Ceruloplasmin, hephaestin and zyklopen: the three multicopper oxidases important for human iron metabolism

COMMENTARY ON THE LAW

Ceruloplasmin, hephaestin and zyklopen: the three multicopper oxidases important for human iron metabolism

Diana Wierzbicka 1 , Grażyna Gromadzka 1

1. Instytut Psychiatrii i Neurologii, Pracownia Neuroimmunologii II Kliniki Neurologii w Warszawie

Published: 2014-01-02
DOI: 10.5604/17322693.1111136
GICID: 01.3001.0003.1264
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 912-924

 

Abstract

Multi-copper oxidases are a group of proteins which demonstrate enzymatic activity and are capable of oxidizing their substrates with the concomitant reduction of dioxygen to two water molecules. For some multi-copper oxidases there has been demonstrated ferroxidase activity which is related to their specific structure characterized by the presence of copper centres and iron-binding sites. Three multi-copper oxidases have been included in this group: ceruloplasmin, hephaestin and zyklopen. Multi copper oxidases which are expressed in different tissues are capable of oxidizing a wide spectrum of substrates. Multi-copper oxidases are capable of oxidizing a wide spectrum of substrates. Ceruloplasmin exhibits antioxidant activity as well as being involved in many other biological processes. The observations of phenotypic effects of absence or low expression of multi-copper ferroxidase-coding genes suggest that the main role of these proteins is taking part in iron metabolism. The main role of ceruloplasmin in iron turnover is oxidizing Fe2+ into Fe3+, a process which is essential for iron binding to transferrin (the main iron-transporting protein), as well as to ferritin (the main iron-storage protein). The function of hephaestin as ferroxidase is essential for iron binding to apotransferrin in the lamina propria of the intestinal mucosa, a process that is important for further transport of iron to the liver by the portal vein. Available data indicate that zyklopen is responsible for the placental iron transport. The presence of three multi-copper oxidases with ferroxidase activity emphasizes the significance of oxidation for iron metabolism. The distribution of multi-copper ferroxidases in many tissues ensures the proper iron turnover in the body as well as preventing toxic effects related to the presence of Fe2+ ions. These ions contribute to generation of free radicals, including the highly reactive hydroxyl radical, through the Fenton and Haber-Weiss reactions.

References

  • 1. Abdou M., Shaban H., Gohary M.: Changes in serum zinc, copperand ceruloplasmin levels of whole body gamma irradiated rats.Tenth Radiation Physics & Protection Conference. 27-30 November,Nasr City – Cairo, Egypt- Conference Proceedings, 2010; 17-26
    Google Scholar
  • 2. Amaravadi R., Glerum D.M., Tzagoloff A.: Isolation of a cDNAencoding the human homolog of COX17, a yeast gene essential formitochondrial copper recruitment. Hum. Genet., 1997; 99: 329-333
    Google Scholar
  • 3. Anderson C.P., Shen M., Eisenstein R.S., Leibold E.A.: Mammalianiron metabolism and its control by iron regulatory proteins. Biochim.Biophys. Acta, 2012; 1823: 1468-1483
