Characterization and biological role of extracellular vesicles
Aneta Wójtowicz 1 , Monika Baj-Krzyworzeka 1 , Jarosław Baran 1Abstract
Extracellular vesicles (EV) form a heterogeneous population of mostly spherical membrane structures released by almost all cells, including tumour cells, both in vivo and in vitro. Their size varies from 30 nm to 1 μm, and size is one of the main criteria of the selection of two categories of EV: small (30-100 nm), more homogeneous exosomes and larger fragments (0.1-1 μm) called membrane microvesicles or ectosomes. The presence of EV has already been detected in many human body fluids: blood, urine, saliva, semen and amniotic fluid. Formation of EV is tightly controlled, and their function and biochemical composition depend on the cell type they originate from. EV are the “vehicles” of bioactive molecules, such as proteins, mRNA and microRNA, and may play an important role in intercellular communication and modulation of e.g. immune system cell activity. In addition, on the surface of tumour-derived microvesicles (TMV), called oncosomes, several markers specific for cancer cells were identified, which indicates a role of TMV in tumour growth and cancer development. On the other hand, TMV may be an important source of tumour-associated antigens (TAA) which can be potentially useful as biomarkers with prognostic value, as well as in development of new forms of targeted immunotherapy of cancer.
References
- 1. Admyre C., Johansson S.M., Paulie S., Gabrielsson S.: Direct exosomestimulation of peripheral human T cells detected by ELISPOT.Eur. J. Immunol., 2006; 36: 1772-1781
Google Scholar - 2. Al-Nedawi K., Meehan B., Micallef J., Lhotak V., May L., GuhaA., Rak J.: Intercellular transfer of the oncogenic receptor EGFRvIIIby microvesicles derived from tumour cells. Nat. Cell Biol.,2008; 10: 619-624
Google Scholar - 3. Ambudkar S.V., Sauna Z.E., Gottesman M.M., Szakacs G.: A novelway to spread drug resistance in tumor cells: functional intercellulartransfer of P-glycoprotein (ABCB1). Trends Pharmacol. Sci.,2005; 26: 385-387
Google Scholar - 4. Andre F., Schartz N.E., Movassagh M., Flament C., Pautier P.,Morice P., Pomel C., Lhomme C., Escudier B., Le Chevalier T., TurszT., Amigorena S., Raposo G., Angevin E., Zitvogel L.: Malignanteffusions and immunogenic tumour-derived exosomes. Lancet,2002; 360: 295-305
Google Scholar - 5. Andreola G., Rivoltini L., Castelli C., Huber V., Perego P., DehoP., Squarcina P., Accornero P., Lozupone F., Lugini L., Stringaro A.,Molinari A., Arancia G., Gentile M., Parmiani G., Fais S.: Inductionof lymphocyte apoptosis by tumor cell secretion of FasL-bearingmicrovesicles. J. Exp. Med., 2002; 195: 1303-1316
Google Scholar - 6. Arteaga R.B., Chirinos J.A., Soriano A.O., Jy W., Horstman L.,Jimenez J.J., Mendez A., Ferreira A., de Marchena E., Ahn Y.S.:Endothelial microparticles and platelet and leukocyte activationin patients with the metabolic syndrome. Am. J. Cardiol.,2006; 98: 70-74
Google Scholar - 7. Baj-Krzyworzeka M., Szatanek R., Weglarczyk K., Baran J., UrbanowiczB., Brański P., Ratajczak M.Z., Zembala M.: Tumour-derivedmicrovesicles carry several surface determinants and mRNAof tumour cells and transfer some of these determinants to monocytes.Cancer Immunol. Immunother., 2006; 55: 808-818
