CNC proteins in physiology and pathology
Agnieszka Gęgotek 1 , Elżbieta Skrzydlewska 1Abstract
CNC proteins consist of Bach1, Bach2 and 4 homologous transcription factors: Nrf1, Nrf2, Nrf3 and p45NF-E2. Transcription factors belonging to this group of proteins play a crucial role in protection of cells against oxidative stress. Under physiological conditions, they remain in the cytoplasm in the inactive form or are degraded. However, in oxidative stress conditions, they are translocated to the nucleus, and bind to DNA in the ARE sequence. Consequently, there is transcription of genes encoding cytoprotective proteins, such as phase II enzymes, or low molecular weight antioxidant proteins (i.e., thioredoxin, ferritin, metallothionein) responsible for protecting cells from reactive oxygen species (ROS) action. The activity of transcriptional proteins depends directly on the redox state of the cell. ROS as second messenger signals, control inhibitors of cytoplasmic CNC proteins or potentiate the activity of kinases (MAPK, PKC, PI3K, PERK), leading to phosphorylation of transcription factors. This is conducive to translocation of these molecules into the nucleus and to formation of complexes that initiate the gene expression. Disorders of regulation of the activity of transcription factors belonging to the CNC proteins caused by gene mutations, epigenetic modifications or increased activity of p62, p21, or k-Ras, B-Raf and c-Myc oncogenes, induce changes in the level of ARE-dependent gene expression, which can lead even to the development of carcinogenesis. On the other hand, Nrf transcription factors, inducing the expression of antioxidants and enzymes responsible for the detoxification of xenobiotics, can be considered as a potential target of the action of chemopreventive factors in anticancer therapy.
References
- 1. Adam J., Hatipoglu E., O’Flaherty L., Ternette N., Sahgal N., LockstoneH., Baban D., Nye E., Stamp G.W., Wolhuter K., Stevens M.,Fischer R., Carmeliet P., Maxwell P.H., Pugh C.W. et. al: Renal cystformation in Fh1-deficient mice is independent of the Hif/Phd pathway:roles for fumarate in KEAP1 succination and Nrf2 signaling.Cancer Cell, 2011; 20: 524-537
Google Scholar - 2. Amrolia P.J., Ramamurthy L., Saluja D., Tanese N., Jane S.M., CunninghamJ.M.: The activation domain of the enhancer binding proteinp45NF-E2 interacts with TAFII130 and mediates long-range activationof the α- and β-globin gene loci in an erythroid cell line.Proc. Natl. Acad. Sci. USA, 1997; 94: 10051-10056
Google Scholar - 3. Becks L., Prince M., Burson H., Christophe C., Broadway M., ItohK., Yamamoto M., Mathis M., Orchard E., Shi R., McLarty J., PruittK., Zhang S., Kleiner-Hancock H.E.: Aggressive mammary carcinomaprogression in Nrf2 knockout mice treated with 7,12-dimethylbenz[a]anthracene.BMC Cancer, 2010; 10: 1-17
Google Scholar - 4. Chan J.Y., Han X.L., Kan Y.W.: Cloning of Nrf1, an NF-E2-relatedtranscription factor, by genetic selection in yeast. Proc. Natl. Acad.Sci. USA, 1993; 90: 11371-11375
Google Scholar - 5. Chan J.Y., Kwong M., Lo M., Emerson R., Kuypers F.A.: Reducedoxidative-stress response in red blood cells from p45NFE2-deficientmice. Blood, 2001; 97: 2151-2158
Google Scholar - 6. Chang J., Ma J.Z., Zeng Q., Cechova S., Gantz A., Nievergelt C.,O’Connor D., Lipkowitz M., Le T.H.: Loss of GSTM1, a NRF2 target, isassociated with accelerated progression of hypertensive kidney diseasein the African American Study of Kidney Disease (AASK). Am.J. Physiol. Renal Physiol., 2013; 304: F348-F355