    Google Scholar
  • 4. Anderson G.J., Frazer D., McKie A., Vulpe C.: The ceruloplasminhomolog hephaestin and the control of intestinal iron asorption.Blood Cells Mol. Dis., 2002; 29: 367-375
    Google Scholar
  • 5. Andrews N.: Forging a field: the golden age of iron biology. Blood,2008; 112: 219-230
    Google Scholar
  • 6. Angelova M., Asenova S., Nedkova V., Kolarova-Koleva R.: Copperin the human organism. TJS, 2011; 9: 88-98
    Google Scholar
  • 7. Arredondo M., Martines R., Nunez M., Ruz M., Olivares M.: Inhibitionof iron and copper uptake by iron, copper and zinc. Biol.Res., 2006; 39: 95-102
    Google Scholar
  • 8. Banha J., Marques L., Oliveira R., Martins M., Paixao E., Pereira D.,Malho R., Penque D., Costa L.: Ceruloplasmin expression by humanperipheral blood lymphocytes: A new link between immunity andiron metabolism. Free Radic. Biol. Med., 2008; 44: 483-492
    Google Scholar
  • 9. Bartee M.Y., Lutsenko S.: Hepatic copper-transporting ATPaseATP7B: function and inactivation at the molecular and cellular level.Biometals, 2007; 20: 627-637
    Google Scholar
  • 10. Bento I., Peixoto C., Zaitsev V.N., Lindley P.F.: Ceruloplasminrevisited: structural and functional roles of various metal cationbindingsites. Acta Crystallogr. D Biol. Crystallogr., 2007; 63: 240-248
    Google Scholar
  • 11. Bielli P., Calabrese L.: Structure to function relationships inceruloplasmin: a ‘moonlighting’ protein. Cell. Mol. Life Sci., 2002;59: 1413-1427
    Google Scholar
  • 12. Brewer G.J.: Iron and copper toxicity in diseases of aging, particularlyatherosclerosis and Alzheimer’s disease. Exp. Biol. Med.,2007; 232: 323-335
    Google Scholar
  • 13. Brookes M.J., Hughes S., Turner F.E., Reynolds G., Sharma N.,Ismail T., Berx G., McKie A.T., Hotchin N., Anderson G.J., Iqbal T.,Tselepis C.: Modulation of iron transport proteins in human colorectalcarcinogenesis. Gut, 2006; 55: 1449-1460
    Google Scholar
  • 14. Buffone G.J., Brett E.M., Lewis S.A., Iosefsohn M., Hicks J.M.: Limitationsof immunochemical measurement of ceruloplasmin. Clin.Chem., 1979; 25: 749-751
    Google Scholar
  • 15. Chen H., Attieh Z.K., Dang T., Huang G., van der Hee R.M., VulpeC.: Decreased hephaestin expression and activity leads to decreasediron efflux from differentiated Caco2 cells. J. Cell. Biochem., 2009;107: 803-808
    Google Scholar
  • 16. Chen H., Attieh Z.K., Syed B.A., Kuo Y.M., Stevens V., Fuqua B.K., AndersenH.S., Naylor C.E., Evans W.R., Gambling L., Danzeisen R., HaidarM.B., Usta J., Vylpe C.D., McArdle H.J.: Identification of zyklopen, a newmember of the vertebrate multicopper ferroxidase family, and characterizationin rodents and human cells. J. Nutr., 2010; 140: 1728-1735
    Google Scholar
  • 17. Chen H., Huang G., Gao H., Attieh Z., McKie A., Anderson G.,Vulpe C.: Decreased hephaestn activity in the intestine of copper–deficient mice causes systematic iron deficiency. J. Nutr., 2006; 136:1236-1241
    Google Scholar
  • 18. Chen H., Su T., Attieh Z., Fox T., McKie A., Anderson G., Vulpe C.:Systematic regulation of hephaestin and Ireg1 revealed in studies ofgenetic and nutritional iron deficiency. Blood, 2013; 102: 1893-1899