Google Scholar - 8. Baj-Krzyworzeka M., Szatanek R., Węglarczyk K., Baran J., ZembalaM.: Tumour-derived microvesicles modulate biological activityof human monocytes. Immunol. Lett., 2007, 113: 76-82
Google Scholar - 9. Baran J., Baj-Krzyworzeka M., Weglarczyk K., Szatanek R., ZembalaM., Barbasz J., Czupryna A., Szczepanik A., Zembala M.: Circulatingtumour-derived microvesicles in plasma of gastric cancerpatients. Cancer Immunol. Immunother., 2010; 59: 841-850
Google Scholar - 10. Bobrie A., Colombo M., Raposo G., Théry C.: Exosome secretion:molecular mechanism and roles in immune responses. Traffic,2011; 12: 1659-1668
Google Scholar - 11. Böing A.N., Hau C.M., Sturk A., Nieuwland R.: Platelet microparticlescontain active caspase 3. Platelets, 2008; 19: 96-103
Google Scholar - 12. Burnier L., Fontana P., Kwak B.R., Angelillo-Scherrer A.: Cell-derivedmicroparticles in haemostasis and vascular medicine. Tromb.Haemost., 2009; 101: 439-451
Google Scholar - 13. Camussi G., Deregibus M.C., Bruno S., Grange C., Fonsato V.,Tetta C.: Exosome/microvesicle-mediated epigenetic reprogrammingof cells. Am. J. Cancer Res., 2011; 1: 98-110
Google Scholar - 14. Chaput N., Schartz N.E., André F., Taieb J., Novault S., BonnaventureP., Aubert N., Bernard J., Lemonnier F., Merad M., AdemaG., Adams M., Ferrantini M., Carpentier A.F., Escudier B., TurszT., Angevin E., Zitvogel L.: Exosomes as potent cell-free peptidebasedvaccine. II. Exosomes in CpG adjuvants efficiently primenaive Tc1 lymphocytes leading to tumor rejection. J. Immunol.,2004; 172: 2137-2146
Google Scholar - 15. Chaput N., Théry C.: Exosomes: immune properties and potentialclinical implementations. Semin. Immunopathol, 2011; 33:419-440
Google Scholar - 16. Cho J.A., Lee Y.S., Kim S.H., Ko J.K., Kim C.W.: MHC independentanti-tumor immune responses induced by Hsp70-enrichedexosomes generate tumor regression in murine models. CancerLett., 2009; 275: 256-265
Google Scholar - 17. Clayton A., Harris C.L., Court J., Mason M.D., Morgan B.P.: Antigen-presentingcell exosomes are protected from complementmediatedlysis by expression of CD55 and CD59. Eur. J. Immunol.,2003; 33: 522-531
Google Scholar - 18. Cocucci E., Racchetti G., Meldolesi J.: Shedding microvesicles:artefacts no more. Trends Cell Biol., 2009; 19: 43-51
Google Scholar - 19. Colino J., Snapper C.M.: Exosomes from bone marrow dendriticcells pulsed with diphtheria toxoid preferentially induce type 1antigen-specific IgG responses in naive recipients in the absenceof free antigen. J. Immunol., 2006; 177: 3757-3762
Google Scholar - 20. Dai S., Wei D., Wu Z., Zhou X., Wei X., Huang H., Li G.: PhaseI clinical trial of autologous ascites-derived exosomes combinedwith GM-CSF for colorectal cancer. Mol. Ther., 2008; 16: 782-790
Google Scholar - 21. Diamant M., Tushuizen M.E., Sturk A., Nieuwland R.: Cellularmicroparticles: new players in the field of vascular disease? Eur.J. Clin. Invest., 2004; 34: 392-401
Google Scholar - 22. Distler J.H., Pisetsky D.S., Huber L.C., Kalden J.R., Gay S., DistlerO.: Microparticles as regulators of inflammation: novel playersof cellular crosstalk in the rheumatic diseases. Arthritis Rheum.,2005; 52: 3337-3348
