COMMENTARY ON THE LAW
Cooperation between heat shock proteins in organizing of proteins spatial structure
Zbigniew Wyżewski 1 , Karolina P. Gregorczyk 1 , Lidia Szulc-Dąbrowska 2 , Justyna Struzik 1 , Joanna Szczepanowska 3 , Marek Niemiałtowski 11. Zakład Immunologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
2. akład Immunologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
3. Pracownia Bioenergetyki i Błon Biologicznych, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN w Warszawie
Published: 2014-06-09
DOI: 10.5604/17322693.1108406
GICID: 01.3001.0003.1253
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 793-807
Abstract
Heat shock proteins (Hsps) are a class of proteins with highly conserved amino acid sequences. They are widespread in nature; they are found in archeons, true bacteria and eukaryotic organisms. Hsps from various families, commonly interact to execute essential cellular tasks, such as molecular regulation of newly synthesized protein-folding or restoration of the appropriate conformation of denatured and aggregated proteins. In this review we discuss mechanisms of spatial organization of protein structure mediated by Hsp10, Hsp40, Hsp60, Hsp70, Hsp104 (Hsp100) and Hsp110. Interactions between Hsps of different molecular weights are described.
References
- 1. Ahmad A., Bhattacharya A., McDonald R.A., Cordes M., EllingtonB., Bertelsen E.B., Zuiderweg E.R.: Heat shock protein 70 kDa chaperone/DnaJcochaperone complex employs an unusual dynamicinterface. Proc. Natl. Acad. Sci. USA, 2011; 108: 18966-18971 2 Barends T.R., Werbeck N.D., Reinstein J.: Disaggregases in 4 dimensions.Curr. Opin. Struct. Biol., 2010; 20: 46-53
Google Scholar - 2. and enable Hsp70-dependent protein disaggregation. J. Biol.Chem., 2014; 289: 848-867
Google Scholar - 3. Bertelsen E.B., Chang L., Gestwicki J.E., Zuiderweg E.R.: Solutionconformation of wild-type E. coli Hsp70 (DnaK) chaperone complexedwith ADP and substrate. Proc. Natl. Acad. Sci. USA, 2009; 106: 8471-8476
Google Scholar - 4. Borges J.C., Seraphim T.V., Mokry D.Z., Almeida F.C., Cyr D.M.,Ramos C.H.: Identification of regions involved in substrate bindingand dimer stabilization within the central domains of yeast Hsp40Sis1. PLoS One, 2012; 7: 1-15
Google Scholar - 5. Bosl B., Grimminger V., Walter S.: The molecular chaperoneHsp104 – a molecular machine for protein disaggregation. J. Struct.Biol., 2006; 156: 139-148
Google Scholar - 6. Bukau B., Weissman J., Horwich A.: Molecular chaperones andprotein quality control. Cell, 2006; 125: 443-451
Google Scholar - 7. Cappello F., Conway de Macario E., Marino Gammazza A., BonaventuraG., Carini F., Czarnecka A.M., Farina F., Zummo G., MacarioA.J.: Hsp60 and human aging: Les liaisons dangereuses. Front.Biosci., 2013; 18: 626-637
Google Scholar - 8. Chen G., Bradford W.D., Seidel C.W., Li R.: Hsp90 stress potentiatesrapid cellular adaptation through induction of aneuploidy. Nature,2012; 482: 246-250
