Disinfectants – bacterial cells interactions in the view of hygiene and public health

COMMENTARY ON THE LAW

Disinfectants – bacterial cells interactions in the view of hygiene and public health

Marta Książczyk 1 , Eva Krzyżewska 2 , Bożena Futoma-Kołoch 1 , Gabriela Bugla-Płoskońska 1

1. Zakład Mikrobiologii, Instytut Genetyki i Mikrobiologii, Uniwersytet Wrocławski
2. Instytut Immunologii i Terapii Doświadczalnej PAN im. Ludwika Hirszfelda, we Wrocławiu

Published: 2015-09-20
GICID: 01.3001.0009.6574
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2015; 69 : 1042-1055

 

Abstract

In recent years, the use of biocides has increased rapidly. One common example is triclosan, with wide application in households as well as medical and industrial fields, especially food industry and animal husbandry. Chemical disinfection is a major mean to control and eliminate pathogenic bacteria, particularly those with multidrug resistance (MDR) phenotype. However, exposition to biocides results in an adaptive response in microorganisms, causing them to display a wide range of resistance mechanisms. Numerous microorganisms are characterized by either natural resistance to chemical compounds or an ability to adapt to biocides using various strategies, such as: modification of cell surface structures (lipopolisaccharide), membrane fatty acids), over-expression of efflux pumps (a system for active transport of toxic compounds out of bacterial cell), enzymatic inactivation of biocides or altering biocide targets. For instance, it was shown that in vitro exposition of Salmonella Typhimurium to subinhibitory concentration of biocides (triclosan, quaternary ammonium compounds [QACs]) resulted in selection of variants resistant to tested biocides and, additionally, to acridine dyes and antibiotics. Bacillus subtilis and Micrococcus luteus strains isolated from chlorine dioxide containing disinfection devices were found to be resistant to chlorine dioxide and also to other oxidizing compounds, such as peracetic acid and hydrogen peroxide. Interaction between chemical compounds, including disinfectants and microbial cells, can create a serious threat to public health and sanitary-hygienic security. This phenomenon is connected with factor risk that intensify the probability of selection and dissemination of multidrug resistance among pathogenic bacteria.

