Cyclic guanosine monophosphate in the regulation of the cell function

COMMENTARY ON THE LAW

Cyclic guanosine monophosphate in the regulation of the cell function

Małgorzata Zbrojkiewicz 1 , Leszek Śliwiński 2

1. Katedra i Zakład Podstawowych Nauk Biomedycznych, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej, Śląski Uniwersytet Medyczny w Katowicach
2. Katedra i Zakład Farmakologii, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej, Śląski Uniwersytet Medyczny w Katowicach

Published: 2016-12-27
DOI: 10.5604/17322693.1227350
GICID: 01.3001.0009.6905
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 1276-1285

 

Abstract

Intracellular concentration of cGMP depends on the activity of guanylate cyclase, responsible for its synthesis, on the activity of cyclic nucleotide degrading enzymes – phosphodiesterases (PDEs). There are two forms of guanylate cyclase: the membrane-bound cyclase and the soluble form. The physiological activators of the membrane guanylate cyclase are natriuretic peptides (NPs), and of the cytosolic guanylate cyclase – nitric oxide (NO) and carbon monoxide (CO). Intracellular cGMP signaling pathways arise from its direct effect on the activity of G protein kinases, phosphodiesterases and cyclic nucleotide dependent cation channels. It has been shown in recent years that cGMP can also affect other signal pathways in cell signaling activity involving Wnt proteins and sex hormones. The increased interest in the research on the role of cGMP, resulted also in the discovery of its role in the regulation of phototransduction in the eye, neurotransmission, calcium homeostasis, platelet aggregation, heartbeat, bone remodeling, lipid metabolism and the activity of the cation channels. Better understanding of the mechanisms of action of cGMP in the regulation of cell function can create new opportunities for the cGMP affecting drugs use in the pharmacotherapy.