Google Scholar - 7. Chen H., Li J., Li H., Hu Y., Tevebaugh W., Yamamoto M., Que J.,Chen X.: Transcript profiling identifies dynamic gene expressionpatterns and an important role for Nrf2/Keap1 pathway in the developingmouse esophagus. PLoS One, 2012; 7: e36504
Google Scholar - 8. Chen W., Sun Z., Wang X.J., Jiang T., Huang Z., Fang D., ZhangD.D.: Direct interaction between Nrf2 and p21Cip1/WAF1 upregulatesthe Nrf2-mediated antioxidant response. Mol. Cell, 2009; 34: 663-673
Google Scholar - 9. Chen X.L., Kunsch C.: Induction of cytoprotective genes throughNrf2/antioxidant response element pathway: a new therapeuticapproach for the treatment of inflammatory diseases. Curr. Pharm.Des., 2004; 10: 879-891
Google Scholar - 10. Cheng X., Chapple S.J., Patel B., Puszyk W., Sugden D., Yin X.,Mayr M., Siow R.C., Mann G.E.: Gestational diabetes impairs Nrf2–mediated adaptive antioxidant defenses and redox signaling in fetalendothelial cells in utero. Diabetes, 2013; 62: 4088-4097
Google Scholar - 11. Chevillard G., Paquet M., Blank V.: Nfe2l3 (Nrf3) deficiency predisposesmice to T-cell lymphoblastic lymphoma. Blood, 2011; 117:2005-2008
Google Scholar - 12. Cullinan S.B., Zhang D., Hannink M., Arvisais E., Kaufman R.J.,Diehl J.A.: Nrf2 is a direct PERK substrate and effector of PERK-dependentcell survival. Mol. Cell. Biol., 2003; 23: 7198-7209
Google Scholar - 13. DeNicola G.M., Karreth F.A., Humpton T.J., Gopinathan A., WeiC., Frese K., Mangal D., Yu K.H., Yeo C.J., Calhoun E.S., Scrimieri F.,Winter J.M., Hruban R.H., Iacobuzio-Donahue C., Kern S.E. i wsp.:Oncogene-induced Nrf2 transcription promotes ROS detoxificationand tumorigenesis. Nature, 2011; 475: 106-109
Google Scholar - 14. Dhakshinamoorthy S., Jain A.K., Bloom D.A., Jaiswal A.K.: Bach1competes with Nrf2 leading to negative regulation of the antioxidantresponse element (ARE)-mediated NAD (P) H: quinone oxidoreductase 1 gene expression and induction in response to antioxidants.J. Biol. Chem., 2005; 280: 16891-16900
Google Scholar - 15. Dinkova-Kostova A.T., Holtzclaw W.D., Cole R.N., Itoh K., WakabayashiN., Katoh Y., Yamamoto M., Talalay P.: Direct evidence thatsulfhydryl groups of Keap1 are the sensors regulating induction ofphase 2 enzymes that protect against carcinogens and oxidants.Proc. Natl. Acad. Sci. USA, 2002; 99: 11908-11913
Google Scholar - 16. Han W., Ming M., Zhao R., Pi J., Wu C., He Y.Y.: Nrf1 CNC-bZIPprotein promotes cell survival and nucleotide excision repair throughmaintaining glutathione homeostasis. J. Biol. Chem., 2012; 287:18788-18795
Google Scholar - 17. Hanada N., Takahata T., Zhou Q., Ye X., Sun R., Itoh J., IshiguroA., Kijima H., Mimura J., Itoh K., Fukuda S., Saijo Y.: Methylation ofthe KEAP1 gene promoter region in human colorectal cancer. BMCCancer, 2012; 12: 1-11
Google Scholar - 18. Hashimoto H., Vertino P.M., Cheng X.: Molecular coupling of DNAmethylation and histone methylation. Epigenomics, 2010; 2: 657-669
Google Scholar - 19. Herzog M., Wendling O., Guillou F., Chambon P., Mark M., LossonR., Cammas F.: TIF1β association with HP1 is essential for post–gastrulation development, but not for Sertoli cell functions duringspermatogenesis. Dev. Biol., 2011; 350: 548-558
Google Scholar - 20. Hintze K.J., Wald K.A., Zeng H., Jeffery E.H., Finley J.W.: Thioredoxinreductase in human hepatoma cells is transcriptionally regulatedby sulforaphane and other electrophiles via an antioxidantresponse element. J. Nutr., 2003; 133: 2721-2727
Google Scholar - 21. Hirotsu Y., Hataya N., Katsuoka F., Yamamoto M.: NF-E2-relatedfactor 1 (Nrf1) serves as a novel regulator of hepatic lipid metabolismthrough regulation of the Lipin1 and PGC-1β genes. Molec. Cell.Biol., 2012; 32: 2760-2770
