caramel classes III and IV) or THI (present in caramel class III). 4(5)-MeI has a neurotoxic effect and was considered in 2011 as a possible human carcinogen (class 2B, according to IARC). In the case of THI, studies have confirmed its lymphopenic activity, probably secondary to its immunosuppressive effect. Consequently, in the 1980s, JECFA set acceptable levels 4(5)-MeI and THI, for the caramel classes in which these compounds may be present. The toxicity of 5-HMF has not been confirmed unequivocally, but studies have shown that this compound is not neutral to living organisms. Currently, most international organizations and scientific institutes recognize these additives as safe for consumers, but at the same time scientists emphasize the need for further research.

References

  • 1. Bauer-Marinovic M., Taugner F., Florian S., Glatt H.:Toxicity studies with 5-hydroxymethylfurfural and itsmetabolite 5-sulphooxymethylfurfural in wild-type miceand trans-genic mice expressing human sulphotransferases1A1 and 1A2. Arch. Toxicol., 2012; 86: 701–711
    Google Scholar
  • 2. Celik R., Topaktas M.: Genotoxic effects of 4-methylimidazoleon human peripheral lympho-cytes in vitro. DrugChem. Toxicol., 2018; 41: 27–32
    Google Scholar
  • 3. Chan P.C., Hill G.D., Kissling G.E., Nyska A.: Toxicity andcarcinogenicity studies of 4-methylimidazole in F344/Nrats and B6C3F1 mice. Arch. Toxicol., 2008; 82: 45–53 4 Durling L.J., Busk L., Hellman B.E.: Evaluation of theDNA damaging effect of the heat-induced food toxicant5-hydroxymethylfurfural (HMF) in various cell lines withdifferent activities of sulfotransferases. Food Chem. Toxicol.,2009; 47: 880–884
    Google Scholar
  • 4. (5)-methylimidazole in caramel model systems:A role of sulphite. Food Chem., 2013; 136: 1165–1168
    Google Scholar
  • 5. Elsinghorst P.W., di Salvo M.L., Parroni A., ContestabileR.: Inhibition of human pyridoxal ki-nase by 2-acetyl-4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl) imidazole (THI).J. Enzyme Inhib. Med. Chem., 2015; 30: 336–340
    Google Scholar
  • 6. Elsinghorst P.W., Raters M., Dingel A., Fischer J., MatissekR.: Synthesis and application of 13C-labeled 2-acetyl-4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl) imidazole (THI),an immunosuppressant observed in caramel food colorings.J. Agric. Food Chem., 2013; 61: 7494–7499
    Google Scholar
  • 7. European Food Safety Authority (EFSA): Refined exposureassessment for caramel colours (E 150a, c, d). EFSA J.,2012; 10: 3030
    Google Scholar
  • 8. European Food Safety Authority (EFSA): Scientificopinion on the re-evaluation of caramel col-ours (E 150a,b,c,d) as food additives. EFSA J., 2011; 9: 2004 9 Fennell T.R., Watson S.L., Dhungana S., Snyder R.W.:Metabolism of 4-methylimidazole in Fischer 344 rats andB6C3F1 mice. Food Chem. Toxicol., 2019; 123: 181–194
    Google Scholar
  • 9. marca 2012 r. ustanawiające specyfikacje dla dodatkówdo żywności wymienionych w załącznikach II i III dorozporządzenia (WE) nr 1333/2008 Parlamentu Europejskiegoi Rady (Dz.U. L 83 z 22.3.2012, s. 1)
    Google Scholar
