Developmental programming of metabolic diseases – a review of studies on experimental animal models
Iwona Piotrowska 1 , Paulina Zgódka 1 , Marta Milewska 1 , Maciej Błaszczyk 1 , Katarzyna Grzelkowska-Kowalczyk 1Abstract
Growth and development in utero is a complex and dynamic process that requires interaction between the mother organism and the fetus. The delivery of macro – and micronutrients, oxygen and endocrine signals has crucial importance for providing a high level of proliferation, growth and differentiation of cells, and a disruption in food intake not only has an influence on the growth of the fetus, but also has negative consequences for the offspring’s health in the future. Diseases that traditionally are linked to inappropriate life style of adults, such as type 2 diabetes, obesity, and arterial hypertension, can be “programmed” in the early stage of life and the disturbed growth of the fetus leads to the symptoms of the metabolic syndrome. The structural changes of some organs, such as the brain, pancreas and kidney, modifications of the signaling and metabolic pathways in skeletal muscles and in fatty tissue, epigenetic mechanisms and mitochondrial dysfunction are the basis of the metabolic disruptions. The programming of the metabolic disturbances is connected with the disruption in the intrauterine environment experienced in the early and late gestation period. It causes the changes in deposition of triglycerides, activation of the hormonal “stress axis” and disturbances in the offspring’s glucose tolerance. The present review summarizes experimental results that led to the identification of the above-mentioned links and it underlines the role of animal models in the studies of this important concept.
References
- 1. Abdul-Ghani M.A., Molina-Carrion M., Jani R., Jenkinson C., DefronzoR.A.: Adipocytes in subjects with impaired fasting glucoseand impaired glucose tolerance are resistant to the anti-lipolyticeffect of insulin. Acta Diabetol., 2008; 45: 147-150
Google Scholar - 2. Arantes V.C., Teixeira V.P., Reis M.A., Latorraca M.Q., LeiteA.R., Carneiro E.M., Yamada A.T., Boschero A.C.: Expression ofPDX-1 is reduced in pancreatic islets from pups of rat dams feda low protein diet during gestation and lactation. J. Nutr., 2002;132: 3030-3035
Google Scholar - 3. Bagby S.P.: Maternal nutrition, low nephron number, and hypertensionin later life: pathways of nutritional programming. J. Nutr.,2007; 137: 1066-1072
Google Scholar - 4. Baschat A.A., Hecher K.: Fetal growth restriction due to placentaldisease. Semin. Perinatol., 2004; 28: 67-80
Google Scholar - 5. Bernardo A.S., Hay C.W., Docherty K.: Pancreatic transcriptionfactors and their role in the birth, life and survival of the pancreaticβ cell. Mol. Cell. Endocrinol., 2008; 294: 1-9
Google Scholar - 6. Bernstein B.E., Meissner A., Lander E.S.: The mammalian epigenome.Cell, 2007; 128: 669-681
Google Scholar - 7. Berthoud H.R., Morrison C.: The brain, appetite, and obesity.Annu. Rev. Psychol., 2008; 59: 55-92
Google Scholar - 8. Bertin E., Gangnerau M.N., Bellon G., Bailbe D., Arbelot De VacqueurA., Portha B.: Development of β-cell mass in fetuses of ratsdeprived of protein and/or energy in last trimester of pregnancy.Am. J. Physiol. Regul. Integr. Comp. Physiol., 2002; 283: R623-R630
Google Scholar - 9. Bogdarina I., Welham S., King P.J., Burns S.P., Clark A.J.: Epigeneticmodification of the renin-angiotensin system in the fetal programmingof hypertension. Circ. Res., 2007; 100: 520-526
Google Scholar - 10. Boney C.M., Verma A., Tucker R., Vohr B.R.: Metabolic syndromein childhood: association with birth weight, maternal obesity, andgestational diabetes mellitus. Pediatrics, 2005; 115: 290-296