    Google Scholar
  • 19. Church W.R., Jernigan R.L., Tolle J., Hewick R.M., Knopf J., KnutsonG.J., Nesheim M.E., Mann K.G., Fass D.N.: Coagulation factors Vand VIII and ceruloplasmin constitute a family of structurally relatedproteins. Proc. Natl. Acad. Sci. USA, 1984; 81: 6934-6937
    Google Scholar
  • 20. Cui R., Duan X.L., Anderson G.J., Qiao Y.P., Yu P., Qian Z.N., YoshidaK., Takeda S., Guo P., Yang Z.L., Chang Y.Z.: Age-dependent expressionof hephaestin in the brain of ceruloplasmin-deficient mice. J.Trace Elem. Med. Biol., 2009; 23: 290-299
    Google Scholar
  • 21. Culotta V.C., Klomp L.W,. Strain J., Casareno R.L., Krems B., GitlinJ.D.: The copper chaperone for superoxide dismutase. J. Biol. Chem.,1997; 272: 23469-23472
    Google Scholar
  • 22. Członkowska A., Gromadzka G., Szpak G.M., Chabik G.: ChorobaWilsona, Choroba Parkinsona i inne zaburzenia, t.2, red: Sławek J.,Friedman A., Bogucki A., Opali G. Via Medica, Gdańsk 2012, 403-420
    Google Scholar
  • 23. Dameron C.T., Harrison M.D.: Mechanisms for protection againstcopper toxicity. Am. J. Clin. Nutr., 1998; 67 (5 Suppl.): 1091S-1097S
    Google Scholar
  • 24. de Bie P., van de Sluis B., Klomp L., Wijmenga C.: The many facesof the copper metabolism protein MURR1/COMMD1. J. Hered.,2005; 96: 803-811
    Google Scholar
  • 25. Dusek P., Jankovic J., Le W.: Iron dysregulation in movementdisorders. Neurobiol. Dis., 2012; 46: 1-18
    Google Scholar
  • 26. Flora S.J., Mittal M., Mehta A.: Heavy metal induced oxidativestress & its possible reversal by chelation therapy. Indian J. Med.Res., 2008; 128: 501-523
    Google Scholar
  • 27. Friedan E.: Ceruloplasmin: a multi- functional cupro- protein ofvertebrate plasma. Exp. Biol. Med., 1982; 2: 159-169
    Google Scholar
  • 28. Gaetke L.M., Chow C.K.: Copper toxicity, oxidative stress, andantioxidant nutrients. Toxicology, 2003; 189: 147-163
    Google Scholar
  • 29. Ganz T.: Hepcidin, a key regulator of iron metabolism and mediatorof anemia of inflammation. Blood, 2003; 102: 783-788
    Google Scholar
  • 30. Garrick M.D., Golan K.G., Horbinski C., Ghio A.J., Higgins D., PorubcinM., Moore E.G., Hainsworth L.N., Umbreit J.N., Conrad M.E.,Feng L., Lis A., Roth J., Singleton S., Garrick L.M.: DMT1: A mammaliantransporter for multiple metals. Biometals, 2003; 16: 41-54
    Google Scholar
  • 31. Gicquel V., Soriano N., Ferran H., Wojcik F., Palierne E., TamimS., Jovelin T., McKie A., Gall J., David V., Mosser J.: Identification of 96 single nucleotide polymorphisms in eight genes involved in ironmetabolism: efficiency of bioinformatic extraction compared witha systematic sequencing approach.. Hum. Genet., 2001; 109: 393-401
    Google Scholar
  • 32. Graf W.D., Noetzel M.J.: Radical reactions from missing ceruloplasmin.The importance of a ferroxidase as a endogous antioxidant.Neurology, 1999; 53: 446-447
    Google Scholar
  • 33. Hahn P., Qian Y., Dentchew T., Chen L., Beard J., Harris Z.L., DunaiefJ.L.: Disruption of ceruloplasmin and hephaestin in mice causesretinal iron overload and retinal degeneration with features ofage-related macular degeneration. Proc. Natl. Acad. Sci. USA, 2004;101: 13850-13855