  • 10. Fierens T., Van Holderbeke M., Cornelis C., Jacobs G.,Sioen I., De Maeyer M., Vinkx C., Vanermen G.: Caramelcolour and process contaminants in foods and beverages:Part II – Occur-rence data and exposure assessment of2-acetyl-4-(1,2,3,4-tetrahydroxybutyl)-imidazole (THI)and 4-methylimidazole (4-MEI) in Belgium. Food Chem.,2018; 255: 372–379
    Google Scholar
  • 11. Folmer D.E., Doell D.L., Lee H.S., Noonan G.O., CarberryS.E.: A U.S. population dietary exposure assessment for4-methylimidazole (4-MEI) from foods containing caramelcolour and from formation of 4-MEI through the thermaltreatment of food. Food Addit. Contam. Part A Chem. Anal.Control. Expo. Risk Assess., 2018; 35: 1890–1910
    Google Scholar
  • 12. Gobin S.J., Phillips J.A.: Immunosuppressive effects of2‐acetyl‐4‐tetrahydroxybutyl imidazole (THI) in the rat.Clin. Exp. Immunol., 1991; 85: 335–340
    Google Scholar
  • 13. Graf F.: Preparation of 4-methylimidazoles. U.S. PatentNo. 4,377,696A. U.S. Patent and Trademark Office,1983
    Google Scholar
  • 14. Hellwig M., Henle T.: Baking, ageing, diabetes: A shorthistory of the Maillard reaction. An-gew. Chem. Int. Ed.,2014; 53: 10316–10329
    Google Scholar
  • 15. Hengel M., Shibamoto T.: Carcinogenic 4(5)-methylimidazolefound in beverages, sauces, and caramel colors:Chemical properties, analysis, and biological activities. J.Agric. Food Chem., 2013; 61: 780–789
    Google Scholar
  • 16. Houben G.F, Abma P.M., van den Berg H., van DokkumW., van Loveren H., Penninks A.H., Seinen W., Spanhaak S.,Vos J.G., Ockhuizen T.: Effects of the colour additive caramelcolour III on the immune system: A study with humanvolunteers. Food Chem. Toxicol., 1992; 30: 749–757
    Google Scholar
  • 17. Houben G.F., van den Berg H., Kuijpers M.H., LamB.W., van Loveren H., Seinen W., Pen-ninks A.H.: Effects ofthe color additive caramel color III and 2-acetyl-4 (5)-tetrahydroxybutylimidazole(THI) on the immune system ofrats. Toxicol. Appl. Pharmacol., 1992; 113: 43–54
    Google Scholar
  • 18. Houben G.F., van Dokkum W., van Loveren H., PenninksA.H., Seinen W., Spanhaak S., Ock-huizen T.: Effectsof caramel colour III on the number of blood lymphocytes:A human study on caramel colour III immunotoxicityand a comparison of the results with data from ratstudies. Food Chem. Toxicol., 1992; 30: 427–430
    Google Scholar
  • 19. IARC Working Group on the Evaluation of CarcinogenicRisks to Humans: 4-Methylimidazole. W: SomeChemicals Present in Industrial and Consumer Products,Food and Drinking-Water. Inter-national Agency forResearch on Cancer. Lyon 2013 447–459
    Google Scholar
  • 20. Jang H.W., Jiang Y., Hengel M., Shibamoto T.: Formationof 4(5)-methylimidazole and its pre-cursors,α-dicarbonyl compounds, in Maillard model systems.J. Agric. Food Chem., 2013; 61: 6865–6872
    Google Scholar
  • 21. Jarosławski L., Zielonka R.: Karmel a kształtowaniebrązowej barwy żywności. Post. Nauki Technol. Przem.Rol.-Spoż., 2017; 72: 52–69
    Google Scholar