Google Scholar - 11. Bouret S.G., Draper S.J., Simerly R.B.: Formation of projectionpathways from the arcuate nucleus of the hypothalamus to hypothalamicregions implicated in the neural control of feeding behaviorin mice. J. Neurosci., 2004; 24: 2797-2805
Google Scholar - 12. Bouret S.G., Draper S.J.,Simerly, R.B.: Trophic action of leptin onhypothalamic neurons that regulate feeding. Science, 2004; 304: 108-110
Google Scholar - 13. Breymann C.: Iron deficiency and anaemia in pregnancy: modernaspects of diagnosis and therapy. Blood Cells Mol. Dis., 2002;29: 506-521
Google Scholar - 14. Calvert J.W., Lefer D.J., Gundewar S., Poston L.,Coetzee, W.A.:Developmental programming resulting from maternal obesity inmice: effects on myocardial ischaemia-reperfusion injury. Exp. Physiol.,2009; 94: 805-814
Google Scholar - 15. Catalano P.M.: Obesity and pregnancy – the propagation of a viscouscycle? J. Clin. Endocrinol. Metab., 2003; 88: 3505-3506
Google Scholar - 16. Cetin I., Morpurgo P.S., Radaelli T., Taricco E., Cortelazzi D., BellottiM., Pardi G., Beck-Peccoz P.: Fetal plasma leptin concentrations:relationship with different intrauterine growth patterns from 19weeks to term. Pediatr. Res., 2000; 48: 646-651
Google Scholar - 17. Chen J.H., Hales C.N., Ozanne S.E.: DNA damage, cellular senescenceand organismal ageing: causal or correlative? Nucleic AcidsRes., 2007; 35: 7417-7428
Google Scholar - 18. Cooney C.A., Dave A.A., Wolff G.L.: Maternal methyl supplementsin mice affect epigenetic variation and DNA methylation of offspring.J. Nutr., 2002; 132: 2393S-2400S
Google Scholar - 19. Cox L.A., Nijland M.J., Gilbert J.S., Schlabritz-Loutsevitch N.E.,Hubbard G.B., McDonald T.J., Shade R.E., Nathanielsz, P.W.: Effect of 30 per cent maternal nutrient restriction from 0.16 to 0.5 gestationon fetal baboon kidney gene expression. J. Physiol., 2006; 572: 67-85
Google Scholar - 20. Davidowa H., Li Y., Plagemann A.: Altered responses to orexigenic(AGRP, MCH) and anorexigenic (α-MSH, CART) neuropeptides ofparaventricular hypothalamic neurons in early postnatally overfedrats. Eur. J. Neurosci., 2003; 18: 613-621
Google Scholar - 21. Dor Y., Brown J., Martinez O.I., Melton D.A.: Adult pancreaticβ-cells are formed by self-duplication rather than stem-cell differentiation.Nature, 2004; 429: 41-46
Google Scholar - 22. Ergaz Z., Avgil M., Ornoy A.: Intrauterine growth restriction-etiologyand consequences: what do we know about the human situationand experimental animal models? Reprod. Toxicol., 2005; 20: 301-322
Google Scholar - 23. Fernandez-Twinn D.S., Ozanne S.E., Ekizoglou S., Doherty C.,James L., Gusterson B., Hales C.N.: The maternal endocrine environmentin the low-protein model of intra-uterine growth restriction.Br. J. Nutr., 2003; 90: 815-822
Google Scholar - 24. Fernandez-Twinn D.S., Wayman A., Ekizoglou S., Martin M.S.,Hales C.N., Ozanne S.E.: Maternal protein restriction leads to hyperinsulinaemiaand reduced insulin-signaling protein expression in21-mo-old female rat offspring. Am. J. Physiol. Regul. Integr. Comp.Physiol., 2005; 288: R368-R373
Google Scholar - 25. Fowden A.L., Forhead A.J.: Endocrine mechanisms of intrauterineprogramming. Reproduction, 2004; 127: 515-526
Google Scholar - 26. Fujimoto S., Nabe K., Takehiro M., Shimodahira M., Kajikawa M.,Takeda T., Mukai E., Inagaki N., Seino Y.: Impaired metabolism-secretioncoupling in pancreatic β-cells: role of determinants of mitochondrialATP production. Diabetes Res. Clin. Pract., 2007; 77: S2-S10
Google Scholar - 27. Gambling L., Dunford S., Wallace D.I., Zuur G., Solanky N., SraiS.K., McArdle H.J.: Iron deficiency during pregnancy affects postnatalblood pressure in the rat. J. Physiol., 2003; 552: 603-610