References

  • 1. Andric S.A., Janjic M.M., Stojkov N.J., Kostic T.S.: Testosterone–induced modulation of nitric oxide-cGMP signaling pathway andandrogenesis in the rat Leydig cells. Biol. Reprod., 2010; 83: 434-442
    Google Scholar
  • 2. Armani A., Marzolla V., Rosano G.M., Fabbri A., Caprio M.: Phosphodiesterasetype 5 (PDE5) in the adipocyte: a novel player in fatmetabolism?. Trends Endocrinol. Metab., 2011; 22: 404-411
    Google Scholar
  • 3. Bender A.T., Beavo J.A.: Cyclic nucleotide phosphodiesterases:molecular regulation to clinical use. Pharmacol. Rev., 2006; 58: 488-520
    Google Scholar
  • 4. Broillet M.C., Firestein S.: Cyclic nucleotide-gated channels. Molecularmechanisms of activation. Ann. NY Acad. Sci., 1999; 868:730-740
    Google Scholar
  • 5. Budworth J., Meillerais S., Charles I., Powell K.: Tissue distributionof the human soluble guanylate cyclases. Biochem. Biophys.Res. Commun., 1999; 263: 696-701
    Google Scholar
  • 6. Cai Y.L., Sun Q., Huang X., Jiang J.Z., Zhang M.H., Piao L.H., Jin Z.,Xu W.X.: cGMP-PDE3-cAMP signal pathway involved in the inhibitoryeffect of CNP on gastric motility in rat. Regul. Pept., 2013; 180: 43-49
    Google Scholar
  • 7. Chrisman T.D., Garbers D.L., Parks M.A., Hardman J.G.: Characterizationof particulate and soluble guanylate cyclases from rat lung.J. Biol. Chem., 1975; 250: 374-381
    Google Scholar
  • 8. Chusho H., Tamura N., Ogawa Y., Yasoda A., Suda M., MiyazawaT., Nakamura K., Nakao K., Kurihara T., Komatsu Y., Itoh H., TanakaK., Saito Y., Katsuki M., Nakao K.: Dwarfism and early death in micelacking C-type natriuretic peptide. Proc. Natl. Acad. Sci. USA, 2001;98: 4016-4021
    Google Scholar
  • 9. Colombo G., Colombo M.D., Schiavon Lde L., d’Acampora A.J.:Phosphodiesterase 5 as target for adipose tissue disorders. NitricOxide, 2013; 35: 186-192
    Google Scholar
  • 10. Coquil J.F., Franks D.J., Wells J.N., Dupuis M., Hamet P.: Characteristicsof a new binding protein distinct from the kinase forguanosine 3’:5’-monophosphate in rat platelets. Biochim. Biophys.Acta, 1980; 631: 148-165
    Google Scholar
  • 11. Corbin J.D., Francis S.H.: Cyclic GMP phosphodiesterase-5: targetof sildenafil. J. Biol. Chem., 1999; 274: 13729-13732
    Google Scholar
  • 12. Derbyshire E.R., Marletta M.A.: Biochemistry of soluble guanylatecyclase. Handb. Exp. Pharmacol., 2009; 191: 17-31
    Google Scholar
  • 13. Dessì-Fulgheri P., Sarzani R., Rappelli A.: Role of the natriureticpeptide system in lipogenesis/lipolysis. Nutr. Metab. Cardiovasc. Dis.,2003; 13: 244-249
    Google Scholar
  • 14. Fleming I., Busse R.: NO: the primary EDRF. J. Mol. Cell. Cardiol.,1999; 31: 5-14
    Google Scholar
  • 15. Förstermann U., Boissel J.P., Kleinert H.: Expressional control ofthe ‘constitutive’ isoforms of nitric oxide synthase (NOS I and NOSIII). FASEB J., 1998; 12: 773-790
    Google Scholar
  • 16. Francis S.H., Blount M.A., Corbin J.D.: Mammalian cyclic nucleotidephosphodiesterases: molecular mechanisms and physiologicalfunctions. Physiol. Rev., 2011; 91: 651-690
    Google Scholar
  • 17. Francis S.H., Busch J.L, Corbin J.F., Sibley D.: cGMP-dependentprotein kinases and cGMP phosphodiesterases in nitric oxide andcGMP action. Pharmacol. Rev., 2010; 62: 525-563
    Google Scholar
  • 18. Han S.J., Vaccari S., Nedachi T., Andersen C.B., Kovacina K.S.,Roth R.A., Conti M.: Protein kinase B/Akt phosphorylation of PDE3Aand its role in mammalian oocyte maturation. EMBO J., 2006; 25:5716-5725
    Google Scholar
  • 19. Heydarpour P., Salehi-Sadaghiani M., Javadi-Paydar M., RahimianR., Fakhfouri G., Khosravi M., Khoshkish S., Gharedaghi M.H.,Ghasemi M., Dehpour A.R.: Estradiol reduces depressive-like behaviorthrough inhibiting nitric oxide/cyclic GMP pathway in ovariectomizedmice. Horm. Behav., 2013; 63: 361-369
    Google Scholar
  • 20. Hofmann F., Bernhard D., Lukowski R., Weinmeister P.: cGMPregulated protein kinases (cGK). Handb. Exp. Pharmacol., 2009; 191:137-162
    Google Scholar
  • 21. Hofmann F., Wegener J.W.: cGMP-dependent protein kinases(cGK). Methods Mol. Biol., 2013; 1020: 17-50
    Google Scholar
  • 22. Hunter R.W., Mackintosh C., Hers I.: Protein kinase C-mediatedphosphorylation and activation of PDE3A regulate cAMP levels inhuman platelets. J. Biol. Chem., 2009; 284: 12339-12348