    Google Scholar
  • 34. Hahn P., Ying G., Beard J., Dunaief J.: Iron levels in human retina:sex difference and increase with age. Neuroreport, 2006; 17:1803-1806
    Google Scholar
  • 35. Harris L., Davis-Kaplan S., Gitlin J., Kaplan J.: A fungal multicopperoxidase restores iron homeostasis in aceruloplasminemia.Blood, 2004; 103: 4672-4673
    Google Scholar
  • 36. Hasan H.R., Ghadhban J.M., Abudal Kadhum Z.I.: Salivary ceruloplasminferroxidase & oxidase activities in celiac patients. Int. J.Biomed. Sci., 2012; 8: 163-170
    Google Scholar
  • 37. He X., Hahn P., Iacovelli J., Wong R., King C., Bhisitkul R., Massaro-GiordanoM., Dunaief J.L.: Iron homesostasis and toxicity in retinaldegeneration. Prog. Retin Eye Res., 2007; 26: 649-673
    Google Scholar
  • 38. Hellman N.E., Kono S., Miyajima H., Gitlin J.D.: Biochemical analysisof missense mutation in aceruloplasminemia. J. Biol. Chem.,2002; 277: 1375-1380
    Google Scholar
  • 39. Holmberg C.G., Laurel C.B.: Investigations in serum copper. ActaChem. Scand., 1948; 2: 550-556
    Google Scholar
  • 40. Hudson D., Curtis S., Smith V., Griffiths T., Wong A., ScudamoreC., Buchan A., MacGillivray T.: Human hephaestin expression isnot limited to enterocytes of the gastrointestinal tract but is alsofound in the antrum, the enteric nervous system, and pancreatic βcells. Am. J. Physiol. Gastrintest. Liver Physiol., 2010; 298: 425-432
    Google Scholar
  • 41. Jacob R.A., Skala J.H., Omaye S.T., Turnlund J.R.: Effect of varyingascorbic acid intakes on copper absorption and ceruloplasminlevels of young men. J. Nutr., 1987; 117: 2109-2115
    Google Scholar
  • 42. Jeong S.Y., Dvaid S.: Glycosylophopsphatidylinositol- achoredceruloplasmin is required for iron efflux from cells in the centralnervous system. J. Biol. Chem., 2003; 278: 27144-27148
    Google Scholar
  • 43. Klomp L.W., Lin S.J., Yuan D.S., Klausner R.D., Culotta V.C., GitlinJ.D.: Identification and functional expression of HAH1, a novelhuman gene involved in copper homeostasis. J. Biol. Chem., 1997;272: 9221-9226
    Google Scholar
  • 44. Kochanowska I., Hampel-Osipowicz E., Waloszczyk P.: ChorobaMenkesa – genetyczny defekt metabolizmu miedzi. Neurol. Dziec.,2008; 17: 63-68
    Google Scholar
  • 45. Kristinsson J, Snaedal J, Tórsdóttir G, Jóhannesson T.: Ceruloplasminand iron in Alzheimer’s disease and Parkinson’s disease: a synopsisof recent studies. Neuropsychiatr. Dis. Treat., 2012; 8: 515-521
    Google Scholar
  • 46. Kuo Y.M., Su T., Chen H., Attieh Z., Syed B.A., McKie A.T., AndersonG.J., Gitschier J., Vulpe C.D.: Mislocalisation of hephaestin,a multicopper ferroxidase involved in basolateral intestinal irontransport, in the sex linked anaemia mouse. Gut, 2004; 53: 201-206
    Google Scholar
  • 47. Lee D.A., Goodfellow J.M.: The p-H induced release of iron fromtransferrin investigated with cintinuum electrostatic model. Biophys.J., 1998; 74: 2747-2759
    Google Scholar
  • 48. Lee S.M., Attieh Z.K., Son H.S., Chen H., Bacouri-Haidar M., VulpeC.D.: Iron repletion relocalizes hephaestin to a proximal basolateralcompartment in polarized MDCK and Caco2 cells. Biochem. Biophys.Res. Commun., 2012; 421: 449-455