Google Scholar - 28. Gesina E., Tronche F., Herrera P., Duchene B., Tales W., CzernichowP., Breant B.: Dissecting the role of glucocorticoids on pancreasdevelopment. Diabetes, 2004; 53: 2322-2329
Google Scholar - 29. Gupta A., Srinivasan M., Thamadilok S., Patel M.S.: Hypothalamicalterations in fetuses of high fat diet-fed obese female rats. J.Endocrinol., 2009; 200: 293-300
Google Scholar - 30. Hales C.N., Barker D.J.: The thrifty phenotype hypothesis. Br.Med. Bull., 2001; 60: 5-20
Google Scholar - 31. Hales C.N., Barker D.J., Clark P.M., Cox L.J., Fall C., Osmond C.,Winter P.D.: Fetal and infant growth and impaired glucose toleranceat age 64. Br. Med. J., 1991; 303: 1019-1022
Google Scholar - 32. Heijmans B.T., Tobi E.W., Stein A.D., Putter H., Blauw G.J., SusserE.S., Slagboom P.E., Lumey L.H.: Persistent epigenetic differencesassociated with prenatal exposure to famine in humans. Proc. Natl.Acad. Sci. USA, 2008; 105: 17046-17049
Google Scholar - 33. Hietaniemi M., Malo E., Jokela M., Santaniemi M., Ukkola O.,Kesaniemi Y.A.: The effect of energy restriction during pregnancyon obesity-related peptide hormones in rat offspring. Peptides,2009; 30: 705-709
Google Scholar - 34. Hoet J.J., Hanson M.A.: Intrauterine nutrition: its importanceduring critical periods of cardiovascular and endocrine development.J. Physiol., 1999; 514: 617-627
Google Scholar - 35. Holemans K., Aerts L., Van Assche F.A.: Lifetime consequences ofabnormal fetal pancreatic development. J. Physiol., 2003; 547: 11-20
Google Scholar - 36. Houben J.M., Moonen H.J., van Schooten F.J., Hageman G.J.: Telomerelength assessment: biomarker of chronic oxidative stress?Free Radic. Biol. Med., 2008; 44: 235-246
Google Scholar - 37. Howie G.J., Sloboda D.M., Kamal T., Vickers M.H.: Maternal nutritionalhistory predicts obesity in adult offspring independent ofpostnatal diet. J. Physiol., 2009; 587: 905-915
Google Scholar - 38. Jennings B.J., Ozanne S.E., Dorling M.W., Hales C.N.: Early growthdetermines longevity in male rats and may be related to telomereshortening in the kidney. FEBS Lett., 1999; 448: 4-8
Google Scholar - 39. Kaneto H., Suzuma K., Sharma A., Bonner-Weir S., King G.L.,Weir G.C.: Involvement of protein kinase C β in c-myc induction byhigh glucose in pancreatic β-cells. J. Biol. Chem., 2002; 277: 3680-3685
Google Scholar - 40. Karowicz-Bilinska A., Suzin J., Sieroszewski P.: Evaluation of oxidativestress indices during treatment in pregnant women with intrauterinegrowth retardation. Med. Sci. Monit., 2002; 8: CR211-CR216
Google Scholar - 41. Khan I.Y., Dekou V., Douglas G., Jensen R., Hanson M.A., PostonL., Taylor P.D.: A high-fat diet during rat pregnancy or suckling inducescardiovascular dysfunction in adult offspring. Am. J. Physiol.Regul. Integr. Comp. Physiol., 2005; 288: R127-R133
Google Scholar - 42. Kiss A.C., Lima P.H., Sinzato Y.K., Takaku M., Takeno M.A., RudgeM.V., Damasceno D.C.: Animal models for clinical and gestational diabetes:maternal and fetal outcomes. Diabetol. Metab. Syndr., 2009; 1: 1-7
Google Scholar - 43. Konner A.C., Klockener T., Bruning, J.C.: Control of energy homeostasisby insulin and leptin: targeting the arcuate nucleus andbeyond. Physiol. Behav., 2009; 97: 632-638
Google Scholar - 44. Langley-Evans S.C., Langley-Evans A.J., Marchand M.C.: Nutritionalprogramming of blood pressure and renal morphology. Arch.Physiol. Biochem., 2003; 111: 8-16
Google Scholar - 45. Lesage J., Blondeau B., Grino M., Breant B., Dupouy J.P.: Maternalundernutrition during late gestation induces fetal overexposure toglucocorticoids and intrauterine growth retardation, and disturbsthe hypothalamo-pituitary adrenal axis in the newborn rat. Endocrinology,2001; 142: 1692-1702