Google Scholar - 22. Hong F., Sekhar K.R., Freeman M.L., Liebler D.C.: Specific patternsof electrophile adduction trigger Keap1 ubiquitination andNrf2 activation. J. Biol. Chem., 2005; 280: 31768-31775
Google Scholar - 23. Hosoya T., Clifford M., Losson R., Tanabe O., Engel J.D.: TRIM28is essential for erythroblast differentiation in the mouse. Blood,2013; 122: 3798-3807
Google Scholar - 24. Huang H.C., Nguyen T., Pickett C.B.: Phosphorylation of Nrf2at Ser-40 by protein kinase C regulates antioxidant response element-mediatedtranscription. J. Biol. Chem., 2002; 277: 42769-42774
Google Scholar - 25. Hubbs A.F., Benkovic S.A., Miller D.B., O’Callaghan J.P., BattelliL., Schwegler-Berry D., Ma Q.: Vacuolar leukoencephalopathy with widespread astrogliosis in mice lacking transcription factor Nrf2.Am. J. Path., 2007; 170: 2068-2076
Google Scholar - 26. Inoue D., Suzuki T., Mitsuishi Y., Miki Y., Suzuki S., Sugawara, S.,Watanabe M., Sakurada A., Endo C., Uruno A., Sasano H., NakagawaT., Satoh K., Tanaka N., Kubo H. i wsp.: Accumulation of p62/SQSTM1is associated with poor prognosis in patients with lung adenocarcinoma.Cancer Sci., 2012; 103: 760-766
Google Scholar - 27. Itoh K., Wakabayashi N., Katoh Y., Ishii T., Igarashi K., Engel J.D.,Yamamoto M.: Keap1 represses nuclear activation of antioxidant responsiveelements by Nrf2 through binding to the amino-terminalNeh2 domain. Genes Dev., 1999; 13: 76-86
Google Scholar - 28. Iyengar S., Farnham P.J.: KAP1 protein: an enigmatic master regulatorof the genome. J. Biol. Chem., 2011; 286: 26267-26276
Google Scholar - 29. Jain A.K., Bloom D.A., Jaiswal A.K.: Nuclear import and exportsignals in control of Nrf2. J. Biol. Chem., 2005; 280: 29158-29168
Google Scholar - 30. Jain A.K., Jaiswal A.K.: Phosphorylation of tyrosine 568 controlsnuclear export of Nrf2. J. Biol. Chem., 2006; 281: 12132-12142
Google Scholar - 31. Jain A.K., Lamark T., Sjøttem E., Larsen K.B., Awuh J.A., ØvervatnA., McMahon M., Hayes J.D., Johansen T.: p62/SQSTM1 is a targetgene for transcription factor NRF2 and creates a positive feedbackloop by inducing antioxidant response element-driven gene transcription.J. Biol. Chem., 2010; 285: 22576-22591
Google Scholar - 32. Jeyapaul J., Jaiswal A.K.: Nrf2 and c-Jun regulation of antioxidantresponse element (ARE)-mediated expression and inductionof γ-glutamylcysteine synthetase heavy subunit gene. Biochem.Pharmacol., 2000; 59: 1433-1439
Google Scholar - 33. Johnsen Ø., Murphy P., Prydz H., Kolstø A.B.: Interaction of theCNC-bZIP factor TCF11/LCR-F1/Nrf1 with MafG: binding-site selectionand regulation of transcription. Nucleic Acids Res., 1998; 26: 512-520
Google Scholar - 34. Kansanen E., Jyrkkänen H.K., Levonen A.L.: Activation of stresssignaling pathways by electrophilic oxidized and nitrated lipids.Free Radic. Biol. Med., 2012; 52: 973-982
Google Scholar - 35. Kanzaki H., Shinohara F., Kajiya M., Kodama T.: The Keap1/Nrf2protein axis plays a role in osteoclast differentiation by regulatingintracellular reactive oxygen species signaling. J. Biol. Chem., 2013;288: 23009-23020
Google Scholar - 36. Kashif M., Hellwig A., Kolleker A., Shahzad K., Wang H., Lang S.,Wolter J., Thati M., Vinnikov I., Bierhaus A., Nawroth P.P., Isermann,B.: p45NF-E2 represses Gcm1 in trophoblast cells to regulate syncytiumformation, placental vascularization and embryonic growth.Development, 2011; 138: 2235-2247
Google Scholar - 37. Kaspar J.W., Jaiswal A.K.: Antioxidant-induced phosphorylationof tyrosine 486 leads to rapid nuclear export of Bach1 that allowsNrf2 to bind to the antioxidant response element and activate defensivegene expression. J. Biol. Chem., 2010; 285: 153-162
