Characteristics of matrix metalloproteinases and their role in embryogenesis of the mammalian respiratory system

REVIEW ARTICLE

Characteristics of matrix metalloproteinases and their role in embryogenesis of the mammalian respiratory system

Sławomir Wątroba 1 , Tomasz Wiśniowski 2 , Jarosław Bryda 3 , Jacek Kurzepa 4

1. Department of Neonatology and Neonatal Intensive Care Unit, Independent Public Healthcare, Puławy, Poland,
2. Department of Urology and Urological Oncology, St. John of God Independent Public Provincial Hospital, Lublin, Poland,
3. Department of Veterinary Hygiene, Voivodship Veterinary Inspectorate, Lublin, Poland,
4. Department of Medical Chemistry, Medical University, Lublin, Poland,

Published: 2021-01-25
DOI: 10.5604/01.3001.0014.6933
GICID: 01.3001.0014.6933
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2021; 75 : 24-34

 

Abstract

The human respiratory system appears as an outgrowth from the ventral wall of the primary foregut and its development includes a series of subsequent processes, dependent on the interactions between endothelial cells, respiratory epithelium and extracellular matrix (ECM). These interactions determine the acquisition of normal structural and functional features of the newly created tissues. The essential role in the morphogenesis of the respiratory system is performed by matrix metalloproteinases (MMPs). MMPs are endopeptidases containing zinc ion in their active center, necessary for the processes of hydrolysis of peptide bonds of substrates. The production of MMPs takes place in most connective tissue cells, leukocytes, macrophages, vascular endothelial cells as well as in neurons, glial cells and in tumor cells. Like other proteolytic enzymes, MMPs are produced and secreted in the form of inactive pro-enzymes, and their activation occurs in the extracellular space. MMPs perform both physiological and pathological functions during tissue modeling and their role in embryogenesis is based on the regulation of angiogenesis processes, stroma formation and cells migration. This article aims to characterize, discuss and demonstrate the activity and the role of MMPs in the subsequent stages of respiratory development.

References

  • 1. Ala-aho R., Kähäri V.M.: Collagenases in cancer. Biochimie, 2005;87: 273–286
    Google Scholar
  • 2. Andreeva A.V., Kutuzov M.A., Voyno-Yasenetskaya T.A.: Regulationof surfactant secretion in alveolar type II cells. Am. J. Physiol.Lung. Cell. Mol. Physiol., 2007; 293: L259–L271
    Google Scholar
  • 3. Anteby E.Y., Greenfield C., Natanson-Yaron S., Goldman-WohlD., Hamani Y., Khudyak V., Ariel I., Yagel S.: Vascular endothelialgrowth factor, epidermal growth factor and fibroblast growth factor- 4 and -10 stimulate trophoblast plasminogen activator systemand metalloproteinase-9. Mol. Hum. Reprod., 2004; 10: 229–235
    Google Scholar
  • 4. Arza B., De Maeyer M., Félez J., Collen D., Lijnen H.R.: Criticalrole of glutamic acid 202 in the enzymatic activity of stromelysin-1(MMP-3). Eur. J. Biochem., 2001; 268: 826–831
    Google Scholar