  • 22. JECFA (Joint FAO/WHO Expert Committee on FoodAdditives): Combined compendium of food additivespecifications. Caramel Colour. Monograph 11, 2011.http://www.fao.org/fileadmin/user_upload/jecfa_additives/docs/monograph11/additive-102-m11.pdf(02.05.2020)
    Google Scholar
  • 23. Jellum E., Børresen H.C., Eldjarn L.: The presence offuran derivatives in patients receiving fructose-containingsolutions intravenously. Clin. Chim. Acta, 1973; 47:191–201
    Google Scholar
  • 24. Karim F., Smith, J.S.: Formation of 4 (5)‐Methylimidazolein aqueous D‐glucose‐amino acids model system.J. Food Sci., 2016; 81: T268–T274
    Google Scholar
  • 25. Kim T.R., Kim S.U., Shin Y., Kim J.Y., Lee S.M., Kim J.H.:Determination of 4-methylimidazole and 2-acetyl-4()-tetrahydroxybutylimidazolein caramel color and processedfoods by LC-MS/MS. Prev. Nutr. Food Sci., 2013; 18: 263–268
    Google Scholar
  • 26. Kitts D.D., Wu C.H., Kopec A., Nagasawa T.: Chemistryand genotoxicity of caramelized su-crose. Mol. Nutr. Food.Res., 2006; 50: 1180–1190
    Google Scholar
  • 27. Kowalski S, Lukasiewicz M, Duda-Chodak A, ZięćG.: 5-Hydroxymethyl-2-furfural (HMF) – heat-inducedformation, occurrence in food and biotransformation– a review. Pol. J. Food Nutr. Sci., 2013; 63: 207–225
    Google Scholar
  • 28. Kroh L.W.: Caramelisation in food and beverages.Food Chem., 1994; 51: 373–379
    Google Scholar
  • 29. Lee C.H., Chen K.T., Lin J.A., Chen Y.T., Chen Y.A., WuJ.T., Hsieh C.W.: Recent advances in processing technologyto reduce 5-hydroxymethylfurfural in foods. Trends FoodSci. Technol., 2019; 93: 271–280
    Google Scholar
  • 30. Lee K.G., Jang H., Shibamoto T.: Formation of carcinogenic
    Google Scholar
  • 31. Lee Y.C., Shlyankevich M., Jeong H.K., Douglas J.S.,Surh Y.J.: Bioactivation of 5-hydroxymethyl-2-furaldehydeto an electrophilic and mutagenic allylic sulfuricacid ester. Biochem. Biophys. Res. Commun., 1995; 209:996–1002
    Google Scholar
  • 32. Lojková L., Klejdus B., Moravcová J., Kubáň V.: Supercriticalfluid extraction (SFE) of 4(5)-methylimidazole(4-MeI) and 2-acetyl-4(5)-(1,2,3,4)-tetrahydroxybutyl-imidazole(THI) from ground-coffee with high-performanceliquid chromatographic-electrospray mass spectrometricquan-tification (HPLC/ESI-MS). Food Addit. Contam.,2006; 23: 963–973
    Google Scholar
  • 33. MacKenzie K.M., Boysen B.G., Field W.E., Petsel S.R.,Chappel C.I., Emerson J.L., Stanley J.: Toxicity studies ofcaramel colour III and 2-acetyl-4(5)-tetrahydroxybutylimidazolein F344 rats. Food Chem. Toxicol., 1992; 30: 417–425
    Google Scholar
  • 34. Mateo-Fernández M., Alves-Martínez P., Del Río-Celestino M., Font R., Merinas-Amo T., Alonso-MoragaÁ.: Food safety and nutraceutical potential of caramelcolour class IV using in vivo and in vitro assays. Foods,2019; 8: 392
    Google Scholar
  • 35. Monien B.H., Frank H., Seidel A., Glatt H.: Conversionof the common food constituent 5-hydroxymethylfurfuralinto a mutagenic and carcinogenic sulfuric acidester in the mouse in vivo. Chem. Res. Toxicol., 2009; 22:1123–1128
    Google Scholar
  • 36. Moon J.K., Shibamoto T.: Formation of carcinogenic4(5)-methylimidazole in Maillard reaction systems. J.Agric. Food Chem., 2011; 59: 615–618