Google Scholar - 23. Dolo V., D’Ascenzo S., Violini S., Pompucci L., Festuccia C., GinestraA., Vittorelli M.L., Canevari S., Pavan A.: Matrix-degradingproteinases are shed in membrane vesicles by ovarian cancer cellsin vivo and in vitro. Clin. Exp. Metastasis, 1999; 17: 131-140
Google Scholar - 24. Escudier B., Dorval T., Chaput N., André F., Caby M.P., NovaultS., Flament C., Leboulaire C., Borg C., Amigorena S., Boccaccio C.,Bonnerot C., Dhellin O., Movassagh M., Piperno S. i wsp.: Vaccinationof metastatic melanoma patients with autologous dendriticcell (DC) derived-exosomes: results of the first phase I clinical trial.J. Transl. Med., 2005; 3: 10
Google Scholar - 25. Filipazzi P., Bürdek M., Villa A., Rivoltini L., Huber V.: Recentadvances on the role of tumor exosomes in immunosuppressionand disease progression. Semin. Cancer Biol., 2012; 22: 342-349
Google Scholar - 26. Forlow S.B., McEver R.P., Nollert M.U.: Leukocyte-leukocyteinteractions mediated by platelet microparticles under flow. Blood,2000; 95: 1317-1323
Google Scholar - 27. Giusti I., D’Ascenzo S., Millimaggi D., Taraboletti G., Carta G.,Franceschini N., Pavan A., Dolo V.: Cathepsin B mediates the pHdependentproinvasive activity of tumor-shed microvesicles. Neoplasia,2008; 10: 481-488
Google Scholar - 28. Hakulinen J., Sankkila L., Sugiyama N., Lehti K., Keski-Oja J.:Secretion of active membrane type 1 matrix metalloproteinase(MMP-14) into extracellular space in microvesicular exosomes. J.Cell. Biochem., 2008; 105: 1211-1218
Google Scholar - 29. Hugel B., Martinez M.C., Kunzelmann C., Freyssinet J.M.: Membranemicroparticles: two sides of the coin. Physiology, 2005; 20:22-27
Google Scholar - 30. Janowska-Wieczorek A., Wysoczyński M., Kijowski J., MarquezCurtisL., Machaliński B., Ratajczak J., Ratajczak M.Z.: Microvesiclesderived from activated platelets induce metastasis and angiogenesisin lung cancer. Int. J. Cancer, 2005; 113: 752-760
Google Scholar - 31. Jimenez J.J., Jy W., Mauro L.M., Soderland C., Horstman L.L.,Ahn Y.S.: Endothelial cells release phenotypically and quantitativelydistinct microparticles in activation and apoptosis. Thromb.Res., 2003; 109: 175-180
Google Scholar - 32. Kharaziha P., Ceder S., Li Q., Panaretakis T.: Tumor cell-derivedexosomes: a message in a bottle. Biochim. Biophys. Acta,2012; 1826: 103-111
Google Scholar - 33. Kosaka N., Iguchi H., Ochiya T.: Circulating microRNA in bodyfluid: a new potential biomarker for cancer diagnosis and prognosis.Cancer Sci., 2010; 101: 2087-2092
Google Scholar - 34. Mathivanan S., Simpson R.J.: ExoCarta: a compendium of exosomalproteins and RNA. Proteomics, 2009; 9: 4997-5000
Google Scholar - 35. Meckes D.G. Jr., Raab-Traub N.: Microvesicles and viral infection.J. Virol., 2011; 85: 12844-12854
Google Scholar - 36. Morse M.A., Garst J., Osada T., Khan S., Hobeika A., Clay T.M., ValenteN., Shreeniwas R., Sutton M.A., Delcayre A., Hsu D.H., Le Pecq J.B.,Lyerly H.K.: A phase I study of dexosome immunotherapy in patientswith advanced non-small cell lung cancer. J. Transl. Med., 2005; 3: 9
Google Scholar - 37. Muralidharan-Chari V., Clancy J.W., Sedgwick A., D’SouzaSchoreyC.: Microvesicles: mediators of extracellular communicationduring cancer progression. J. Cell Sci., 2010; 123: 1603-1611