  • 5. Atkinson J.J., Holmbeck K., Yamada S., Birkedal-Hansen H., ParksW.C., Senior R.M.: Membrane-type 1 matrix metalloproteinase isrequired for normal alveolar development. Develop. Dyn., 2005;232: 1079–1090
    Google Scholar
  • 6. Batra J., Robinson J., Soares A.S., Fields A.P., Radisky D.C., RadiskyE.S.: Matrix metalloproteinase-10 (MMP-10) interaction with tissueinhibitors of metalloproteinases TIMP-1 and TIMP-2: Bindingstudies and crystal structure. J. Biol. Chem., 2012; 287: 15935–15946
    Google Scholar
  • 7. Batra J., Soares A.S., Mehner C., Radisky E.S.: Matrix metalloproteinase-10/TIMP-2 structure and analyses define conservedcore interactions and diverse exosite interactions in MMP/TIMPcomplexes. PLoS One, 2013; 8: e75836
    Google Scholar
  • 8. Bauvois B.: New facets of matrix metalloproteinases MMP-2and MMP-9 as cell surface transducers: Outside-in signaling andrelationship to tumor progression. Biochim. Biophys. Acta, 2012;1825: 29–36
    Google Scholar
  • 9. Belokhvostova D., Berzanskyte I., Cujba A.M., Jowett G., MarshallL., Prueller J., Watt F.M.: Homeostasis, regeneration and tumourformation in the mammalian epidermis. Int. J. Dev. Biol.,2018; 62: 571–582
    Google Scholar
  • 10. Bland R.D., Nielson D.W.: Developmental changes in lung epithelialion transport and liquid movement. Annu. Rev. Physiol.,1992; 54: 373–394
    Google Scholar
  • 11. Bolon I., Devouassoux M., Robert C., Moro D., Brambilla C.,Brambilla E.: Expression of urokinase-type plasminogen activator,stromelysin-1, stromelysin-3 and matrilysin genes in lung carcinomas.Am. J. Pathol., 1997; 150: 1619–1629
    Google Scholar
  • 12. Boucherat O., Bourbon J.R., Barlier-Mur A.M., Chailley-Heu B.,D’Ortho M.P., Delacourt C.: Differential expression of matrix metalloproteinasesand inhibitors in developing rat lung mesenchymaland epithelial cells. Pediatr. Res., 2007; 62: 20–25
    Google Scholar
  • 13. Brauer P.R.: MMPs: Role in cardiovascular development anddisease. Front. Biosci., 2006; 11: 447–478
    Google Scholar
  • 14. Brew K., Dinakarpandian D., Nagase H.: Tissue inhibitors ofmetalloproteinases: Evolution, structure and function. Biochim.Biophys. Acta, 2000; 1477: 267–283
    Google Scholar
  • 15. Brew K., Nagase H.: The tissue inhibitors of metalloproteinases(TIMPs): An ancient family with structural and functional diversity.Biochim. Biophys. Acta, 2010; 1803: 55–71
    Google Scholar
  • 16. Cauwe B., Opdenakker G.: Intracellular substrate cleavage:A novel dimension in the biochemistry, biology and pathology ofmatrix metalloproteinases. Crit. Rev. Biochem. Mol. Biol., 2010;45: 351–423
    Google Scholar
  • 17. Chang Z.K., Meng F.G., Zhang Z.Q., Mao G.P., Huang Z.Y., LiaoW.M., He A.S.: MicroRNA-193b-3p regulates matrix metalloproteinase 19 expression in interleukin-1β-induced human chondrocytes.J. Cell. Biochem., 2018; 119: 4775–4782
    Google Scholar
  • 18. Chetty C., Lakka S.S., Bhoopathi P., Kunigal S., Geiss R., Rao J.S.:Tissue inhibitor of matrix metalloproteinase 3 supresses tumorangiogenesis in matrix metalloproteinase 2-down-regulated lungcancer. Cancer. Res., 2008; 68: 4736–4745
    Google Scholar