    Google Scholar
  • 23. Jerczyńska H., Pawłowska Z.: Peptydy natriuretyczne – ich receptoryi rola w układzie krążenia. Postępy Biochem., 2008; 54: 35-42
    Google Scholar
  • 24. Johnson M.L., Rajamannan N.: Diseases of Wnt signaling. Rev.Endocr. Metab. Disord., 2006; 7: 41-49
    Google Scholar
  • 25. Kaupp U.B., Seifert R.: Cyclic nucleotide-gated ion channels.Physiol. Rev., 2002; 82: 769-824
    Google Scholar
  • 26. Kimura H., Murad F.: Evidence for two different forms of guanylatecyclase in rat heart. J. Biol. Chem., 1974; 249: 6910-6916
    Google Scholar
  • 27. Koesling D., Böhme E., Schultz G.: Guanylyl cyclases, a growingfamily of signal-transducing enzymes. FASEB J., 1991; 5: 2785-2791
    Google Scholar
  • 28. Komiya Y., Habas R.: Wnt signal transduction pathways. Organogenesis,2008; 4: 68-75
    Google Scholar
  • 29. Koziński K., Dobrzyń A.: Szlak sygnałowy Wnt i jego rola w regulacjimetabolizmu komórki. Postępy Hig. Med. Dośw., 2013; 67:1098-1108
    Google Scholar
  • 30. Kuhn M.: Structure, regulation, and function of mammalianmembrane guanylyl cyclase receptors, with a focus on guanylylcyclase-A. Circ. Res., 2003; 93: 700-709
    Google Scholar
  • 31. Kulkarni S.K., Dhir A.: Possible involvement of L-arginine-nitricoxide (NO)-cyclic guanosine monophosphate (cGMP) signalingpathway in the antidepressant activity of berberine chloride. Eur.J. Pharmacol., 2007; 569: 77-83
    Google Scholar
  • 32. Levy F.O.: Cardiac PDEs and crosstalk between cAMP and cGMPsignalling pathways in the regulation of contractility. NaunynSchmiedebergs Arch. Pharmacol., 2013; 386: 665-670
    Google Scholar
  • 33. Logan C.Y., Nusse R.: The Wnt signaling pathway in developmentand disease. Annu. Rev. Cell Dev. Biol., 2004; 20: 781-810
    Google Scholar
  • 34. Lucas K.A., Pitari G.M., Kazerounian S., Ruiz-Stewart I., Park J.,Schulz S., Chepenik K.P., Waldman S.A.: Guanylyl cyclases and signalingby cyclic GMP. Pharmacol. Rev., 2000; 52: 375-414
    Google Scholar
  • 35. Makuch E., Matuszyk J.: Fosfodiesterazy rodziny 3 sprzęgająszlaki sygnałowe zależne od kinaz białkowych i cyklicznego GMPz metabolizmem cyklicznego AMP. Postępy Hig. Med. Dośw., 2012;66: 492-500
    Google Scholar
  • 36. Malinowski M., Biernat J., Roleder T., Dalecka A.M., Reszka B.,Deja M.A., Woś S., Gołba K.S.: Peptydy natriuretyczne: coś nowegow kardiologii? Kardiol. Pol., 2006; 64 (Suppl. 6): 578-585
    Google Scholar
  • 37. Maurice D.H., Palmer D., Tilley D.G., Dunkerley H.A., NethertonS.J., Raymond D.R., Elbatany H.S., Jimmo S.L.: Cyclic nucleotidephosphodiesterase activity, expression, and targeting in cells of thecardiovascular system. Mol. Pharmacol., 2003; 64: 533-546
    Google Scholar
  • 38. Mericq V., Uyeda J.A., Barnes K.M., De Luca F., Baron J.: Regulationof fetal rat bone growth by C-type natriuretic peptide andcGMP. Pediatr. Res., 2000; 47: 189-193
    Google Scholar
  • 39. Michel T., Feron O.: Nitric oxide synthases: which, where, how,and why? J. Clin. Invest., 1997; 100: 2146-2152
    Google Scholar
  • 40. Miyazawa T., Ogawa Y., Chusho H., Yasoda A., Tamura N., KomatsuY., Pfeifer A., Hofmann F., Nakao K.: Cyclic GMP-dependent protein kinase II plays a critical role in C-type natriuretic peptide-mediatedendochondral ossification. Endocrinology, 2002; 143: 3604-3610
    Google Scholar
  • 41. Moffatt P., Thomas G., Sellin K., Bessette M.C., Lafreniere F.,Akhouayri O., St-Arnaud R., Lanctot C.: Osteocrin is a specific ligandof the natriuretic peptide clearance receptor that modulates bonegrowth. J. Biol. Chem., 2007; 282: 36454-36462
    Google Scholar
  • 42. Nossaman B., Pankey E., Kadowitz P.: Stimulators and activatorsof soluble guanylate cyclase: review and potential therapeutic indications.Crit. Care Res. Pract., 2012; 2012: 290805
    Google Scholar
  • 43. Ørstavik S., Natarajan V., Taskén K., Jahnsen T., Sandberg M.:Characterization of the human gene encoding the type Iα and typeIβ cGMP-dependent protein kinase (PRKG1). Genomics, 1997; 42:311-318
    Google Scholar
  • 44. Pakuła D., Marek B., Kajdaniuk D., Kos-Kudła B., Borgiel-MarekH., Krysiak R., Gatnar A., Pakuła P.: Peptydy natriuretyczne: ich znaczeniew diagnostyce i terapii. Endokrynol. Pol., 2007; 58: 364-374