    Google Scholar
  • 37. Morita T., Uneyama C.: Genotoxicity assessment of4-methylimidazole: Regulatory perspec-tives. Genes Environ.,2016; 38: 20
    Google Scholar
  • 38. Murkovic M., Pichler N.: Analysis of 5-hydroxymethylfurfualin coffee, dried fruits and urine. Mol. Nutr. FoodRes., 2006; 50: 842–846
    Google Scholar
  • 39. National Toxicology Program, US Department ofHealth and Human Services, Public Health Service,National Institutes of Health: NTP technical report on thetoxicity studies of 2- and 4-Methylimidazole (CAS No. 693-98-1 and 822-36-6) administered in feed to F344/N ratsand B6C3F1 mice. Toxic. Rep. Ser., 2004; 67: 1–G12
    Google Scholar
  • 40. National Toxicology Program: NTP toxicology andcarcinogenesis studies of 5-(Hydroxymethyl)-2-furfural(CAS No. 67-47-0) in F344/N rats and B6C3F1 mice (gavagestudies). Natl. Toxicol. Program Tech. Rep. Ser., 2010; 554:7–13, 15–19, 21–31
    Google Scholar
  • 41. National Toxicology Program: Toxicology and carcinogenesisstudies of 4-methylimidazole (Cas No. 822-36-6) in F344/N rats and B6C3F1 mice (feed studies). Natl.Toxicol. Program Tech. Rep. Ser., 2007; 535: 1–274
    Google Scholar
  • 42. Norizadeh Tazehkand M., Topaktas M., Yilmaz M.B.:Assessment of chromosomal aberration in the bone marrowcells of Swiss Albino mice treated by 4-methylimidazole.Drug Chem. Toxicol., 2016; 39: 307–311
    Google Scholar
  • 43. Ohtoyo M., Machinaga N., Inoue R., Hagihara K., YuitaH., Tamura M., Hashimoto R., Chiba J., Muro F., WatanabeJ., Kobayashi Y., Abe K., Kita Y., Nagasaki M., ShimozatoT.: Component of caramel food coloring, THI, causes lymphopeniaindirectly via a key metabolic intermediate. CellChem. Biol., 2016; 23: 555–560
    Google Scholar
  • 44. Ohtoyo M., Tamura M., Machinaga N., Muro F., HashimotoR.: Sphingosine 1-phosphate lyase inhibition by2-acetyl-4-(tetrahydroxybutyl) imidazole (THI) underconditions of vitamin B6 defi-ciency. Mol. Cell. Biochem.,2015; 400: 125–133
    Google Scholar
  • 45. Rekha B., Velmurugan G., Freddy A.J., Anusha S., RamprasathT., Karthik K.V., Suresh S., Kulshrestha P., MithieuxG., Lyon A.R., Selvam G.S., Ramasamy S.: Chronicintake of 4-methylimidazole induces hyperinsulinemiaand hypoglycaemia via pancreatic beta cell hyperplasiaand glucose dyshomeostasis. Sci. Rep., 2018; 8: 17037
    Google Scholar
  • 46. Reproductive and Cancer Hazard Assessment BranchOffice of Environmental Health Hazard Assessment(OEHHA), California Environmental Protection Agency:No significant risk level (NSRL) for the proposition 65 carcinogen4-methylimidazole. 2011 https://oehha.ca.gov/media/downloads/crnr/010711nsrlrisk4ei.pdf
    Google Scholar
  • 47. Rozporządzenie Komisji (UE) nr 231/2012 z dnia
    Google Scholar
  • 48. Rozporządzenie Parlamentu Europejskiego i Rady(WE) nr 1333/2008 z dnia 16 grudnia 2008 r. w sprawiedodatków do żywności (Dz.U. L 354 z 31.12.2008, s. 16)
    Google Scholar
  • 49. Schwab S.R., Pereira J.P., Matloubian M., Xu Y., HuangY., Cyster J.G.: Lymphocyte seques-tration through S1Plyase inhibition and disruption of S1P gradients. Science,2005; 309: 1735–1739