  • 19. Crowther C.A., Alfirevic Z., Haslam R.R.: Prenatal thyrotropinreleasinghormone for preterm birth. Cochrane. Database. Syst.Rev., 2000; 2000: CD000019
    Google Scholar
  • 20. deMello D.E., Sawyer D., Galvin N., Reid L.M.: Early fetal developmentof lung vasculature. Am. J. Respir. Cell. Mol. Biol. 1997;16: 568–581
    Google Scholar
  • 21. Deryugina E.I., Quigley J.P.: Matrix metalloproteinases and tumormetastasis. Cancer Metastasis Rev., 2006; 25: 9–34
    Google Scholar
  • 22. Elumalai G., Anbazhagan L.: “Laryngomalacia” embryologicalbasis and its clinical significance. Elixir Embryology, 2016; 100:43420–43424
    Google Scholar
  • 23. English W.R., Ireland-Zecchini H., Baker A.H., Littlewood T.D.,Bennett M.R., Murphy G.: Tissue inhibitor of metalloproteinase-3(TIMP-3) induces FAS dependent apoptosis in human vascularsmooth muscle cells. PLoS One, 2018; 13: e0195116
    Google Scholar
  • 24. Erickson H.P.: Tenascin-C, tenascin-R and tenascin-X: A familyof talented proteins in search of functions. Curr. Opin. Cell Biol.,1993; 5: 869–876
    Google Scholar
  • 25. Fic P., Zakrocka I., Kurzepa J., Stepulak A.: Matrix metalloproteinasesand atherosclerosis. Postępy Hig. Med. Dośw., 2011;65: 16–27
    Google Scholar
  • 26. Fink K., Boratyński J.: The role of metalloproteinases in modificationof extracellular matrix in invasive tumor growth, metastasisand angiogenesis. Postępy Hig. Med. Dośw., 2012; 66: 609–628
    Google Scholar
  • 27. Forhead A.J., Fowden A.L.: Thyroid hormones in fetal growthand prepartum maturation. J. Endocrinol., 2014; 221: R87–R103
    Google Scholar
  • 28. Franco C., Patricia H.R., Timo S., Claudia B., Marcela H.: Matrixmetalloproteinases as regulators of periodontal inflammation. Int.J. Mol. Sci., 2017; 18: 440
    Google Scholar
  • 29. Fujimoto N., Zhang J., Iwata K., Shinya T., Okada Y., HayakawaT.: A one-step sandwich enzyme immunoassay for tissue inhibitormetalloproteinases-2 using monoclonal antibodies. Clin. Chim.Acta, 1993; 220: 31–45
    Google Scholar
  • 30. Fukuda Y., Ferrans V.J., Crystal R.G.: The development of alveolarsepta in fetal sheep lung. An ultrastructural and immunohistochemicalstudy. Am. J. Anat., 1983; 167: 405–439
    Google Scholar
  • 31. Fukuda Y., Ishizaki M., Okada Y., Seiki M., Yamanaka N.: Matrixmetalloproteinases and tissue inhibitor of metalloproteinase-2 infetal rabbit lung. Am. J. Physiol. Lung. Cell. Mol. Physiol., 2000;279: L555–L561
    Google Scholar
  • 32. Galis Z.S., Khatri J.J.: Matrix metalloproteinases in vascularremodeling and atherosclerosis: The good, the bad, and the ugly.Circ. Res., 2002; 90: 251–262
    Google Scholar
  • 33. Ganser G.L., Stricklin G.P., Matrisian L.M.: EGF and TGFα influencein vitro lung development by the induction of matrixdegradingmetalloproteinases. Int. J. Dev. Biol., 1991; 35: 453–461
    Google Scholar
  • 34. Gasson J.C., Golde D.W., Kaufman S.E., Westbrook C.A., HewickR.M., Kaufman R.J., Wong G.G., Temple P.A., Leary A.C., Brown E.L.,Orr E.C., Clark S.C.: Molecular characterization and expression ofthe gene encoding human erythroid-potentiating activity. Nature,1985; 315: 768–771
    Google Scholar