Google Scholar - 46. Lillycrop K.A., Phillips E.S., Jackson A.A., Hanson M.A., BurdgeG.C.: Dietary protein restriction of pregnant rats induces and folicacid supplementation prevents epigenetic modification of hepaticgene expression in the offspring. J. Nutr., 2005; 135: 1382-1386
Google Scholar - 47. Lillycrop K.A., Slater-Jefferies J.L., Hanson M.A., Godfrey K.M.,Jackson A.A., Burdge G.C.: Induction of altered epigenetic regulation ofthe hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricteddiet during pregnancy suggests that reduced DNA methyltransferase-1expression is involved in impaired DNA methylationand changes in histone modifications. Br. J. Nutr., 2007; 97: 1064-1073
Google Scholar - 48. Lisle S.J., Lewis R.M., Petry C.J., Ozanne S.E., Hales C.N., ForheadA.J.: Effect of maternal iron restriction during pregnancy on renalmorphology in the adult rat offspring. Br. J. Nutr., 2003; 90: 33-39
Google Scholar - 49. Long N.M., George L.A., Uthlaut A.B., Smith D.T,, Nijland M.J.,Nathanielsz P.W., Ford S.P.: Maternal obesity and increased nutrientintake before and during gestation in the ewe results in alteredgrowth, adiposity, and glucose tolerance in adult offspring. J. Anim.Sci., 2010; 88: 3546-3553
Google Scholar - 50. McMillen I.C., Rattanatray L., Duffield J.A., Morrison J.L., MacLaughlinS.M., Gentili S., Muhlhausler B.S.: The early origins of later obesity:pathways and mechanisms. Adv. Exp. Med. Biol., 2009; 646: 71-81
Google Scholar - 51. McMillen I.C., Robinson J.S.: Developmental origins of the metabolicsyndrome: prediction, plasticity, and programming. Physiol.Rev., 2005; 85: 571-633
Google Scholar - 52. Minge C., Bennett B., Norman R., Robker R.: Peroxisome proliferator-activatedreceptor-γ agonist rosiglitazone reverses the adverseeffects of diet-induced obesity on oocyte quality. Endocrinology,2008; 149: 2646-2656
Google Scholar - 53. Moritz K.M., Mazzuca M.Q., Siebel A.L., Mibus A., Arena D., TareM., Owens J.A., Wlodek M.W.: Uteroplacental insufficiency causesa nephron deficit, modest renal insufficiency but no hypertensionwith ageing in female rats. J. Physiol., 2009; 587: 2635-2646
Google Scholar - 54. Morris M.J., Chen H.: Established maternal obesity in the ratreprograms hypothalamic appetite regulators and leptin signalingat birth. Int. J. Obes., 2009; 33: 115-122
Google Scholar - 55. Nijland M.J., Schlabritz-Loutsevitch N.E., Hubbard G.B., NathanielszP.W., Cox L.A.: Non-human primate fetal kidney transcriptomeanalysis indicates mammalian target of rapamycin (mTOR) isa central nutrient-responsive pathway. J. Physiol., 2007; 579: 643-656
Google Scholar - 56. Nivoit P., Morens C., Van Assche F.A., Jansen E., Poston L., RemacleC., Reusens B.: Established diet-induced obesity in female ratsleads to offspring hyperphagia, adiposity and insulin resistance.Diabetologia, 2009; 52: 1133-1142
Google Scholar - 57. Nyirenda M.J., Lindsay R.S., Kenyon C.J., Burchell A., Seckl J.R.:Glucocorticoid exposure in late gestation permanently programsrat hepatic phosphoenolpyruvate carboxykinase and glucocorticoidreceptor expression and causes glucose intolerance in adultoffspring. J. Clin. Invest., 1998; 101: 2174-2181
Google Scholar - 58. Oak S.A., Tran C., Pan G., Thamotharan M., Devaskar S.U.: Perturbedskeletal muscle insulin signaling in the adult female intrauterinegrowth-restricted rat. Am. J. Physiol. Endocrinol. Metab.,2006; 290: E1321-E1330
Google Scholar - 59. Ong K.K., Ahmed M.L., Emmett P.M., Preece M.A., Dunger D.B.:Association between postnatal catch-up growth and obesity in childhood:prospective cohort study. Br. Med. J., 2000; 320: 967-971