Google Scholar - 38. Kawai Y., Garduño L., Theodore M., Yang J., Arinze I.J.: Acetylation-deacetylationof the transcription factor Nrf2 (nuclear factorerythroid 2-related factor 2) regulates its transcriptional activity andnucleocytoplasmic localization. J. Biol. Chem., 2011; 286: 7629-7640
Google Scholar - 39. Kensler T.W., Wakabayashi N., Biswal S.: Cell survival responsesto environmental stresses via the Keap1-Nrf2-ARE pathway. Annu.Rev. Pharmacol. Toxicol., 2007; 47: 89-116
Google Scholar - 40. Kim J.E., You D.J., Lee C., Ahn C., Seong J.Y., Hwang J.I.: Suppressionof NF-κB signaling by KEAP1 regulation of IKKβ activity throughautophagic degradation and inhibition of phosphorylation. Cell.Signal., 2010; 22: 1645-1654
Google Scholar - 41. Kim J.H., Xu E.Y., Sacks D.B., Lee J., Shu L., Xia B., Kong A.N.:Identification and functional studies of a new Nrf2 partner IQGAP1:a critical role in the stability and transactivation of Nrf2. Antioxid.Redox Signal., 2013; 19: 89-101
Google Scholar - 42. Kim K.C., Kang K.A., Zhang R., Piao M.J., Kim G.Y., Kang M.Y., LeeS.J., Lee N.H., Surh Y.J., Hyun J.W.: Up-regulation of Nrf2-mediatedheme oxygenase-1 expression by eckol, a phlorotannin compound,through activation of Erk and PI3K/Akt. Int. J. Biochem. Cell Biol.,2010; 42: 297-305
Google Scholar - 43. Kim Y.R., Oh J.E., Kim M.S., Kang M.R., Park S.W., Han J.Y., EomH.S., Yoo N.J., Lee S.H.: Oncogenic NRF2 mutations in squamous cellcarcinomas of oesophagus and skin. J. Pathol., 2010; 220: 446-451
Google Scholar - 44. Kimura M., Yamamoto T., Zhang J., Itoh K., Kyo M., Kamiya T.,Aburatani H., Katsuoka F., Kurokawa H., Tanaka T., Motohashi H.,Yamamoto M.: Molecular basis distinguishing the DNA binding profileof Nrf2-Maf heterodimer from that of Maf homodimer. J. Biol.Chem., 2007; 282: 33681-33690
Google Scholar - 45. Klaunig J.E., Kamendulis L.M., Hocevar B.A.: Oxidative stress andoxidative damage in carcinogenesis. Toxicol. Pathol., 2010; 38: 96-109
Google Scholar - 46. Kobayashi A., Ito E., Toki T., Kogame K., Takahashi S., IgarashiK., Hayashi N., Yamamoto M.: Molecular cloning and functional characterizationof a new Cap’n’ collar family transcription factor Nrf3.J. Biol. Chem., 1999; 274: 6443-6452
Google Scholar - 47. Kobayashi M., Itoh K., Suzuki T., Osanai H., Nishikawa K., KatohY., Takagi Y., Yamamoto M.: Identification of the interactive interfaceand phylogenic conservation of the Nrf2-Keap1 system. GenesCells., 2002; 7: 807-820
Google Scholar - 48. Konstantinopoulos P.A., Spentzos D., Fountzilas E., FrancoeurN., Sanisetty S., Grammatikos A.P., Hecht J.L., Cannistra S.A.: Keap1mutations and Nrf2 pathway activation in epithelial ovarian cancer.Cancer Res., 2011; 71: 5081-5089
Google Scholar - 49. Landschulz W.H., Johnson P.F., McKnight S.L.: The leucine zipper:a hypothetical structure common to a new class of DNA bindingproteins. Science, 1988; 240: 1759-1764
Google Scholar - 50. Lau A., Wang X.J., Zhao F., Villeneuve N.F., Wu T., Jiang T., Sun Z.,White E., Zhang D.D.: A noncanonical mechanism of Nrf2 activationby autophagy deficiency: direct interaction between Keap1 and p62.Mol. Cell. Biol., 2010; 30: 3275-3285
Google Scholar - 51. Lau W.K., Chan S.C., Law A.C., Ip M.S., Mak J.C.: The role of MAPKand Nrf2 pathways in ketanserin-elicited attenuation of cigarettesmoke-induced IL-8 production in human bronchial epithelial cells.Toxicol. Sci., 2012; 125: 569-577