  • 35. Gill S.E., Pape M.C., Khokha R., Watson A.J., Leco K.J.: A nullmutation for Tissue Inhibitor of Metalloproteinases-3 (Timp-3)impairs murine bronchiole branching morphogenesis. Dev. Biol.,2003; 261: 313–323
    Google Scholar
  • 36. Greenlee K.J., Werb Z., Kheradmand F.: Matrix metalloproteinasesin lung: Multiple, multifarious, and multifaceted. Physiol.Rev., 2007; 87: 69–98
    Google Scholar
  • 37. Grenachea D.G., Gronowskib A.M.: Fetal lung maturity. Clin.Biochem., 2006; 39: 1–10
    Google Scholar
  • 38. Grodecka J., Kobos J., Zielińska-Każmierska B., Manowska B.:Evaluation of stromal proteins expression – tenastin and fibronectin– in the cysts and dental derived neoplasms of the facial partof the cranium. Wsp. Onkol., 2009; 13: 22–27
    Google Scholar
  • 39. Holm B.A., Kapur P., Irish M.S., Glick P.L.: Physiology andpathophysiology of lung development. J. Obstet Gynecol., 1997;17: 519–527
    Google Scholar
  • 40. Hyde D.M., Tyler N.K., Putney L.F., Singh P., Gundersen H.J.:Total number and mean size of alveoli in mammalian lung estimatedusing fractionator sampling and unbiased estimates of theEuler characteristic of alveolar openings. Anat. Rec. A Discov. Mol.Cell. Evol. Biol., 2004; 277: 216–226
    Google Scholar
  • 41. Isnard N., Legeais J.M., Renard G., Robert L.: Effect of hyaluronanon MMP expression and activation. Cell. Biol. Int., 2001;25: 735–739
    Google Scholar
  • 42. Joshi S., Kotecha S.: Lung growth and development. Early Hum.Dev., 2007; 83: 789–794
    Google Scholar
  • 43. Kapoor C., Vaidya S., Wadhwan V., Hitesh, Kaur G., PathakA.: Seesaw of matrix metalloproteinases (MMPs). J. Cancer. Res.Ther., 2016; 12: 28–35
    Google Scholar
  • 44. Kheradmand F., Rishi K., Werb Z.: Signaling through the EGFreceptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. J. Cell. Sci., 2002;115: 839–848
    Google Scholar
  • 45. Kim E.M., Hwang O.: Role of matrix metalloproteinase-3 inneurodegeneration. J. Neurochem., 2011; 116: 22–32
    Google Scholar
  • 46. Kim H.I., Lee H.S., Kim T.H., Lee J.S., Lee S.T., Lee S.J.: Growthstimulatoryactivity of TIMP-2 is mediated through c-Src activationfollowed by activation of FAK, PI3-kinase/AKT, and ERK1/2independent of MMP inhibition in lung adenocarcinoma cells.Oncotarget, 2015; 6: 42905–42922
    Google Scholar
  • 47. Kinoh H., Sato H., Tsunezuka Y., Takino T., Kawashima A., OkadaY., Seiki M.: MT-MMP, the cell surface activator of pro-MMP-2 (progelatinaseA), is expressed with substrate in mouse tissue duringembryogenesis. J. Cell. Sci., 1996; 109: 953–959
    Google Scholar
  • 48. Kupai K., Szucs G., Cseh S., Hajdu I., Csonka C., Csont T., FerdinandyP.: Matrix metalloproteinase activity assays: Importanceof zymography. J. Pharmacol. Toxicol. Methods, 2010; 61: 205–209
    Google Scholar
  • 49. Kurzepa J., Baran M., Wątroba S., Barud M., Babula D.: Collagenasesand gelatinases in bone healing. The focus on mandibularfractures. Curr. Issues. Pharm. Med. Sci., 2014; 27: 121–126
    Google Scholar
  • 50. Lambert E., Dassé E., Haye B., Petitfrère E.: TIMPs as multifacialproteins. Crit. Rev. Oncol. Hematol., 2004; 49: 187–198