    Google Scholar
  • 49. Li Y., Bai B., Cao X., Yan H., Zhuang G.: Ferroportin 1 and hephaestinexpression in BeWo cell line with different iron treatment. Cell.Biochem. Funct., 2012; 30: 249-255
    Google Scholar
  • 50. Linder M.C., Hazegh-Azam M.: Copper biochemistry and molecularbiology. Am. J. Clin. Nutr., 1996; 63: 797S-811S
    Google Scholar
  • 51. Machonkin T.E., Zhang H.H., Hedman B., Hodgson K.O., SolomonE.I.: Spectroscopic and magnetic studies of human ceruloplasmin:identification of a redox-inactive reduced type 1 copper site. Biochemistry,1998; 37: 9570-9578
    Google Scholar
  • 52. Maltais D., Desroches D., Aouffen M., Mateescu M.A., Wang R.,Paquin J.: The blue copper ceruloplasmin induces aggregation ofnewly differentiated neurons: a potential modulator of nervoussystem organization. Neuroscience, 2013; 121: 73-82
    Google Scholar
  • 53. Merle U., Tuma S., Herrmann T., Muntean V., Volkmann M.,Gehrke S.G., Stremmel W.: Evidence for a critical role of ceruloplasminoxidase activity in iron metabolism of Wilson disease geneknockout mice. J. Gastroenterol. Hepatol., 2010; 25: 1144-1150
    Google Scholar
  • 54. Mordak-Domagała M., Kuliszkiewicz-Janus M.: Angiogenesisin multiple myeloma – clinical implications., Acta Haematol. Pol.,2007; 38: 177-186
    Google Scholar
  • 55. Morgan E.H., Oates P.S.: Mechanisms and regulation of intestinaliron absorption. Blood Cells Mol. Dis., 2002; 29: 384-399
    Google Scholar
  • 56. Morris C.J., Earl J.R., Trenam C.W., Blake D.R.: Reactive oxygenspecies and iron – a dangerous partnership in inflammation. Int. J.Biochem. Cell Biol., 1995; 27: 109-122
    Google Scholar
  • 57. Mukhopadhyay C.K., Mazumder B., Fox P.L.: Role of hypoxia–inducible factor-1 in transcriptional activation of ceruloplasminby iron deficiency. J. Biol. Chem., 2000; 275: 21048-21054
    Google Scholar
  • 58. Mukhopadhyay C.K., Mazumder B., Lindley P.F., Fox P.L.: Identificationof the prooxidant site of human ceruloplasmin: a model foroxidative damage by copper bound to protein surfaces. Proc. Natl.Acad. Sci. USA, 1997; 94: 11546-11551
    Google Scholar
  • 59. Mzhel’skaya T.I.: Biological functions of ceruloplasmin and theirdeficiency caused by mutation in genes regulating copper and ironmetabolism. Bull. Exp. Biol. Med., 2000; 130: 719-727
    Google Scholar
  • 60. Nittis T., Gitlin J.: Role of copper in proteasome-mediated degradationof the multicopper oxidase hephaestin. J. Biol. Chem.,2004; 279: 25696-25702
    Google Scholar
  • 61. Oide T., Yoshida K., Kaneko K., Ohta M., Arima K.: Iron overloadand antioxidative role of perivascular astrocytes in aceruloplasminemia.Neuropathol. Appl. Neurobiol., 2006; 32: 170-176
    Google Scholar
  • 62. Papanikolau G., Pantopoulos K.: Iron metabolism and toxicity.Toxicol. Appl. Pharmacol., 2005; 202: 199-211
    Google Scholar
  • 63. Patel B.N., Dunn R.J., Jeong S.Y., Zhu Q., Julien J.P., David S.: Ceruloplasminregulates iron levels in the CNS and prevents free radicalinjury. J. Neurousci., 2002; 22: 6578-6586
    Google Scholar
  • 64. Patel M., Ramavataram D.V.: Non transferris bound iron: nature,manifestations and analytical approaches for estimation. Indian J.Clin. Biochem., 2012; 27: 322-332