Google Scholar - 52. Lee S., Hur E.G., Ryoo I.G., Jung K.A., Kwak J., Kwak M.K.: Involvementof the Nrf2-proteasome pathway in the endoplasmic reticulumstress response in pancreatic β-cells. Toxicol. Appl. Pharmacol.,2012; 264: 431-438
Google Scholar - 53. Leinonen H.M., Ruotsalainen A.K., Määttä A.M., Laitinen H.M.,Kuosmanen S.M., Kansanen E., Pikkarainen J.T., Lappalainen J.P.,Samaranayake H., Lesch H.P., Kaikkonen M.U., Ylä-Herttuala S., LevonenA.L.: Oxidative stress-regulated lentiviral TK/GCV gene therapyfor lung cancer treatment. Cancer Res., 2012; 72: 6227-6235
Google Scholar - 54. Leung L., Kwong M., Hou S., Lee C., Chan J.Y.: Deficiency of theNrf1 and Nrf2 transcription factors results in early embryonic lethalityand severe oxidative stress. J. Biol. Chem., 2003; 278: 48021-48029
Google Scholar - 55. Levy S., Jaiswal A.K., Forman H.J.: The role of c-Jun phosphorylationin EpRE activation of phase II genes. Free Radic. Biol. Med.,2009; 47: 1172-1179
Google Scholar - 56. Lewerenz J., Albrecht P., Tien M.L.T., Henke N., KarumbayaramS., Kornblum H.I., Wiedau-Pazos M., Schubert D., Maher P., MethnerA.: Induction of Nrf2 and xCT are involved in the action of theneuroprotective antibiotic ceftriaxone in vitro. J. Neurochem., 2009;111: 332-343
Google Scholar - 57. Li W., Khor T.O., Xu C., Shen G., Jeong W.S., Yu S., Kong A.N.: Activationof Nrf2-antioxidant signaling attenuates NFκB-inflammatoryresponse and elicits apoptosis. Biochem. Pharmacol., 2008; 76: 1485-1489
Google Scholar - 58. Lo S.C., Li X., Henzl M.T., Beamer L.J., Hannink M.: Structure ofthe Keap1: Nrf2 interface provides mechanistic insight into Nrf2signaling. EMBO J., 2006; 25: 3605-3617
Google Scholar - 59. Martin D., Rojo A.I., Salinas M., Diaz R., Gallardo G., Alam J., DeGalarreta C.M., Cuadrado A.: Regulation of heme oxygenase-1 expressionthrough the phosphatidylinositol 3-kinase/Akt pathway andthe Nrf2 transcription factor in response to the antioxidant phytochemicalcarnosol. J. Biol. Chem., 2004; 279: 8919-8929
Google Scholar - 60. Martín-Montalvo A., Villalba J.M., Navas P., De Cabo R.: NRF2,cancer and calorie restriction. Oncogene, 2011; 30: 505-520
Google Scholar - 61. Maruyama A., Nishikawa K., Kawatani Y., Mimura J., HosoyaT., Harada N., Yamamato M., Itoh K.: The novel Nrf2-interactingfactor KAP1 regulates susceptibility to oxidative stress by promotingthe Nrf2-mediated cytoprotective response. Biochem. J., 2011;436: 387-397
Google Scholar - 62. Meixner A., Karreth F., Kenner L., Penninger J.M., Wagner E.F.:Jun and JunD-dependent functions in cell proliferation and stressresponse. Cell Death Differ., 2010; 17: 1409-1419
Google Scholar - 63. Moi P., Chan K., Asunis I., Cao A., Kan Y.W.: Isolation of NF-E2–related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptionalactivator that binds to the tandem NF-E2/AP1 repeat of thebeta-globin locus control region. Proc. Natl. Acad. Sci. USA, 1994;91: 9926-9930
Google Scholar - 64. Muscarella L.A., Barbano R., D’Angelo V., Copetti M., Coco M.,Balsamo T., La Torre A., Notarangelo A., Troiano M., Parisi S., IcolaroN., Catapano D., Valori V.M., Pellegrini F., Merla G. i wsp.: Regulationof KEAP1 expression by promoter methylation in malignant gliomasand association with patient’s outcome. Epigenetics, 2011; 6: 317-325
Google Scholar - 65. Nioi P., Nguyen T.: A mutation of Keap1 found in breast cancerimpairs its ability to repress Nrf2 activity. Biochem. Biophys. Res.Commun., 2007; 362: 816-821
Google Scholar - 66. Niture S.K., Jain A.K., Jaiswal A.K.: Antioxidant-induced modificationof INrf2 cysteine 151 and PKC-δ-mediated phosphorylationof Nrf2 serine 40 are both required for stabilization and nucleartranslocation of Nrf2 and increased drug resistance. J. Cell. Sci.,2009; 122: 4452-4464