    Google Scholar
  • 51. Lamoreaux W.J., Fitzgerald M.E.C., Reiner A., Hasty K.A.,Charles S.T.: Vascular endothelial growth factor increases releaseof gelatinase A and decreases release of tissue inhibitor of metalloproteinasesby microvascular endothelial cells in vitro. Microvasc.Res., 1998; 55: 29–42
    Google Scholar
  • 52. Li H., Ezra D.G., Burton M.J., Bailly M.: Doxycycline preventsmatrix remodeling and contraction by trichiasis-derived conjunctivalfibroblasts. Invest. Ophthalmol. Vis. Sci., 2013; 54: 4675–4682
    Google Scholar
  • 53. Lipka D., Boratyński J.: Metaloproteinazy MMP. Struktura ifunkcja. Postępy. Hig. Med. Dośw., 2008; 62, 328–336
    Google Scholar
  • 54. Loftus I.M., Naylor A.R., Bell P.R., Thompson M.M.: Matrixmetalloproteinases and atherosclerotic plaque instability. Br. J.Surg., 2002; 89: 680–694
    Google Scholar
  • 55. Loy M., Burggraf D., Martens K.H., Liebetrau M., WunderlichN., Bültemeier G., Nemori R., Hamann G.F.: A gelatin in situ-overlaytechnique localizes brain matrix metalloproteinase activityin experimental focal cerebral ischemia. J. Neurosci. Methods,2002; 116: 125–133
    Google Scholar
  • 56. Lu Y., Papagerakis P., Yamakoshi Y., Hu J.C., Bartlett J.D., SimmerJ.P.: Functions of KLK4 and MMP-20 in dental enamel formation.Biol. Chem., 2008; 389: 695–700
    Google Scholar
  • 57. Malicdem M., Taylor W., Goerke M., Devaskar U.: Ontogenyof rat lung type IV collagenase mRNA expression and collagenolyticactivity during the perinatal period. Biol. Neonate, 1993; 64:376–381
    Google Scholar
  • 58. Manicone A.M., Harju-Baker S., Johnston L.K., Chen A.J., ParksW.C.: Epilysin (matrix metalloproteinase-28) contributes to airwayepithelial cell survival. Respir. Res., 2011; 12: 144
    Google Scholar
  • 59. Masumoto K., de Rooij J.D., Suita S., Rottier R., Tibboel D., deKrijger R.R.: Expression of matrix metalloproteinases and tissueinhibitors of metalloproteinases during normal human pulmonarydevelopment. Histopathology, 2005; 47: 410–419
    Google Scholar
  • 60. Morancho A., Rosell A., Garcia-Bonilla L., Montaner J.: Metalloproteinaseand stroke infarct size: Role for anti-inflammatorytreatment? Ann. N. Y. Acad. Sci., 2010; 1207: 123–133
    Google Scholar
  • 61. Mott J.D., Werb Z.: Regulation of matrix biology by matrix metalloproteinases.Curr. Opin. Cell. Biol., 2004; 16: 558–564
    Google Scholar
  • 62. Murphy G., Houbrechts A., Cockett M.I., Williamson R.A.,O’Shea M., Docherty A.J.: The N-terminal domain of tissue inhibitorof metalloproteinases retains metalloproteinase inhibitoryactivity. Biochemistry, 1991; 30: 8097–8102
    Google Scholar
  • 63. Murphy G., Segain J.P., O’Shea M., Cockett M., Ioannou C., LefebvreO., Chambon P., Basset P.: The 28-kDa N-terminal domain ofmouse stromelysin-3 has the general properties of a weak metalloproteinase.J. Biol. Chem., 1993; 268: 15435–15441
    Google Scholar
  • 64. Nagase H., Visse R., Murphy G.: Structure and function ofmatrix metalloproteinases and TIMPs. Cardiovasc. Res., 2006; 69:562–573
    Google Scholar