Google Scholar - 60. Ozanne S.E., Dorling M.W., Wang C.L., Nave B.T.: Impaired PI3-kinase activation in adipocytes from early growth-restricted malerats. Am. J. Physiol. Endocrinol. Metab., 2001; 280: E534-E539
Google Scholar - 61. Ozanne S.E., Dorling M.W., Wang C.L., Petry C.J.: Depot-specificeffects of early growth retardation on adipocyte insulin action.Horm. Metab. Res., 2000; 32: 71-75
Google Scholar - 62. Ozanne S.E., Jensen C.B., Tingey K.J., Storgaard H., Madsbad S.,Vaag A.A.: Low birthweight is associated with specific changes inmuscle insulin-signalling protein expression. Diabetologia, 2005;48: 547-552
Google Scholar - 63. Park J.H., Stoffers D.A., Nicholls R.D., Simmons R.A.: Developmentof type 2 diabetes following intrauterine growth retardationin rats is associated with progressive epigenetic silencing of Pdx1.J. Clin. Invest., 2008; 118: 2316-2324
Google Scholar - 64. Peterside I.E., Selak M.A., Simmons R.A.: Impaired oxidativephosphorylation in hepatic mitochondria in growth-retarded rats.Am. J. Physiol. Endocrinol. Metab., 2003; 285: E1258-E1266
Google Scholar - 65. Petry C.J., Dorling M.W., Pawlak D.B., Ozanne S.E., Hales C.N.:Diabetes in old male offspring of rat dams fed a reduced proteindiet. Int. J. Exp. Diabetes Res., 2001; 2: 139-143
Google Scholar - 66. Piper K., Brickwood S., Turnpenny L.W., Cameron I.T., Ball S.G.,Wilson D.I., Hanley N.A.: β Cell differentiation during early humanpancreas development. J. Endocrinol., 2004; 181: 11-23
Google Scholar - 67. Poore K.R., Fowden A.L.: Insulin sensitivity in juvenile and adultLarge White pigs of low and high birthweight. Diabetologia, 2004;47: 340-348
Google Scholar - 68. Rasmussen K.: Is there a causal relationship between iron deficiencyor iron-deficiency anemia and weight at birth, length ofgestation and perinatal mortality? J. Nutr., 2001; 131: 590S-601S
Google Scholar - 69. Rattanatray L., MacLaughlin S.M., Kleemann D.O., Walker S.K.,Muhlhausler B.S., McMillen I.C.: Impact of maternal periconceptionalovernutrition on fat mass and expression of adipogenic andlipogenic genes in visceral and subcutaneous fat depots in the postnatallamb. Endocrinology, 2010; 151: 5195-5205
Google Scholar - 70. Ravelli A.C., van der Meulen J.H., Michels R.P., Osmond C., BarkerD.J., Hales C.N., Bleker O.P.: Glucose tolerance in adults after prenatalexposure to famine. Lancet, 1998; 351: 173-177
Google Scholar - 71. Raychaudhuri N., Raychaudhuri S., Thamotharan M., DevaskarS.U.: Histone code modifications repress glucose transporter 4expression in the intrauterine growth-restricted offspring. J. Biol.Chem., 2008; 283: 13611-13626
Google Scholar - 72. Rolo A.P., Palmeira C.M.: Diabetes and mitochondrial function:role of hyperglycemia and oxidative stress. Toxicol. Appl. Pharmacol.,2006; 212: 167-178
Google Scholar - 73. Samuelsson A.M., Matthews P.A., Argenton M., Christie M.R.,McConnell J.M., Jansen E.H., Piersma A.H., Ozanne S.E., Twinn D.F.,Remacle C., Rowlerson A., Poston L., Taylor P.D.: Diet-induced obesityin female mice leads to offspring hyperphagia, adiposity, hypertension,and insulin resistance: a novel murine model of developmentalprogramming. Hypertension, 2008; 51: 383-392
Google Scholar - 74. Sanders M.W., Fazzi G.E., Janssen G.M., Blanco C.E., De Mey J.G.:High sodium intake increases blood pressure and alters renal functionin intrauterine growth-retarded rats. Hypertension, 2005; 46: 71-75
Google Scholar - 75. Seckl J.R., Meaney M.J.: Glucocorticoid “programming” and PTSDrisk. Ann. N.Y. Acad. Sci., 2006; 1071: 351-378