    Google Scholar
  • 65. Petrak J., Vyoral D.: Hephaestin – a ferroxidase of cellular ironexport. Inst. J. Biochem. Cell Biol., 2005; 37: 1173-1178
    Google Scholar
  • 66. Pribyl T.: Serum polyphenol oxidase activity (ceruloplasmin)in conventional laboratory animals and man. Folia Biol., 1978; 24:136-141
    Google Scholar
  • 67. Prohaska J.R.: Impact of copper deficiency in humans. Ann. N.Y.Acad. Sci., 2014; 1314: 1-5
    Google Scholar
  • 68. Prohaska J.R.: Impact of copper limitation on expression andfunction of multicopper oxidases (ferroxidases). Adv. Nutr., 2011;2: 89-95
    Google Scholar
  • 69. Qian M.Z., Chang Z.Y., Leung G., Du R.J., Zhu L., Wang Q., NiuL., Xu Y.J., Yang L., Ho K.P., Ke Y.: Expression of ferroportin hephaestinand ceruloplasmin in rat heart. Biochim. Biophys Acta, 2007;1772: 527-532
    Google Scholar
  • 70. Qian Z.M., Shen X.: Brain iron transport and neurodegenration.Trends Mol. Med., 2001; 7: 103-108
    Google Scholar
  • 71. Quintanar L., Gebhard M., Wang T.P., Kosman D.J., Solomon E.I.:Ferrous binding to themulticopper oxidases Saccharomyces cerevisiaeFet3p and human ceruloplasmin: contributions to ferroxidase activity.J. Am. Chem. Soc., 2004; 126: 6579-6589
    Google Scholar
  • 72. Ranganathan P.N., Lu Y., Fuqua B.K., Collins F.J.: Immunoreactivehephaestin and ferroxidase acticity are present in the cytosolicfraction of rat enterocytes. Biometals, 2012; 25: 687-695
    Google Scholar
  • 73. Roeser H.P., Lee G.R., Nacht S., Cartwright G.E.: The role of ceruloplasminin iron metabolism. J. Clin. Invest., 1970; 49: 2408-2417
    Google Scholar
  • 74. Salih A.M.: Serum ceruloplasmin, copper and iron levels as a riskfactors for coronary heart diseases (CHD). Bahdad Sci. J., 2010; 7:372-381
    Google Scholar
  • 75. Sedlak E., Wittung- Stafshede P.: Discrete roles of copper ionsin chemical unfolding of human ceruloplasmin. Biochemistry, 2007;46: 9638-9644
    Google Scholar
  • 76. Sharp P.: The molecular basis of copper and iron metabolism.Proc. Nutr. Soc., 2004; 63: 563-569
    Google Scholar
  • 77. Shokeir M.H., Shreffler D.C.: Cytochrome oxidase deficiency inWilson’s disease: a suggested ceruloplasmin function. Proc. Natl.Acad. Sci. USA, 1969; 62: 867-872
    Google Scholar
  • 78. Song D., Dunaief J.L.: Retinal iron homeostasis in health anddisease. Front Aging Neurosci., 2013; 5: 24
    Google Scholar
  • 79. Song N., Wang J., Jiang H., Xie J.: Ferroportin 1 but not hephaestincontributes to iron accumulation in a cell model of Parkinson’sdisease. Free Radic. Biol. Med., 2010; 48: 332-341
    Google Scholar
  • 80. Stern B.R., Solioz M., Krewski D., Aggett P., Aw T.C., Baker S.,Crump K., Dourson M., Haber L., Hertzberg R., Keen C., Meek B., RudenkoL., Schoeny R., Slob W., Starr T.: Copper and human health:biochemistry, genetics and strategies for modeling dose-responserelationships. J. Toxicol. Environ. Health, 2007; 10: 157-222
    Google Scholar
  • 81. Suzuki Y., Yoshida K., Aburakawa Y., Kuroda K., Kimura T., TeradaT., Kono S., Miyajima H., Yahara O.: Effectiveness of oral iron chelatortreatment with deferasirox in an aceruloplasminemia patient witha novel ceruloplasmin gene mutation. Intern. Med., 2013; 52: 1527-1530