Google Scholar - 67. Niture S.K., Jain A.K., Shelton P.M., Jaiswal A.K.: Src subfamilykinases regulate nuclear export and degradation of transcriptionfactor Nrf2 to switch off Nrf2-mediated antioxidant activation of cytoprotectivegene expression. J. Biol. Chem., 2011; 286: 28821-28832
Google Scholar - 68. Niture S.K., Jaiswal A.K.: Prothymosin-α mediates nuclear importof the INrf2/Cul3· Rbx1 complex to degrade nuclear Nrf2. J. Biol.Chem., 2009; 284: 13856-13868
Google Scholar - 69. Niture S.K., Jaiswal A.K.: Nrf2 protein up-regulates antiapoptoticprotein Bcl-2 and prevents cellular apoptosis. J. Biol. Chem.,2012; 287: 9873-9886
Google Scholar - 70. Ohira M., Seki N., Nagase T., Ishikawa K., Nomura N., Ohara O.:Characterization of a human homolog (BACH1) of the mouse Bach1gene encoding a BTB-basic leucine zipper transcription factor andits mapping to chromosome 21q22. 1. Genomics, 1998; 47: 300-306
Google Scholar - 71. Ohta T., Iijima K., Miyamoto M., Nakahara I., Tanaka H., OhtsujiM., Suzuki T., Kobayashi A., Yokota J., Sakiyama T., Shibata T.,Yamamoto M., Hirohashi, S.: Loss of Keap1 function activates Nrf2and provides advantages for lung cancer cell growth. Cancer Res.,2008; 68: 1303-1309
Google Scholar - 72. Ohtsuji M., Katsuoka F., Kobayashi A., Aburatani H., Hayes J.D.,Yamamoto M.: Nrf1 and Nrf2 play distinct roles in activation of antioxidantresponse element-dependent genes. J. Biol. Chem., 2008;283: 33554-33562
Google Scholar - 73. Ono Y., Wang Y., Suzuki H., Okamoto S., Ikeda Y., Murata M.,Poncz M., Matsubara Y.: Induction of functional platelets from mouseand human fibroblasts by p45NF-E2/Maf. Blood, 2012; 120: 3812-3821
Google Scholar - 74. Palma M., Lopez L., García M., de Roja N., Ruiz T., García J., RosellE., Vela C., Rueda P., Rodriguez M.J.: Detection of collagen triple helixrepeat containing-1 and nuclear factor (erythroid-derived 2)-like 3in colorectal cancer. BMC Clin. Pathol., 2012; 12: 1-12
Google Scholar - 75. Paonessa J.D., Ding Y., Randall K.L., Munday R., Argoti D., Vouros P.,Zhang Y.: Identification of an unintended consequence of Nrf2-directedcytoprotection against a key tobacco carcinogen plus a counteractingchemopreventive intervention. Cancer Res., 2011; 71: 3904-3911
Google Scholar - 76. Pepe A.E., Xiao Q., Zampetaki A., Zhang Z., Kobayashi A., Hu Y.,Xu Q.: Crucial role of Nrf3 in smooth muscle cell differentiation fromstem cells. Circ. Res., 2010; 106: 870-879
Google Scholar - 77. Pietsch E.C., Chan J.Y., Torti F.M., Torti S.V.: Nrf2 mediates theinduction of ferritin H in response to xenobiotics and cancer chemopreventivedithiolethiones. J. Biol. Chem., 2003; 278: 2361-2369
Google Scholar - 78. Rada P., Rojo A.I., Evrard-Todeschi N., Innamorato N.G., CotteA., Jaworski T., Tobón-Velasco J.C., Devijver H., García-Mayoral M.F.,Van Leuven F., Hayes J.D., Bertho G., Cuadrado A.: Structural andfunctional characterization of Nrf2 degradation by the glycogensynthase kinase 3/β-TrCP axis. Mol. Cell. Biol., 2012; 32: 3486-3499
Google Scholar - 79. Ren D., Villeneuve N.F., Jiang T., Wu T., Lau A., Toppin H.A., ZhangD.D.: Brusatol enhances the efficacy of chemotherapy by inhibitingthe Nrf2-mediated defense mechanism. Proc. Natl. Acad. Sci. USA,2011; 108: 1433-1438
Google Scholar - 80. Requena J.R., Fu M.X., Ahmed M.U., Jenkins A.J., Lyons T.J., ThorpeS.R.: Lipoxidation products as biomarkers of oxidative damage toproteins during lipid peroxidation reactions. Nephrol. Dial. Transplant.,1996; 11, Suppl. 5: 48-53