  • 65. Newby A.C.: Metalloproteinase expression in monocytes andmacrophages and its relationship to atherosclerotic plaque instability.Arterioscler. Thromb. Vasc. Biol., 2008; 28: 2108–2114
    Google Scholar
  • 66. Oblander S.A., Zhou Z., Gálvez B.G., Starcher B., Shannon J.M.,Durbeej M., Arroyo A.G., Tryggvason K., Apte S.S.: Distinctive functionsof membrane type 1 matrix-metalloprotease (MT1-MMP orMMP-14) in lung and submandibular gland development are independentof its role in pro-MMP-2 activation. Dev. Biol., 2005;277: 255–269
    Google Scholar
  • 67. Okamoto T., Akuta T., Tamura F., van der Vliet A., Akaike T.:Molecular mechanism for activation and regulation of matrix metalloproteinasesduring bacterial infections and respiratory inflammation.Biol. Chem., 2004; 385: 997–1006
    Google Scholar
  • 68. Opdenakker G., van den Steen P.E., van Damme J.: GelatinaseB: A tuner and amplifier of immune functions. Trends Immunol.,2001; 22: 571–579
    Google Scholar
  • 69. Özenci V., Rinaldi L., Teleshova N., Matusevicius D., KivisäkkP., Kouwenhoven M., Link H.: Metalloproteinases and their tissueinhibitors in multiple sclerosis. J. Autoimmun., 1999; 12: 297–303
    Google Scholar
  • 70. Page-McCaw A., Ewald A.J., Werb Z.: Matrix metalloproteinasesand the regulation of tissue remodelling. Nat. Rev. Mol. Cell.Biol., 2007; 8: 221–233
    Google Scholar
  • 71. Palosaari H., Pennington C.J., Larmas M., Edwards D.R., TjäderhaneL., Salo T.: Expression profile of matrix metalloproteinases(MMPs) and tissue inhibitors of MMPs (TIMPs) in mature humanodontoblasts and pulp tissue. Eur. J. Oral. Sci., 2003; 111: 117–127
    Google Scholar
  • 72. Parks W.C., Shapiro S.D.: Matrix metalloproteinases in lungbiology. Respir. Res., 2001; 2: 10–19
    Google Scholar
  • 73. Pepper M.S.: Role of the matrix metalloproteinase and plasminogenactivator-plasmin systems in angiogenesis. Arterioscler.Thromb. Vasc. Biol., 2001; 21: 1104–1117
    Google Scholar
  • 74. Petty M.A., Wettstein J.G.: Elements of cerebral microvascularischaemia. Brain. Res. Brain Res. Rev., 2001; 36: 23–34
    Google Scholar
  • 75. Pinkerton K.E., Joad J.P.: The mammalian respiratory systemand critical windows of exposure for children’s health. Environ.Health Perspect., 2000; 108: 457–462
    Google Scholar
  • 76. Ries C.: Cytokine functions of TIMP-1. Cell. Mol. Life Sci., 2014;71: 659–672
    Google Scholar
  • 77. Rolland G., Xu J., Dupret J.M., Post M.: Expression and characterizationof type IV collagenases in rat lung cells during development.Exp. Cell Res., 1995; 218: 346–350
    Google Scholar
  • 78. Schittny J.C.: Development of the lung. Cell Tissue Res., 2017;367: 427–444
    Google Scholar
  • 79. Schmidt R., Bültmann A., Ungerer M., Joghetaei N., Bülbül O.,Thieme S., Chavakis T., Toole B.P., Gawaz M., Schömig A., May A.E.:Extracellular matrix metalloproteinase inducer regulates matrixmetalloproteinase activity in cardiovascular cells: Implicationsin acute myocardial infarction. Circulation, 2006; 113: 834–841
    Google Scholar
  • 80. Serra P., Bruczko M., Zapico J.M., Puckowska A., Garcia M.A.,Martin-Santamaria S., Ramos A., de Pascual-Teresa B.: MMP-2 selectivityin hydroxamate-type inhibitors. Curr. Med. Chem., 2012;19: 1036–1064