Google Scholar - 9. Chen L., Feany M.B.: Alpha-synuclein phosphorylation controlneurotoxicity and inclusion formation in a Drosophila model of Parkinsondisease. Nat. Neurosci., 2005; 8: 657-663 10 Conway K.A., Lee S.J, Rochet J.C., Ding T.T., Williamson R.E.,Lansbury P.T.Jr.: Acceleration of oligomerization, not fibrillization,is a shared property of both α-synuclein mutations linked to earlyonsetParkinson’s disease: Implications for pathogenesis and therapy.Proc. Natl. Acad. Sci. USA, 2000; 97: 571-576
Google Scholar - 10. (Hsp10) in immune-related diseases: one coin, two sides. Int.J. Biochem. Mol. Biol., 2011; 2: 47-57
Google Scholar - 11. DeSantis M.E., Shorter J.: The elusive middle domain of Hsp104and ClpB: Location and function. Biochim. Biophys. Acta, 2012; 1823:29-39
Google Scholar - 12. DeSantis M.E., Sweeny E.A., Snead D., Leung E.H., Go M.S., GuptaK., Wendler P., Shorter J.: Conserved distal loop residues in theHsp104 and ClpB middle domain contact nucleotide-binding domain
Google Scholar - 13. Dobson C.M.: Protein folding and misfolding. Nature, 2003; 426:884-890
Google Scholar - 14. Doyle S.M., Wickner S.: Hsp104 and ClpB: protein disaggregatingmachines. Trends Biochem. Sci., 2009; 34: 40-48
Google Scholar - 15. Dragovic Z., Broadley S.A., Shomura Y., Bracher A., Hartl F.U.:Molecular chaperones of the Hsp110 family act as nucleotide exchangefactors of Hsp70s. EMBO J., 2006; 25: 2519-2528
Google Scholar - 16. Easton D.P., Kaneko Y., Subjeck J.R.: The Hsp110 and Grp170stress proteins: newly recognized relatives of the Hsp70s. Cell StressChaperones, 2000; 5: 276-290
Google Scholar - 17. Erzberger J.P., Berger J.M.: Evolutionary relationships and structuralmechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol.Struct., 2006; 35: 93-114
Google Scholar - 18. Garnier C., Lafitte D., Tsvetkov P.O., Barbier P., Leclerc-Devin J.,Millot J.M., Briand C., Makarov A.A., Catelli M.G., Peyrot V.: Bindingof ATP to heat shock protein 90: evidence for an ATP-binding sitein the C-terminal domain. J. Biol. Chem., 2002; 277: 12208-12214
Google Scholar - 19. Glover J.R., Lindquist S.: Hsp104, Hsp70, and Hsp40: a novel chaperonesystem that rescues previously aggregated proteins. Cell, 1998; 94: 73-82
Google Scholar - 20. Grimminger-Marquardt V., Lashuel H.A.: Structure and functionof the molecular chaperone Hsp104 from yeast. Biopolymers,2010; 93: 252-276
Google Scholar - 21. Gupta R.S.: Evolution of the chaperonin families (Hsp60, Hsp10and Tcp-1) of proteins and the origin of eukaryotic cells. Mol. Microbiol.,1995; 15: 1-11
Google Scholar - 22. Han W., Christen P.: Mechanism of the targeting action of DnaJin the DnaK molecular chaperone system. J. Biol. Chem., 2003; 278:19038-19043
Google Scholar - 23. Hanson P.I., Whiteheart S.W.: AAA+ proteins: have engine, willwork. Nat. Rev. Mol. Cell Biol., 2005; 6: 519-529
Google Scholar - 24. Hartl F.U., Bracher A., Hayer-Hartl M.: Molecular chaperones inprotein folding and proteostasis. Nature, 2011; 475: 324-332
Google Scholar - 25. Hartl F.U., Hayer-Hartl M.: Converging concepts of protein foldingin vitro and in vivo. Nat. Struct. Mol. Biol., 2009; 16: 574-581
Google Scholar - 26. Haslbeck M., Franzmann T., Weinfurtner D., Buchner J.: Somelike it hot: the structure and function of small heat-shock proteins.Nat. Struct. Mol. Biol., 2005; 12: 842-846