Google Scholar - 76. Selak M.A., Storey B.T., Peterside I., Simmons R.A.: Impaired oxidativephosphorylation in skeletal muscle of intrauterine growth-retardedrats. Am. J. Physiol. Endocrinol. Metab., 2003; 285: E130-E137
Google Scholar - 77. Shankar K., Harrell A., Liu X., Gilchrist J.M., Ronis M.J.,BadgerT.M.: Maternal obesity at conception programs obesity in theoffspring. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008; 294:R528-R538
Google Scholar - 78. Shen C.N., Seckl J.R., Slack J.M., Tosh D.: Glucocorticoids suppressβ-cell development and induce hepatic metaplasia in embryonicpancreas. Biochem. J., 2003; 375: 41-50
Google Scholar - 79. Simmons R.A., Suponitsky-Kroyter I., Selak M.A.: Progressiveaccumulation of mitochondrial DNA mutations and decline in mitochondrialfunction lead to β-cell failure. J. Biol. Chem., 2005; 280:28785-28791
Google Scholar - 80. Srinivasan M., Katewa S.D., Palaniyappan A., Pandya J.D., PatelM.S.: Maternal high-fat diet consumption results in fetal malprogrammingpredisposing to the onset of metabolic syndrome-likephenotype in adulthood. Am. J. Physiol. Endocrinol. Metab., 2006;291: E792-E799
Google Scholar - 81. Stanger B.Z., Tanaka A.J., Melton D.A.: Organ size is limited bythe number of embryonic progenitor cells in the pancreas but notthe liver. Nature, 2007; 445: 886-891
Google Scholar - 82. Styrud J., Eriksson U.J., Grill V., Swenne I.: Experimental intrauterinegrowth retardation in the rat causes a reduction of pancreaticB-cell mass, which persists into adulthood. Biol. Neonate,2005; 88: 122-128
Google Scholar - 83. Symonds M.E., Sebert S.P., Hyatt M.A., Budge H.: Nutritionalprogramming of the metabolic syndrome. Nat. Rev. Endocrinol.,2009; 5: 604-610
Google Scholar - 84. Tarry-Adkins J.L., Chen J.H., Smith N.S., Jones R.H., Cherif H.,Ozanne S.E.: Poor maternal nutrition followed by accelerated postnatalgrowth leads to telomere shortening and increased markers ofcell senescence in rat islets. FASEB J., 2009; 23: 1521-1528
Google Scholar - 85. Taylor P.D., McConnell J., Khan I.Y., Holemans K., Lawrence K.M.,Asare-Anane H., Persaud S.J., Petrie L., Hanson M.A., Poston L.: Impairedglucose homeostasis and mitochondrial abnormalities in offspringof rats fed a fat-rich diet in pregnancy. Am. J. Physiol. Regul.Integr. Comp. Physiol., 2005; 288: R134-R139
Google Scholar - 86. Teta M., Long S.Y., Wartschow L.M., Rankin M.M., Kushner J.A.:Very slow turnover of β-cells in aged adult mice. Diabetes, 2005;54: 2557-2567
Google Scholar - 87. Tobi E.W., Lumey L.H., Talens R.P., Kremer D., Putter H., SteinA.D., Slagboom P.E., Heijmans B.T.: DNA methylation differencesafter exposure to prenatal famine are common and timing – andsex specific. Hum. Mol. Genet., 2009; 18: 4046-4053
Google Scholar - 88. Toste F.P., de Moura E.G., Lisboa P.C., Fagundes A.T., de OliveiraE., Passos M.C.: Neonatal leptin treatment programmes leptin hypothalamicresistance and intermediary metabolic parameters inadult rats. Br. J. Nutr., 2006; 95: 830-837
Google Scholar - 89. Ukropcova B., Sereda O., de Jonge L., Bogacka I., Nguyen T., XieH., Bray G.A., Smith S.R.: Family history of diabetes links impairedsubstrate switching and reduced mitochondrial content in skeletalmuscle. Diabetes, 2007; 56: 720-727
Google Scholar - 90. Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., TelserJ.: Free radicals and antioxidants in normal physiological functionsand human disease. Int. J. Biochem. Cell Biol., 2007; 39: 44-84
Google Scholar - 91. van Straten E.M., Bloks V.W., Huijkman N.C., Baller J.F., van MeerH., Lutjohann D., Kuipers F., Plosch T.: The liver X-receptor (LXR)gene promoter is hypermethylated in a mouse model of prenatalprotein restriction. Am. J. Physiol. Regul. Integr. Comp. Physiol.,2010; 298: R275-R282