Google Scholar - 38. Nilsson J., Skog J., Nordstrand A., Baranov V., Mincheva-NilssonL., Breakefield X.O., Widmark A.: Prostate cancer-derived urineexosomes: a novel approach to biomarkers for prostate cancer. Br.J. Cancer, 2009; 100: 1603-1607
Google Scholar - 39. Pap E.: The role of microvesicles in malignancies. W: Cell Fusionin Health and Disease, Red.: Dittmar T., Zänker K.S.: Adv. Exp.Med., 2011; 950: 183-199
Google Scholar - 40. Peche H., Heslan M., Usal C., Amigorena S., Cuturi M.C.: Presentationof donor major histocompatibility complex antigensby bone marrow dendritic cell-derived exosomes modulates allograftrejection. Transplantation, 2003; 76: 1503-1510
Google Scholar - 41. Poutsiaka D.D., Schroder E.W., Taylor D.D.: Membrane vesiclesshed by murine melanoma cells selectively inhibit the expressionof Ia antigen by macrophages. J. Immunol., 1985; 134: 138-144
Google Scholar - 42. Raimondo F., Morosi L., Chinello C., Magni F., Pitto M.: Advancesin membranous vesicle and exosome proteomics improvingbiological understanding and biomarker discovery. Proteomics,2011; 11: 709-720
Google Scholar - 43. Ratajczak J., Wysoczynski M., Hayek F., Janowska-WieczorekA., Ratajczak M.Z.: Membrane-derived microvesicles: importantand underappreciated mediators of cell-to-cell communication.Leukemia, 2006; 20: 1487-1495
Google Scholar - 44. Robertson C., Booth S.A., Beniac D.R., Coulthart M.B., BoothT.F., McNicol A.: Cellular prion protein is released on exosomesfrom activated platelets. Blood, 2006; 107: 3907-3911
Google Scholar - 45. Rozmyslowicz T., Majka M., Kijowski J., Gaulton G., RatajczakM.Z.: A new role of platelet – and megakaryocyte-derived microparticles(MP) in HIV infection. Blood, 2001; 98: 786a
Google Scholar - 46. Safaei R., Larson B.J., Cheng T.C., Gibson M.A., Otani S., NaerdemannW., Howell S.B.: Abnormal lysosomal trafficking and enhancedexosomal export of cisplatin in drug-resistant human ovariancarcinoma cells. Mol. Cancer Ther., 2005; 4: 1595-604
Google Scholar - 47. Shedden K., Xie X.T., Chandaroy P., Chang Y.T., Rosania G.R.:Expulsion of small molecules in vesicles shed by cancer cells: associationwith gene expression and chemosensitivity profiles. CancerRes., 2003; 63: 4331-4337
Google Scholar - 48. Shen B., Wu N., Yang J.M., Gould S.J.: Protein targeting to exosomes/microvesiclesby plasma membrane anchors. J. Biol. Chem.,2011; 286: 14383-14395
Google Scholar - 49. Silverman J.M., Clos J., Horakova E., Wang A.Y., Wiesgigl M.,Kelly I., Lynn M.A., McMaster W.R., Foster L.J., Levings M.K., ReinerN.E.: Leishmania exosomes modulate innate and adaptive immuneresponses through effects on monocytes and dendritic cells. J. Immunol.,2010; 185: 5011-5022
Google Scholar - 50. Simons M., Raposo G.: Exosomes – vesicular carriers for intercellularcommunication. Curr. Opin. Cell Biol., 2009; 21: 575-581
Google Scholar - 51. Singh P.P., Smith V.L., Karakousis P.C., Schorey J.S.: Exosomesisolated from mycobacteria-infected mice or cultured macrophages can recruit and activate immune cells in vitro and in vivo.J. Immunol., 2012; 189: 777-785
Google Scholar - 52. Skog J., Würdinger T., van Rijn S., Meijer D.H., Gainche L., SenaEstevesM., Curry W.T. Jr., Carter B.S., Krichevsky A.M., BreakefieldX.O.: Glioblastoma microvesicles transport RNA and proteins thatpromote tumour growth and provide diagnostic biomarkers. Nat.Cell Biol., 2008; 10: 1470-1476