Google Scholar - 27. Hennessy F., Nicoll W.S., Zimmermann R., Cheetham M.E., BlatchG.L.: Not all J domains are created equal: implications for the specificityof Hsp40-Hsp70 interactions. Protein Sci., 2005; 14: 1697-1709
Google Scholar - 28. Hernandez M.P., Sullivan W.P., Toft D.O.: The assembly and intermolecularproperties of the hsp70-Hop-hsp90 molecular chaperonecomplex. J. Biol. Chem., 2002; 277: 38294-38304
Google Scholar - 29. Hong S.W., Vierling E.: Mutants of Arabidopsis thaliana defectivein the acquisition of tolerance to high temperature stress. Proc.Natl. Acad. Sci. USA, 2000; 97: 4392-4397
Google Scholar - 30. Horwich A.L., Farr G.W., Fenton W.A.: GroEL-GroES-mediatedprotein folding. Chem. Rev., 2006; 106: 1917-1930
Google Scholar - 31. Itoh H., Komatsuda A., Ohtani H., Wakui H., Imai H., Sawada K.,Otaka M., Ogura M., Suzuki A., Hamada F.: Mammalian HSP60 is quicklysorted into the mitochondria under conditions of dehydration.Eur. J. Biochem., 2002; 269: 5931-5938
Google Scholar - 32. Jia H., Halilou A.I., Hu L., Cai W., Liu J., Huang B.: Heat shock protein
Google Scholar - 33. Jiang J., Maes E.G., Taylor A.B., Wang L., Hinck A.P., Lafer E.M.,Sousa R.: Structural basis of J cochaperone binding and regulationof Hsp70. Mol. Cell., 2007; 28: 422-433
Google Scholar - 34. Jo S., Kalló I., Bardóczi Z., Arrojo e Drigo R., Zeöld A., Liposits Z.,Oliva A., Lemmon V.P., Bixby J.L., Gereben B., Bianco A.C.: Neuronalhypoxia induces Hsp40-mediated nuclear import of type 3 deiodinaseas an adaptive mechanism to reduce cellular metabolism. J.Neurosci., 2012; 32: 8491-8500
Google Scholar - 35. Kabani M., Beckerich J., Brodsky J.L.: The yeast Sls1p and Fes1pproteins define a new family of Hsp70 nucleotide exchange factors.Curr. Genom., 2003; 4: 263-273
Google Scholar - 36. Kampinga H.H., Craig E.A.: The HSP70 chaperone machinery: Jproteins as drivers of functional specficity. Nat. Rev. Mol. Cell Biol.,2010; 11: 579-592
Google Scholar - 37. Kaneko Y., Nishiyama H., Nonoguchi K., Higashitsuji H., KishishitaM., Fujita J.: A novel hsp110-related gene, apg-1, that is abundantlyexpressed in the testis responds to a low temperature heatshock rather than the traditional elevated temperatures. J. Biol.Chem., 1997; 272: 2640-2645
Google Scholar - 38. Kayed R., Head E., Thompson J.L., McIntire T.M., Milton S.C., CotmanC.W., Glabe C.G.: Common structure of soluble amyloid oligomers impliescommon mechanism of pathogenesis. Science, 2003; 300: 486-489
Google Scholar - 39. Kityk R., Kopp J., Sinning I., Mayer M.P.: Structure and dynamicsof the ATP bound open conformation of Hsp70 chaperones.Mol. Cell, 2012; 48: 863-874
Google Scholar - 40. Kregel K.C.: Heat shock proteins: modifying factors in physiologicalstress responses and acquired thermotolerance. J. Appl. Physiol.,2002; 92: 2177-2186
Google Scholar - 41. Landry S.J., Taher A., Georgopoulos C., Van der Vies S.M.: Interplayof structure and disorder in cochaperonin mobile loops. Proc.Natl. Acad. Sci. USA, 1996; 93: 11622-11627
Google Scholar - 42. Lee J., Kim J.H., Biter A.B., Sielaff B., Lee S., Tsai F.T.: Heat shockprotein (Hsp)70 is an activator of the Hsp104 motor. Proc. Natl. Acad.Sci. USA, 2013, 110: 8513-8518