Google Scholar - 92. Vickers M.H., Breier B.H., Cutfield W.S., Hofman P.L., GluckmanP.D.: Fetal origins of hyperphagia, obesity, and hypertension andpostnatal amplification by hypercaloric nutrition. Am. J. Physiol.Endocrinol. Metab., 2000; 279: E83-E87
Google Scholar - 93. Vickers M.H., Gluckman P.D., Coveny A.H., Hofman P.L., CutfieldW.S., Gertler A., Breier B.H., Harris M.: Neonatal leptin treatmentreverses developmental programming. Endocrinology, 2005; 146:4211-4216
Google Scholar - 94. Vickers M.H., Ikenasio B.A., Breier B.H.: IGF-I treatment reduceshyperphagia, obesity, and hypertension in metabolic disordersinduced by fetal programming. Endocrinology, 2001; 142: 3964-3973
Google Scholar - 95. Vuguin P., Raab E., Liu B., Barzilai N., Simmons R.: Hepatic insulinresistance precedes the development of diabetes in a modelof intrauterine growth retardation. Diabetes, 2004; 53: 2617-2622
Google Scholar - 96. Vulliamy T.J.: Premature ageing. Cell. Mol. Life Sci., 2009; 66:3091-3094
Google Scholar - 97. Warner M.J., Ozanne S.E.: Mechanisms involved in the developmentalprogramming of adulthood disease. Biochem. J., 2010;427: 333-347
Google Scholar - 98. Waterland R.A., Travisano M., Tahiliani K.G., Rached M.T., MirzaS.: Methyl donor supplementation prevents transgenerational amplificationof obesity. Int. J. Obes., 2008; 32: 1373-1379
Google Scholar - 99. Williams P.J., Kurlak L.O., Perkins A.C., Budge H., Stephenson T.,Keisler D., Symonds M.E., Gardner D.S.: Hypertension and impairedrenal function accompany juvenile obesity: the effect of prenataldiet. Kidney Int., 2007; 72: 279-289
Google Scholar - 100. Woods L.L.: Maternal glucocorticoids and prenatal programmingof hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol.,2006; 291: R1069-R1075
Google Scholar - 101. Woods L.L., Weeks D.A.: Prenatal programming of adult bloodpressure: role of maternal corticosteroids. Am. J. Physiol. Regul. Integr.Comp. Physiol., 2005; 289: R955-R962
Google Scholar - 102. Wyrwoll C.S., Mark P.J., Waddell B.J.: Developmental programmingof renal glucocorticoid sensitivity and the renin-angiotensinsystem. Hypertension, 2007; 50: 579-584
Google Scholar - 103. Yogev Y., Metzger B.E., Hod M.: Establishing diagnosis of gestationaldiabetes mellitus: impact of the hyperglycemia and adversepregnancy outcome study. Semin. Fetal Neonatal Med., 2009;14: 94-100
Google Scholar - 104. Yura S., Itoh H., Sagawa N., Yamamoto H., Masuzaki H., NakaoK., Kawamura M., Takemura M., Kakui K., Ogawa Y., Fujii S.: Role ofpremature leptin surge in obesity resulting from intrauterine undernutrition.Cell Metab., 2005; 1: 371-378
Google Scholar - 105. Zambrano E., Martinez-Samayoa P.M., Rodriguez-Gonzalez G.L.,Nathanielsz P.W.: Dietary intervention prior to pregnancy reversesmetabolic programming in male offspring of obese rats. J. Physiol.,2010; 588: 1791-1799
Google Scholar - 106. Zhang J., Lewis R.M., Wang C., Hales N., Byrne C.D.: Maternaldietary iron restriction modulates hepatic lipid metabolism inthe fetuses. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2005; 288:R104-R111
Google Scholar - 107. Zhang S., Rattanatray L., MacLaughlin S.M., Cropley J.E., SuterC.M., Molloy L., Kleemann D., Walker S.K., Muhlhausler B.S., MorrisonJ.L., McMillen I.C.: Periconceptional undernutrition in normaland overweight ewes leads to increased adrenal growth and epigeneticchanges in adrenal IGF2/H19 gene in offspring. FASEB J.,2010; 24: 2772-2782
Google Scholar - 108. Zhang S., Rattanatray L., McMillen I.C., Suter C.M., MorrisonJ.L.: Periconceptional nutrition and the early programming of a lifeof obesity or adversity. Prog. Biophys. Mol. Biol., 2011; 106: 307-314
Google Scholar