    Google Scholar
  • 45. Palmer D., Jimmo S.L., Raymond D.R., Wilson L.S., Carter R.L.,Maurice D.H.: Protein kinase A phosphorylation of human phosphodiesterase3B promotes 14-3-3 protein binding and inhibits phosphatase-catalyzedinactivation. J. Biol. Chem., 2007; 282: 9411-9419
    Google Scholar
  • 46. Pfeifer A., Kilić A., Hoffmann L.S.: Regulation of metabolismby cGMP. Pharmacol. Ther., 2013; 140: 81-91
    Google Scholar
  • 47. Pifferi S., Boccaccio A., Menini A.: Cyclic nucleotide-gated ionchannels in sensory transduction. FEBS Lett., 2006; 580: 2853-2859
    Google Scholar
  • 48. Pimentel E.: Handbook of Growth Factors, vol. 1, CRC Press,1994, 106-107
    Google Scholar
  • 49. Potter L.R., Abbey-Hosch S., Dickey D.M.: Natriuretic peptides,their receptors, and cyclic guanosine monophosphate-dependentsignaling functions. Endocr. Rev., 2006; 27: 47-72
    Google Scholar
  • 50. Potthast R., Potter L.R.: Phosphorylation-dependent regulationof the guanylyl cyclase-linked natriuretic peptide receptors. Peptides,2005; 26: 1001-1008
    Google Scholar
  • 51. Qvigstad E., Moltzau L.R., Aronsen J.M., Nguyen C.H., HougenK., Sjaastad I., Levy F.O., Skomedal T., Osnes J.B.: Natriuretic peptidesincrease β1-adrenoceptor signalling in failing hearts throughphosphodiesterase 3 inhibition. Cardiovasc. Res., 2010; 85: 763-772
    Google Scholar
  • 52. Rybalkin S.D., Yan C., Bornfeld K.E., Beavo J.A.: Cyclic GMP phosphodiesterasesand regulation of smooth muscle function. Circ.Res., 2003; 93: 280-291
    Google Scholar
  • 53. Sengenès C., Berlan M., De Glisezinski I., Lafontan M., Galitzky J.:Natriuretic peptides: a new lipolytic pathway in human adipocytes.FASEB J., 2000; 14: 1345-1351
    Google Scholar
  • 54. Sengenes C., Stich V., Berlan M., Hejnova J., Lafontan M., PariskovaZ., Galitzky J.: Increased lipolysis in adipose tissue and lipidmobilization to natriuretic peptides during low-calorie diet in obesewomen. Int. J. Obes. Relat. Metab. Disord., 2002; 26: 24-32
    Google Scholar
  • 55. Shimizu N., Kawakami K., Ishitani T.: Visualization and explorationof Tcf/Lef function using a highly responsive Wnt/β-cateninsignaling-reporter transgenic zebrafish. Dev. Biol., 2012; 370: 71-85
    Google Scholar
  • 56. Springer J., Azer J., Hua R., Robbins C., Adamczyk A., McBoyle S., Bissell M.B., Rose R.A.: The natriuretic peptides BNP and CNPincrease heart rate and electrical conduction by stimulating ioniccurrents in the sinoatrial node and atrial myocardium following activationof guanylyl cyclase-linked natriuretic peptide receptors. J.Mol. Cell. Cardiol., 2012; 52: 1122-1134
    Google Scholar
  • 57. Surks H.K.: cGMP-dependent protein kinase I and smooth musclerelaxation: a tale of two isoforms. Circ. Res., 2007; 101: 1078-1080
    Google Scholar
  • 58. Thomas G., Moffatt P., Salois P., Gaumond M.H., Gingras R., GodinE., Miao D., Goltzman D., Lanctot C.: Osteocrin, a novel bone-specificsecreted protein that modulates the osteoblast phenotype. J. Biol.Chem., 2003; 278: 50563-50571
    Google Scholar
  • 59. Wang H., Lee Y., Malbon C.C.: PDE6 is an effector for the Wnt/Ca2+/cGMP-signalling pathway in development. Biochem. Soc.Trans., 2004; 32: 792-796
    Google Scholar
  • 60. Wang Y., Li Y.P., Paulson C., Shao J.Z., Zhang X., Wu M., ChenW.: Wnt and the Wnt signaling pathway in bone development anddisease. Front Biosci., 2014; 19: 379-407
    Google Scholar
  • 61. Wolanin P.M., Thomason P.A., Stock J.B.: Histidine protein kinases:key signal transducers outside the animal kingdom. GenomeBiol., 2002; 3: reviews3013.1
    Google Scholar
  • 62. Yallampalli C., Byam-Smith M., Nelson S.O., Garfield R.E.: Steroidhormones modulate the production of nitric oxide and cGMP in therat uterus. Endocrinology, 1994; 134: 1971-1974
    Google Scholar
  • 63. Yallampalli C., Dong Y.L.: Estradiol-17β inhibits nitric oxidesynthase (NOS)-II and stimulates NOS-III gene expression in the ratuterus. Biol. Reprod., 2000; 63: 34-41
    Google Scholar
  • 64. Zielniok K., Gajewska M., Motyl T.: Molekularne aspekty działania17β-estradiolu i progesteronu w komórkowych szlakach sygna-łowych. Postępy Hig. Med. Dośw., 2014; 68: 777-792
    Google Scholar

Full text

Skip to content