Google Scholar - 43. Levy-Rimler G., Bell R.E., Ben-Tal N., Azem A.: Type I chaperonins:not all are created equal. FEBS Lett., 2002; 529: 1-5
Google Scholar - 44. Li J., Buchner J.: Structure, function and regulation of the hsp90machinery. Biomed. J., 2013; 36: 106-117
Google Scholar - 45. Lo Bianco C., Shorter J., Régulier E., Lashuel H., Iwatsubo T., LindquistS., Aebischer P.: Hsp104 antagonizes α-synuclein aggregationand reduces dopaminergic degeneration in a rat model of Parkinsondisease. J. Clin. Invest., 2008; 118: 3087-3097
Google Scholar - 46. Makhnevych T., Houry W.A.: The control of spindle length by Hsp70and Hsp110 molecular chaperones. FEBS Lett., 2013; 587: 1067-1072
Google Scholar - 47. Malinovska L., Kroschwald S., Munder M.C., Richter D., Alberti S.:Molecular chaperones and stress-inducible protein-sorting factorscoordinate the spatiotemporal distribution of protein aggregates.Mol. Biol. Cell, 2012; 23: 3041-3056
Google Scholar - 48. Mayer M.P., Bukau B.: Hsp70 chaperones: cellular functions andmolecular mechanism. Cell. Mol. Life Sci., 2005; 62: 670–684
Google Scholar - 49. McLaughlin K., Carr V.B., Iqbal M., Seago J., Lefevre E.A., RobinsonL., Prentice H., Charleston B.: Hsp110-mediated enhancementof CD4+ T cell responses to the envelope glycoprotein of membersof the family Flaviviridaein vitro does not occur in vivo. Clin. VaccineImmunol., 2011; 18: 311-317
Google Scholar - 50. Misselwitz B., Staeck O., Rapoport T.A.: J proteins catalyticallyactivate Hsp70 molecules to trap a wide range of peptide sequences.Mol. Cell, 1998; 2: 593-603
Google Scholar - 51. Moore D.J., West A.B., Dawson, V.L., Dawson T.M.: Molecularpathophysiology of Parkinson’s disease. Annu. Rev. Neurosci., 2005;28: 57-87
Google Scholar - 52. Moro F., Fernandez V., Muga A.: Interdomain interaction throughhelices A and B of DnaK peptide binding domain. FEBS Lett.,2003; 533: 119-123
Google Scholar - 53. Mosser D.D., Ho S., Glover, J.R.: Saccharomyces cerevisiae Hsp104enhances the chaperone capacity of human cells and inhibits heat stress-induced proapoptotic signaling. Biochemistry, 2004; 43: 8107-8115
Google Scholar - 54. Nelson R., Eisenberg D.: Structural models of amyloid-like fibrils.Adv. Protein Chem., 2006; 73: 235-282
Google Scholar - 55. Nelson R., Sawaya M.R., Balbirnie M., Madsen A.Ø., Riekel C.,Grothe R., Eisenberg D.: Structure of the cross-β spine of amyloid–like fibrils. Nature, 2005; 435: 773-778
Google Scholar - 56. Nielsen K.L., Cowan N.J.: A single ring is sufficient for productivechaperonin mediated folding in vivo. Mol. Cell, 1998; 2: 93-99
Google Scholar - 57. Ogura T., Whiteheart S.W., Wilkinson A.J.: Conserved arginineresidues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunitinteractions in AAA and AAA+ ATPases. J. Struct. Biol.,2004; 146: 106-112
Google Scholar - 58. Okui M., Ito F., Ogita K., Kuramoto N., Kudoh J., Shimizu N., IdeT.: Expression of APG-2 protein, a member of the heat shock protein 110 family, in developing rat brain. Neurochem. Int., 2000; 36: 35-43
Google Scholar - 59. Parnas A., Nisemblat S., Weiss C., Levy-Rimler G., Pri-Or A., ZorT., Lund P.A., Bross P, Azem A.: Identification of elements that dictatethe specificity of mitochondrial Hsp60 for its co-chaperonin.PLoS One, 2012; 7: 1-14