Google Scholar - 81. Ryan R.F., Schultz D.C., Ayyanathan K., Singh P.B., FriedmanJ.R., Fredericks W.J., Rauscher F.J.III: KAP-1 corepressor protein interactsand colocalizes with heterochromatic and euchromatic HP1proteins: a potential role for Krüppel-associated box–zinc fingerproteins in heterochromatin-mediated gene silencing. Mol. Cell.Biol., 1999; 19: 4366-4378
Google Scholar - 82. Shao D., Liu Y., Liu X., Zhu L., Cui Y., Cui A., Qiao A., Kong X., LiuY., Chen Q., Gupta N., Fang F., Chang Y.: PGC-1β-Regulated mitochondrialbiogenesis and function in myotubes is mediated by NRF-1 andERRα. Mitochondrion, 2010; 10: 516-527
Google Scholar - 83. Shibata T., Ohta T., Tong K.I., Kokubu A., Odogawa R., Tsuta K.,Asamura H., Yamamoto M., Hirohashi S.: Cancer related mutationsin NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promotemalignancy. Proc. Natl. Acad. Sci. USA, 2008; 105: 13568-13573
Google Scholar - 84. Sun Z., Chin Y.E., Zhang D.D.: Acetylation of Nrf2 by p300/CBPaugments promoter-specific DNA binding of Nrf2 during the antioxidantresponse. Mol. Cell. Biol., 2009; 29: 2658-2672
Google Scholar - 85. Suzuki H., Tashiro S., Sun J., Doi H., Satomi S., Igarashi K.: Cadmiuminduces nuclear export of Bach1, a transcriptional repressorof heme oxygenase-1 gene. J. Biol. Chem., 2003; 278: 49246-49253
Google Scholar - 86. Suzuki M., Betsuyaku T., Ito Y., Nagai K., Nasuhara Y., Kaga K.,Kondo S., Nishimura M.: Down-regulated NF-E2-related factor 2 inpulmonary macrophages of aged smokers and patients with chronicobstructive pulmonary disease. Am. J. Respir. Cell. Mol. Biol.,2008; 39: 673-682
Google Scholar - 87. Taguchi K., Motohashi H., Yamamoto M.: Molecular mechanismsof the Keap1-Nrf2 pathway in stress response and cancer evolution.Genes Cells, 2011; 16: 123-140
Google Scholar - 88. Tiranti V., Rossi E., Rocchi M., DiDonato S., Zuffardi O., ZevianiM.: The gene (NFE2L1) for human NRF-1, an activator involvedin nuclear-mitochondrial interactions, maps to 7q32. Genomics,1995; 27: 555-557
Google Scholar - 89. Tong K.I., Kobayashi A., Katsuoka F., Yamamoto M.: Two-sitesubstrate recognition model for the Keap1-Nrf2 system: a hinge andlatch mechanism. Biol. Chem., 2006; 387: 1311-1320
Google Scholar - 90. Um H.C., Jang J.H., Kim D.H., Lee C., Surh Y.J.: Nitric oxide activatesNrf2 through S-nitrosylation of Keap1 in PC12 cells. NitricOxide, 2011; 25: 161-168
Google Scholar - 91. Ungvari Z., Bailey-Downs L., Gautam T., Sosnowska D., Wang M.,Monticone R.E., Telljohann R., Pinto J.T., de Cabo R., Sonntag W.E., Lakatta E.G., Csiszar A.: Age-associated vascular oxidative stress,Nrf2 dysfunction, and NF-κB activation in the nonhuman primateMacaca mulatta. J. Gerontol. A, 2011; 66: 866-875
Google Scholar - 92. Velichkova M., Hasson T.: Keap1 regulates the oxidation-sensitiveshuttling of Nrf2 into and out of the nucleus via a Crm1-dependentnuclear export mechanism. Mol. Cell. Biol., 2005; 25: 4501-4513
Google Scholar - 93. Venugopal R., Jaiswal A.K.: Nrf1 and Nrf2 positively and c-Fosand Fra1 negatively regulate the human antioxidant response element-mediatedexpression of NAD(P)H: quinone oxidoreductase1gene. Proc. Natl. Acad. Sci. USA, 1996; 93: 14960-14965
Google Scholar - 94. Venugopal R., Jaiswal A.K.: Nrf2 and Nrf1 in association with Junproteins regulate antioxidant response element-mediated expressionand coordinated induction of genes encoding detoxifying enzymes.Oncogene, 1998; 17: 3145-3156
Google Scholar - 95. Vieira S.A., Deininger M.W., Sorour A., Sinclair P., Foron, L.,Goldman J.M., Melo J.V.: Transcription factor BACH2 is transcriptionallyregulated by the BCR/ABL oncogene. Genes ChromosomesCancer, 2001; 32: 353-363