    Google Scholar
  • 81. Snoek-van Beureden P.A., von den Hoff J.W.: Zymographictechniques for the analysis of matrix metalloproteinases and theirinhibitors. Biotechniques, 2005; 38: 73–83
    Google Scholar
  • 82. Sun Q., Weber C.R., Sohail A., Bernardo M.M., Toth M., Zhao H.,Turner J.R., Fridman R.: MMP25 (MT6-MMP) is highly expressed inhuman colon cancer, promotes tumor growth, and exhibits uniquebiochemical properties. J. Biol. Chem., 2007; 282: 21998–22010
    Google Scholar
  • 83. Trojanek J.: Metaloproteinazy macierzy zewnątrzkomórkoweji ich tkankowe inhibitory. Postępy Biochem., 2012; 58: 353–362
    Google Scholar
  • 84. Tschanz S.A., Salm L.A., Roth-Kleiner M., Barré S.F., Burri P.H.,Schittny J.C.: Rat lungs show a biphasic formation of new alveoliduring postnatal development. J. Appl. Physiol., 2014; 117: 89–95
    Google Scholar
  • 85. van Hove I., Lemmens K., van de Velde S., Verslegers M., MoonsL.: Matrix metalloproteinase-3 in the central nervous system: Alook on the bright side. J. Neurochem., 2012; 123: 203–216
    Google Scholar
  • 86. Veldhuizen E.J., Haagsman H.P.: Role of pulmonary surfactantcomponents in surface film formation and dynamics. Biochim.Biophys. Acta Biomembr., 2000; 1467: 255–270
    Google Scholar
  • 87. Verslegers M., Lemmens K., van Hove I., Moons L.: Matrixmetalloproteinase-2 and -9 as promising benefactors in development,plasticity and repair of the nervous system. Prog. Neurobiol.,2013; 105: 60–78
    Google Scholar
  • 88. Wang X., Inoue S., Gu J., Miyoshi E., Noda K., Li W., Mizuno-Horikawa Y., Nakano M., Asahi M., Takahashi M., Uozumi N., IharaS., Lee S.H., Ikeda Y., Yamaguchi Y., et al.: Dysregulation of TGFbeta1receptor activation leads to abnormal lung development andemphysema-like phenotype in core fucose-deficient mice. Proc.Natl. Acad. Sci. USA, 2005; 102: 15791–15796
    Google Scholar
  • 89. White S.J., Danowitz M., Solounias N.: Embryology and evolutionaryhistory of the respiratory tract. Edorium. J. Anat. Embryo.,2016; 3: 54–62
    Google Scholar
  • 90. Woods J.C., Schittny J.C.: Lung structure at preterm and termbirth. In: Fetal and Neonatal Lung Development: Clinical Correlatesand Technologies for the Future, red.: A.H. Jobe, J.A. Whitsett, S.H.Abman. Cambridge University Press, Cambridge 2016, 126–140
    Google Scholar
  • 91. Wysocka A., Giziński S., Lechowski R.: Metaloproteinazy macierzy– ich struktura oraz znaczenie. Życie Weterynaryjne., 2014;89: 223–227
    Google Scholar
  • 92. Yang J.S., Lin C.W., Su S.C., Yang S.F.: Pharmacodynamic considerationsin the use of matrix metalloproteinase inhibitors in cancertreatment. Expert Opin. Drug Metab. Toxicol., 2016; 12: 191–200
    Google Scholar
  • 93. Zhao H., Bernardo M.M., Osenkowski P., Sohail A., Pei D., NagaseH., Kashiwagi M., Soloway P.D., DeClerck Y.A., Fridman R.:Differential inhibition of membrane type 3 (MT3)-matrix metalloproteinase(MMP) and MT1-MMP by tissue inhibitor of metalloproteinase(TIMP)-2 and TIMP-3 regulates pro-MMP-2 activation.J. Biol. Chem., 2004; 279: 8592–8601
    Google Scholar

Full text

Skip to content