Google Scholar - 60. Parsell D.A., Kowal A.S., Singer M.A., Lindquist S.: Protein disaggregationmediated by heat-shock protein Hsp104. Nature, 1994;372: 475-478
Google Scholar - 61. Pearl L.H., Prodromou C.: Structure and in vivo function ofHsp90. Curr. Opin. Struct. Biol., 2000; 10: 46-51
Google Scholar - 62. Polier S., Hartl F.U., Bracher A.: Interaction of the Hsp110 molecularchaperones from S. cerevisiae with substrate protein. J. Mol.Biol., 2010; 401: 696-707
Google Scholar - 63. Prodromou C., Panaretou B., Chohan S., Siligardi G., O’Brien R.,Ladbury J.E., Roe S.M., Piper P.W., Pearl L.H.: The ATPase cycle ofHsp90 drives a molecular ‘clamp’ via transient dimerization of theN-terminal domains. EMBO J., 2000; 19: 4383-4392
Google Scholar - 64. Qiu X.B., Shao Y.M., Miao S., Wang L.: The diversity of the DNAJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell. Mol.Life Sci., 2006; 63: 2560-2570
Google Scholar - 65. Queitsch C., Hong S.W., Vierling E., Lindquist S.: Heat shockprotein 101 plays a crucial role in thermotolerance in Arabidopsis.Plant Cell, 2000; 12: 479-492
Google Scholar - 66. Ranford J.C., Coates A.R., Henderson B.: The chaperonins arecell-signalling proteins: the unfolding biology of molecular chaperonins.Expert Rev. Mol. Med., 2000; 2: 1-17
Google Scholar - 67. Rutherford S.L.: Between genotype and phenotype: protein chaperonesand evolvability. Nat. Rev. Genet., 2003; 4: 263-274
Google Scholar - 68. Saibil H.R., Ranson N.A.: The chaperonin folding machine.Trends Biochem. Sci., 2002; 27: 627-632
Google Scholar - 69. Sawaya M.R., Sambashivan S., Nelson R., Ivanova M.I., SieversS.A., Apostol M.I., Thompson M.J., Balbirnie M., Wiltzius J.J., McFarlaneH.T., Madsen A.Ø., Riekel C., Eisenberg D.: Atomic structuresof amyloid cross-beta spines reveal varied steric zippers. Nature,2007; 447: 453-457
Google Scholar - 70. Scheibel T., Siegmund H.I., Jaenicke R., Ganz P., Lilie H., BuchnerJ.: The charged region of Hsp90 modulates the functionof the N-terminal domain. Proc. Natl. Acad. Sci. USA, 1999; 96:1297-1302
Google Scholar - 71. Scheibel T., Weikl T., Buchner J.: Two chaperone sites in Hsp90differing in substrate specificity and ATP dependence. Proc. Natl.Acad. Sci. USA, 1998; 95: 1495-1499
Google Scholar - 72. Schlecht R., Erbse A.H., Bukau B., Mayer M.P.: Mechanics of Hsp70chaperones enables differential interaction with client proteins. Nat.Struct. Mol. Biol., 2011; 18: 345-351
Google Scholar - 73. Schumacher R.J., Hansen W.J., Freeman B.C., Alnemri E., LitwackG., Toft D.O.: Cooperative action of Hsp70, Hsp90, and DnaJ proteinsin protein renaturation. Biochemistry, 1996; 35: 14889-14898
Google Scholar - 74. Sekhar A., Lam H.N., Cavagnero S.: Protein folding rates andthermodynamic stability are key determinants for interaction withthe Hsp70 chaperone system. Protein Sci., 2012; 21: 1489-1502
Google Scholar - 75. Shaner L., Morano K.A.: All in the family: atypical Hsp70 chaperonesare conserved modulators of Hsp70 activity. Cell Stress Chaperones,2007; 12: 1-8