Google Scholar - 53. Smalley D.M., Ley K.: Plasma-derived microparticles for biomarkerdiscovery. Clin. Lab., 2008; 54: 67-79
Google Scholar - 54. Szajnik M., Czystowska M., Szczepański M.J., Mandapathil M.,Whiteside T.L.: Tumor-derived microvesicles induce, expand andup-regulate biological activities of human regulatory T cells (Treg).PLoS One, 2010; 5: e11469
Google Scholar - 55. Tan A., De La Peña H., Seifalian A.M.: The application of exosomesas a nanoscale cancer vaccine. Int. J. Nanomedicine, 2010;5: 889-900
Google Scholar - 56. Théry C., Boussac M., Véron P., Ricciardi-Castagnoli P., RaposoG., Garin J., Amigorena S.: Proteomic analysis of dendritic cell-derivedexosomes: a secreted subcellular compartment distinct fromapoptotic vesicles. J. Immunol., 2001; 166: 7309-7318
Google Scholar - 57. Théry C., Zitvogel L., Amigorena S.: Exosomes: composition,biogenesis and function. Nat. Rev. Immunol., 2002; 2: 569-579
Google Scholar - 58. Trajkovic K., Hsu C., Chiantia S., Rajendran L., Wenzel D.,Wieland F., Schwille P., Brügger B., Simons M.: Ceramide triggersbudding of exosome vesicles into multivesicular endosomes. Science,2008; 319: 1244-1247
Google Scholar - 59. Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J.J., LötvallJ.O.: Exosome-mediated transfer of mRNAs and microRNAs isa novel mechanism of genetic exchange between cells. Nat. CellBiol., 2007; 9: 654-659
Google Scholar - 60. Valenti R., Huber V., Iero M., Filipazzi P., Parmiani G., RivoltiniL.: Tumor-released microvesicles as vehicles of immunosuppression.Cancer Res., 2007; 67: 2912-2915
Google Scholar - 61. van Doormaal F.F., Kleinjan A., Di Nisio M., Büller H.R., NieuwlandR.: Cell-derived microvesicles and cancer. Neth. J. Med.,2009; 67: 266-273
Google Scholar - 62. VanWijk M.J., VanBavel E., Sturk A., Nieuwland R.: Microparticlesin cardiovascular diseases. Cardiovasc. Res., 2003; 59: 277-287
Google Scholar - 63. Vidal M., Sainte-Marie J., Philippot J.R., Bienvenue A.: Asymmetricdistribution of phospholipids in the membrane of vesiclesreleased during in vitro maturation of guinea pig reticulocytes:evidence precluding a role for “aminophospholipid translocase”.J. Cell. Physiol., 1989; 140: 455-462
Google Scholar - 64. Welton J.L., Khanna S., Giles P.J., Brennan P., Brewis I.A.,Staffurth J., Mason M.D., Clayton A.: Proteomics analysis of bladdercancer exosomes. Mol. Cell. Proteomics, 2010; 9: 1324-1338
Google Scholar - 65. Wolf P.: The nature and significance of platelet products inhuman plasma. Br. J. Haematol., 1967; 13: 269-288
Google Scholar - 66. Wubbolts R., Leckie R.S., Veenhuizen P.T., Schwarzmann G.,Möbius W., Hoernschemeyer J., Slot J.W., Geuze H.J., Stoorvogel W.:Proteomic and biochemical analyses of human B cell derived exosomes.Potential implications for their function and multivesicularbody formation. J. Biol. Chem., 2003; 278: 10963-10972
Google Scholar - 67. Wysoczynski M., Ratajczak M.Z.: Lung cancer secreted microvesicles:underappreciated modulators of microenvironmentin expanding tumors. Int. J. Cancer, 2009; 125: 1595-1603
Google Scholar - 68. Zwaal R.F., Comfurius P., Bevers E.M.: Scott syndrome, a bleedingdisorder caused by defective scrambling of membrane phospholipids.Biochim. Biophys. Acta, 2004; 1636: 119-128
Google Scholar