Google Scholar - 96. Wakabayashi N., Shin S., Slocum S.L., Agoston E.S., WakabayashiJ., Kwak M.K., Misra V., Biswal S., Yamamoto M., Kensler T.W.:Regulation of notch1 signaling by nrf2: implications for tissue regeneration.Sci. Signal., 2010; 3: 1-22
Google Scholar - 97. Wang L., Chen Y., Sternberg P., Cai J.: Essential roles of the PI3kinase/Akt pathway in regulating Nrf2-dependent antioxidant functionsin the RPE. Invest. Ophthalmol. Vis. Sci., 2008; 49: 1671-1678
Google Scholar - 98. Wang R., An J., Ji F., Jiao H., Sun H., Zhou D.: Hypermethylationof the Keap1 gene in human lung cancer cell lines and lung cancertissues. Biochem. Biophys. Res. Commun., 2008; 373: 151-154
Google Scholar - 99. Wang W., Chan J.Y.: Nrf1 is targeted to the endoplasmic reticulummembrane by an N-terminal transmembrane domain Inhibitionof nuclear translocation and transacting function. J. Biol. Chem.,2006; 281: 19676-19687
Google Scholar - 100. Wang X.J., Sun Z., Chen W., Li Y., Villeneuve N.F., Zhang D.D.:Activation of Nrf2 by arsenite and monomethylarsonous acid is independentof Keap1-C151: enhanced Keap1-Cul3 interaction. Toxicol.Appl. Pharmacol., 2008; 230: 383-389
Google Scholar - 101. Yang H., Magilnick N., Lee C., Kalmaz D., Ou X., Chan J.Y., LuS.C.: Nrf1 and Nrf2 regulate rat glutamate-cysteine ligase catalyticsubunit transcription indirectly via NF-κB and AP-1. Mol. Cell. Biol.,2005; 25: 5933-5946
Google Scholar - 102. Yu R., Chen C., Mo Y.Y., Hebbar V., Owuor E.D., Tan T.H., KongA.N.: Activation of mitogen-activated protein kinase pathways inducesantioxidant response element-mediated gene expression viaa Nrf2-dependent mechanism. J. Biol. Chem., 2000; 275: 39907-39913
Google Scholar - 103. Yu S., Khor T.O., Cheung K.L., Li W., Wu T. Y., Huang Y., FosterB.A., Kan Y.W., Kong, A.N.: Nrf2 expression is regulated by epigeneticmechanisms in prostate cancer of TRAMP mice. PLoS One,2010; 5: e8579
Google Scholar - 104. Yu X., Kensler T.: Nrf2 as a target for cancer chemoprevention.Mutat. Res./Fundam. Molec. Mech. Mutagen., 2005; 591: 93-102
Google Scholar - 105. Zhang P., Singh A., Yegnasubramanian S., Esopi D., KombairajuP., Bodas M., Wu H., Bova S.G., Biswal S.: Loss of Kelch-like ECH-associatedprotein 1 function in prostate cancer cells causes chemoresistanceand radioresistance and promotes tumor growth. Mol.Cancer Ther., 2010; 9: 336-346
Google Scholar - 106. Zhang Y., Crouch D.H., Yamamoto M., Hayes J.D.: Negative regulationof the Nrf1 transcription factor by its N-terminal domainis independent of Keap1: Nrf1, but not Nrf2, is targeted to the endoplasmicreticulum. Biochem. J., 2006; 399: 373-385
Google Scholar - 107. Zhang Y., Lucocq J.M., Yamamoto M., Hayes J.D.: The NHB1(N-terminal homology box 1) sequence in transcription factor Nrf1is required to anchor it to the endoplasmic reticulum and also toenable its asparagine-glycosylation. Biochem. J., 2007; 408: 161-172
Google Scholar - 108. Zhang Y., Sano M., Shinmura K., Tamaki K., Katsumata Y., MatsuhashiT., Morizane S., Ito H., Hishiki T., Endo J., Zhou H., Yuasa S.,Kaneda R., Suematsu M., Fukuda K.: 4-Hydroxy-2-nonenal protectsagainst cardiac ischemia-reperfusion injury via the Nrf2-dependentpathway. J. Mol. Cell. Cardiol., 2010; 49: 576-586
Google Scholar - 109. Zhu H., Jia Z., Zhang L., Yamamoto M., Misra H.P., Trush M.A.,Li Y.: Antioxidants and phase 2 enzymes in macrophages: regulationby Nrf2 signaling and protection against oxidative and electrophilicstress. Exp. Biol. Med., 2008; 233: 463-474
Google Scholar