Google Scholar - 76. Sharma D., Stanley R.F., Masison D.C.: Curing of yeast [URE3]prion by the Hsp40 cochaperone Ydj1p is mediated by Hsp70. Genetics,2009; 181: 129-137
Google Scholar - 77. Sharon R., Bar-Joseph I., Frosch M.P., Walsh D.M., Hamilton J.A.,Selkoe D.J.: The formation of highly soluble oligomers of alphasynucleinis regulated by fatty acids and enhanced in Parkinson’sdisease. Neuron, 2003; 37: 583-595
Google Scholar - 78. Shomura Y., Dragovic Z., Chang H.C., Tzvetkov N., Young J.C.,Brodsky J.L., Guerriero V., Hartl F.U., Bracher A.: Regulation of Hsp70function by HspBP1: Structural analysis reveals an alternate mechanismfor Hsp70 nucleotide exchange. Mol. Cell, 2005; 17: 367-379
Google Scholar - 79. Shorter J.: Hsp104: a weapon to combat diverse neurodegenerativedisorders. Neurosignals, 2008; 16: 63-74
Google Scholar - 80. Shorter J.: The mammalian disaggregase machinery: Hsp110synergizes with Hsp70 and Hsp40 to catalyze protein disaggregationand reactivation in a cell-free system. PLoS One, 2011; 6: 1-12
Google Scholar - 81. Shorter J., Lindquist S.: Prions as adaptive conduits of memoryand inheritance. Nat. Rev. Genet., 2005; 6: 435-450
Google Scholar - 82. Silflow C.D., Sun X., Haas N.A., Foley J.W., Lefebvre P.A.: TheHsp70 and Hsp40 chaperones influence microtubule stability inChlamydomonas. Genetics, 2011; 189: 1249-1260
Google Scholar - 83. Sousa R., Jiang J., Lafer E.M., Hinck A.P., Wang L., Taylor A.B.,Maes E.G.: Evaluation of competing J domain Hsp70 complex modelsin light of existing mutational and NMR data. Proc. Natl. Acad.Sci. USA, 2012; 109: E734
Google Scholar - 84. Tessarz P., Mogk A., Bukau B.: Substrate threading through the centralpore of the Hsp104 chaperone as a common mechanism for proteindisaggregation and prion propagation. Mol. Microbiol., 2008; 68: 87-97
Google Scholar - 85. Thompson A.D., Bernard S.M., Skiniotis G., and Gestwicki J.E.:Visualization and functional analysis of the oligomeric states ofEscherichia coli heat shock protein 70 (Hsp70/DnaK). Cell Stress Chaperones,2012; 17: 313-327
Google Scholar - 86. Tkach J.M., Glover J.R.: Amino acid substitutions in the C-terminalAAA+ module of Hsp104 prevent substrate recognition by disruptingoligomerization and cause high temperature inactivation.J. Biol. Chem., 2004; 279: 35692-35701
Google Scholar - 87. Turturici G., Sconzo G., Geraci F.: Hsp70 and its molecular role innervous system diseases. Biochem. Res. Int., 2011; 2011: 1-18
Google Scholar - 88. Wall D., Żylicz M., Georgopoulos C.: The NH2-terminal 108 aminoacids of the Escherichia coli DnaJ protein stimulate the ATPase activityof DnaK and are sufficient for lambda replication. J. Biol. Chem.,1994; 269: 5446-5451
Google Scholar - 89. Walsh P., Bursać D., Law Y.C., Cyr D., Lithgow T.: The J-proteinfamily: modulating protein assembly, disassembly and translocation.EMBO Rep., 2004; 5: 567-571
Google Scholar - 90. Waters E.R., Aevermann B.D., Sanders-Reed Z.: Comparativeanalysis of the small heat shock proteins in three angiosperm genomesidentifies new subfamilies and reveals diverse evolutionarypatterns. Cell Stress Chaperones., 2008; 13: 127-142