    Google Scholar
  • 82. Syed B., Beamount J., Patel A., Naylor C., Bayele H., Joannou C.,Rowe P., Evans R., Srai K.: Analysis of the human hephaestin geneand protein: comparative modeling of the N-terminus ecto- domeinbased upon ceruloplasmin. Protein Eng., 2002; 15: 205-214
    Google Scholar
  • 83. Tapryal N., Mukhopadhyay C., Das D., Fox P.L., MukhopadhyayC.K.: Reactive oxygen species regulate ceruloplasmin by a novelmRNA decay mechanism involving its 3’-untranslated region: implicationsin neurodegenerative diseases. J. Biol. Chem., 2009; 284:1873-1883
    Google Scholar
  • 84. Terada K., Schilsky M.L., Miura N., Sugiyama T.: ATP7B (WND)protein. Int. J. Biochem. Cell Biol., 1998; 30: 1063-1067
    Google Scholar
  • 85. Texel S., Zhang J., Camandola S., Unger E., Taub D., Koehler R.,Harris Z., Mattson M.: Ceruloplasmin deficiency reduces levels ofiron and BNDF in the cortex and striatum of young mice and increasestheir vulnerability to stroke. PLoS One, 2011; 6: e25077
    Google Scholar
  • 86. Umbreit J.: Iron deficiency: a concise review. J. Hematol., 2005;78: 225-231
    Google Scholar
  • 87. Vaschenko G., Bleackley M., Grifiths T., MacGillivray R.: Oxidationof organic and biogenic amines by recombinant human hephaestinexpressed in Pichia pastoris. Arch. Biochem. Biophys., 2011;514: 50-56
    Google Scholar
  • 88. Vaschenko G., Ross T., MacGillivray A.: Multi-copper oxidasesand human iron metabolism. Nutrients, 2013; 5: 2289-2313
    Google Scholar
  • 89. Vassiliev V., Harris Z.L., Zatta P.: Ceruloplasmin in neurodegenerativediseases. Brain Res. Brain Res. Rev., 2005; 49: 633-640
    Google Scholar
  • 90. Verma V.K., Ramesh V., Tewari S., Gupta R.K., Sinha N., PandeyC.M.: Role of bilirubin, vitamin C and ceruloplasmin as antioxidantsin coronary artery disease [CAD]. Indian J. Clin. Biochem.,2005; 20: 68-74
    Google Scholar
  • 91. Wang J., Pantopolous K.: Regulation of cellular iron metabolism.Biochem. J., 2011; 434: 365-381
    Google Scholar
  • 92. Yamaguchi Y., Aoki T., Asashima S., Ooura T., Takada G., KitagawaT., Shigematsu Y., Shimada M., Kobayashi M., Itou M., Endo F.:Mass screening for Wilson’s disease: results and recommendations.Pediatr. Int., 1999; 41: 405-408
    Google Scholar
  • 93. Yamamoto K., Yoshida K., Miyagoe Y., Ishikawa A., Hanaoka K.,Nomoto S., Kaneko K., Ikeda S., Takeda S.: Quantitative evaluationof expression of iron-metabolism genes in ceruloplasmin-deficientmice. Biochim. Biophys. Acta, 2002; 1588: 195-202
    Google Scholar
  • 94. Young S.N., Curzon G.: A method for obtaining linear reciprocalplots with caeruloplasmin and its application in a study of thekinetic parameters of caeruloplasmin substrates. Biochem. J., 1972;129: 273-283
    Google Scholar
  • 95. Zaitsev V.N., Zaitseva I., Papiz M., Lindley P.F.: An X-ray crystallographicstudy of the binding sites of the azide inhibitor andorganic substrates to ceruloplasmin, a multi-copper oxidase in theplasma. J. Biol. Inorg. Chem., 1999; 4: 579-587
    Google Scholar

Full text

Skip to content