    Google Scholar
  • 50. Selim S., Chappel C.I., Schoenig G.P.: Absorption, distributionand excretion of the colour fraction of caramelcolour IV in the rat. Food Chem. Toxicol., 1992; 30: 445–451
    Google Scholar
  • 51. Sengar G., Sharma H.K.: Food caramels: A review.J. Food Sci. Technol., 2014; 51: 1686–1696
    Google Scholar
  • 52. Sivertsen T., Nygaard A.K., Mathisen G., FonnumF.: Effects of 4-methylimidazole on cerebral glutamatedecarboxylase activity and specific GABA receptor bindingin mice. Toxicol. Mech. Methods, 2009; 19: 214–218
    Google Scholar
  • 53. Spector R., Huntoon S.: Effects of caramel color(ammonia process) on mammalian vitamin B6 metabolism.Toxicol. Appl. Pharmacol., 1982; 62: 172–178
    Google Scholar
  • 54. Suiko M., Kurogi K., Hashiguchi T., Sakakibara Y., LiuM.C.: Updated perspectives on the cytosolic sulfotransferases(SULTs) and SULT-mediated sulfation. Biosci. Biotechnol.Biochem., 2017; 81: 63–72
    Google Scholar
  • 55. Surh Y.J., Liem A., Miller J.A., Tannenbaum S.R.: 5-Sulfooxy-methylfurfural as a possible ul-timate mutagenicand carcinogenic metabolite of the Maillard reactionproduct, 5-hydroxy-methylfurfural. Carcinogenesis, 1994;15: 2375–2377
    Google Scholar
  • 56. Surh Y.J., Tannenbaum S.R.: Activation of the Maillardreaction product 5-(hydroxymethyl)furfural to strongmutagens via allylic sulfonation and chlorination. Chem.Res. Toxicol., 1994; 7: 313–318
    Google Scholar
  • 57. Taş N.G., Gökmen V.: Maillard reaction and caramelizationduring hazelnut roasting: A multi-response kineticstudy. Food Chem., 2017; 221: 1911–1922
    Google Scholar
  • 58. Teixidó E., Núñez O., Santos F.J., Galceran M.T.:5-Hydroxymethylfurfural content in food-stuffs determinedby micellar electrokinetic chromatography. FoodChem., 2011; 126: 1902–1908
    Google Scholar
  • 59. Villamiel M., del Castillo M.D., Corzo N.: BrowningReactions. W: Food Biochemistry and Food Processing,red.: Y.H. Hui. Blackwell Publishing, Ames 2006, 71–100
    Google Scholar
  • 60. Vollmuth T.A.: Caramel color safety – An update. FoodChem. Toxicol., 2018; 111: 578–596
    Google Scholar
  • 61. Wang L., Ren B., Liu Y., Lu Y., Chang F., Yang L.: 2-acetyl-4-tetrahydroxybutylimidazole and 4-methylimidazole incaramel colours, vinegar, and beverages in China. FoodAddit. Contam. Part B Surveill., 2015; 8: 163–168
    Google Scholar
  • 62. Yamaguchi H., Masuda T.: Determination of4(5)-methylimidazole in soy sauce and other foods byLC-MS/MS after solid-phase extraction. J. Agric. FoodChem., 2011; 59: 9770–9775
    Google Scholar
  • 63. Yu P., Xu X.B., Yu S.J.: Comparative study of the effectof glucosamine and free ammonium on 4-methylimidazoleformation. J. Agric. Food Chem., 2015; 63: 8031–8036
    Google Scholar
  • 64. Zhou Z, Hu X, Hong X, Zheng J, Liu X, Gong D, ZhangG.: Interaction characterization of 5-hydroxymethyl-2-furaldehyde with human serum albumin: Bindingcharacteristics, conformational change and mechanism.J. Mol. Liq., 2020; 297: 111835
    Google Scholar

Full text

Skip to content