Google Scholar - 91. Wendler P., ShorterJ., PlissonC., CashikarA.G., LindquistS., SaibilH.R.: Atypical AAA+ subunit packing creates an expanded cavity fordisaggregation by the protein-remodeling factor Hsp104. Cell, 2007;131: 1366-1377
Google Scholar - 92. Wittung-Stafshede P., Guidry J., Horne B.E., Landry S.J.: TheJ-domain of Hsp40 couples ATP hydrolysis to substrate capture inHsp70. Biochemistry, 2003; 42: 4937-4944
Google Scholar - 93. Wu X., Zhang Y., Yin Y., Yuan Z., Yu H., Wu Z., Wu G.: Roles ofheat-shock protein 70 in protecting against intestinal mucosal damage.Front. Biosci., 2013; 18: 356-365
Google Scholar - 94. Xu Z., Rye H.S., Burston S.G., Fenton W.A., Beechem J.M. SiglerP.B., Horwich A.L.: Distinct actions of cis and trans ATP within thedouble ring of the chaperonin GroEL. Nature, 1997; 388: 792-798
Google Scholar - 95. Xue J.H., Fukuyama H., Nonoguchi K., Kaneko Y., Kido T., FukumotoM., Fujibayashi Y., Itoh K., Fujita J.: Induction of Apg-1,a member of the heat shock protein 110 family, following transientforebrain ischemia in the rat brain. Biochem. Biophys. Res.Commun., 1998; 247: 796-801
Google Scholar - 96. Yam A.Y., Albanese V., Lin H.T., Frydman J.: HSP110 cooperateswith different cytosolic HSP70 systems in a pathway for de novofolding. J. Biol. Chem., 2005; 280: 41252-41261
Google Scholar - 97. Yamagishi N., Ishihara K., Hatayama T.: Hsp105α suppressesHsc70 chaperone activity by inhibiting Hsc70 ATPase activity. J. Biol.Chem., 2004; 279: 41727-41733
Google Scholar - 98. Yamagishi N., Ishihara K., Saito Y., Hatayama T.: Hsp105 butnot Hsp70 family proteins suppress the aggregation of heat-denaturedprotein in the presence of ADP. FEBS Lett., 2003; 555: 390-396
Google Scholar - 99. Yan J., Garza A.G., Bradley M.D., Welch R.D.: A Clp/Hsp100 chaperonefunctions in Myxococcus xanthus sporulation and self-organization.J. Bacteriol., 2012; 194: 1689-1696
Google Scholar - 100. Yan X., Hu S., Guan Y.X., Yao S.J.: Coexpression of chaperoninGroEL/GroES markedly enhanced soluble and functional expressionof recombinant human interferon-gamma in Escherichia coli. Appl.Microbiol. Biotechnol., 2012; 93: 1065-1074
Google Scholar - 101. Yoneyama M., Iwamoto N., Nagashima R., Sugiyama C., KawadaK., Kuramoto N., Shuto M., Ogita K.: Altered expression of heatshock protein 110 family members in mouse hippocampal neuronsfollowing trimethyltin treatment in vivo and in vitro. Neuropharmacology,2008; 55: 693-703
Google Scholar - 102. Young J.C, Obermann W.M, Hartl F.U.: Specific binding of tetratricopeptiderepeat proteins to the C-terminal 12-kDa domain ofHsp90. J. Biol. Chem., 1998; 273: 18007-18010
Google Scholar - 103. Zhao R., Davey M., Hsu Y.C., Kaplanek P., Tong A., Parsons A.B.,Krogan N., Cagney G., Mai D., Greenblatt J., Boone C., Emili A., HouryW.A.: Navigating the chaperone network: An integrative map ofphysical and genetic interactions mediated by the Hsp90 chaperone.Cell, 2005; 120: 715-727
Google Scholar - 104. Żylicz M., King F.W., Wawrzynow A.: Hsp70 interactions withthe p53 tumour suppressor protein. EMBO J., 2001; 20: 4634-4638
Google Scholar - 105. Żylicz M., Wawrzynow A.: Insights into the function of Hsp70chaperones. IUBMB Life, 2001; 51: 283-287
Google Scholar