References

  • 1. Akiyama Y.: Proton-motive force stimulates the proteolytic activityof FtsH, a membrane-bound ATP-dependent protease in Escherichiacoli. Proc. Natl. Acad. Sci. USA, 2002; 99: 8066-8071
    Google Scholar
  • 2. Barker J., Brown M.R., Collier P.J., Farrell I., Gilbert P.: Relationshipbetween Legionella pneumophila and Acanthamoeba polyphaga:physiological status and susceptibility to chemical inactivation.Appl. Environ. Microbiol., 1992; 58: 2420-2425
    Google Scholar
  • 3. Braoudaki M., Hilton A.C.: Low level of cross-resistance betweentriclosan and antibiotics in Escherichia coli K-12 and E. coli O55 comparedto E. coli O157. FEMS Microbiol. Lett., 2004; 235: 305-309
    Google Scholar
  • 4. Brown M.R., Collier P.J., Gilbert P.: Influence of growth-rate onthe susceptibility to antimicrobial agents: modification of the cellenvelope and batch and continuous culture studies. Antimicrob.Agents Chemother., 1990; 34: 1623-1628
    Google Scholar
  • 5. Brown M.R., Gilbert P., Klemperer R.M.: Influence of the bacterialcell envelope on combined antibiotic action. W: Antibiotic Interactions,red.: J.D. Williams. Academic Press, London 1980: 69-86
    Google Scholar
  • 6. Buckley A.M., Webber M.A., Cooles S., Randall L.P., La RagioneR.M., Woodward M.J., Piddock L.J.: The AcrAB-TolC efflux system ofSalmonella enterica serovar Typhimurium plays a role in pathogenesis.Cell Microbiol., 2006; 8: 847-856
    Google Scholar
  • 7. Chargaff E., Pangborn M.C., Anderson R.J.: The chemistry of thelipoids of tubercle bacilli. XXIII. Separation of the lipoid fractionsfrom the Timothy bacillus. J. Biol. Chem., 1931; 90: 45-55
    Google Scholar
  • 8. Cloete T.E.: Resistance mechanisms of bacteria to antimicrobialcompounds. Int. Biodeterior. Biodegradation, 2003; 51: 277-282Piśmiennictwo
    Google Scholar
  • 9. Collier P.J., Ramsey A.J., Austin P., Gilbert P.: Growth inhibitoryand biocidal activity of some isothiazolone biocides. J. Appl. Bacteriol.,1990; 69: 569-577
    Google Scholar
  • 10. Davin-Regli A., Pagès J.M.: Cross-resistance between biocides andantimicrobials: an emerging question. Rev. Sci. Tech., 2012; 31: 89-104
    Google Scholar
  • 11. de Oliveira F.A., Brandelli A., Tondo E.C.: Antimicrobial resistancein Salmonella Enteritidis from foods involved in human salmonellosisoutbreaks in southern Brazil. New Microbiol., 2006; 29: 49-54
    Google Scholar
  • 12. Del Sal G., Manfioletti G., Schneider C.: The CTAB-DNA precipitationmethod: a common mini-scale preparation of template DNAfrom phagemids, phages or plasmids suitable for sequencing. Biotechniques,1989; 7: 514-520
    Google Scholar
  • 13. Denyer S.P., Maillard J.Y.: Cellular impermeability and uptakeof biocides and antibiotics in Gram-negative bacteria. J. Appl. Microbiol.,2002; 92 (Suppl.): 35S-45S
    Google Scholar
  • 14. Denyer S.P., Stewart G.S.: Mechanisms of action of disinfectants.Int. Biodeterior. Biodegradation, 1998; 41: 261-268
    Google Scholar
  • 15. Dvorak G.: Disinfection 101. http://www.cfsph.iastate.edu/Disinfection/Assets/Disinfection101.pdf(20.07.2014)
    Google Scholar
  • 16. Dyrektywa 98/8/WE Parlamentu Europejskiego i Rady z dnia 16lutego 1998 r. w sprawie wprowadzania do obrotu produktów biobójczych.http://urpl.gov.pl/pb-akty-prawne (20.07.2014)
    Google Scholar
  • 17. Evans E., Brown M.R., Gilbert P.: Iron chelator, exopolysaccharideand protease production of Staphylococcus epidermidis: a comparativestudy of the effects of specific growth rate in biofilm and planktonicculture. Microbiology, 1994; 140: 153-157
    Google Scholar
  • 18. Fàbrega A., Madurga S., Giralt E., Vila J.: Mechanism of actionof and resistance to quinolones. Microb. Biotechnol., 2009; 2: 40-61
    Google Scholar
  • 19. Foley I., Marsh P., Wellington E.M., Smith A.W., Brown M.R.:General stress response master regulator rpoS is expressed in humaninfection: a possible role in chronicity. J. Antimicrob. Chemother.,1999; 43: 164-165
    Google Scholar
  • 20. Fraise A.P.: Historical Introduction. W: Russell, Hugo and Ayliffe’sPrinciples and Practice of Disinfection, Preservation and Sterilization,4th Edition, red.: A.P. Fraise, P.A. Lambert, J.Y. Maillard. BlackwellPublishing, Oxford 2004: 3-7
    Google Scholar
  • 21. Gilbert P., Allison D.G., Evans D.J., Handley P.S., Brown M.R.:Growth rate control of adherent bacterial populations. Appl. Environ.Microbiol., 1989; 55: 1308-1311
    Google Scholar
  • 22. Gilbert P., Allison D.G., McBain A.J.: Biofilms in vitro and in vivo:do singular mechanisms imply cross-resistance? J. Appl. Microbiol.,2002; 92 (Suppl.): 98S-110S
    Google Scholar
  • 23. Gilbert P., McBain A.J.: Potential impact of increased use of biocidesin consumer products on prevalence of antibiotic resistance.Clin. Microbiol. Rev., 2003; 16: 189-208
    Google Scholar
  • 24. Gilbert P., Pemberton D., Wilkinson D.E.: Barrier properties ofthe Gram-negative cell envelope towards high molecular weightpolyhexamethylene biguanides. J. Appl. Bacteriol., 1990; 69: 585-592
    Google Scholar
  • 25. Gilbert P., Wright N.E.: Non-plasmidic resistance towards preservationof pharmaceutical products. W: Preservatives in the Food,Pharmaceutical and Environment Industries, red.: R.G. Board, M.C.Allwood, J.G. Banks. Blackwell Scientific, Oxford, 1987, 255-279
    Google Scholar
  • 26. Gristina A.G., Hobgood C.D., Webb L.X. Myrvik Q.N.: Adhesivecolonisation of biomaterials and antibiotic resistance. Biomaterials,1987; 8: 423-426
    Google Scholar
  • 27. Hawkey P.M.: Bacterial resistance. W: Russell, Hugo and Ayliffe’sPrinciples and Practice of Disinfection, Preservation and Sterilization,4th Edition, red.: A.P. Fraise, P.A. Lambert, J.Y. Maillard. BlackwellPublishing, Oxford 2004: 191-204
    Google Scholar
  • 28. Ingram L.O.: Changes in lipid composition of Escherichia coli resultingfrom growth with organic solvents and with food additives.Appl. Environ. Microbiol., 1977; 33: 1233-1236
    Google Scholar
  • 29. Izydorczak M., Stefańska J.: Środek przeciwdrobnoustrojowytriclosan – działanie, zastosowanie i zagrożenia. Biul. Wydz. Farm.AMW, 2007; 2: 13-17
    Google Scholar
  • 30. Janowiec M.: Mikrobiologia i serologia. Wydawnictwo LekarskiePZWL, Warszawa 1988
    Google Scholar
  • 31. Konieczny P., Szymański M., Kopiec D.: Mycie i detergentyw przemyśle spożywczym jako problem środowiskowy. Przegl. Komunalny,2007; 2: 40-44
    Google Scholar
  • 32. Kosek-Paszkowska K., Morzyk K.: Mycie i dezynfekcja jako czynnikieliminujące zagrożenia mikrobiologiczne w przemyśle spożywczym.Laboratorium, 2005; 2: 36-38
    Google Scholar
  • 33. Koziróg A.: Dezynfekcja w zakładach produkujących żywność.Problemy mikrobiologiczne. Przemysł Spożywczy, 2012; 66: 18-20
    Google Scholar
  • 34. Kümmerle N., Feucht H.H., Kaulfers P.M.: Plasmid-mediatedformaldehyde resistance in Escherichia coli: characterization of resistancegene. Antimicrob. Agents Chemother., 1996; 40: 2276-2279
    Google Scholar
  • 35. Lambert P.A.: Mechanisms of action of biocides. W: Russell, Hugoand Ayliffe’s Principles and Practice of Disinfection, Preservation andSterilization, 4th Edition, red.: A.P. Fraise, P.A. Lambert, J.Y. Maillard.Blackwell Publishing, Oxford 2004: 139-153
    Google Scholar
  • 36. Lehne R.A.: Pharmacology for Nursing Care, Saunders/Elsevier,St. Louis 2013
    Google Scholar
  • 37. Li P.T., Hsiao W.L., Yu R.C., Chou C.C.: Effect of heat shock on thefatty acid and protein profiles of Cronobacter sakazakii BCRC 13988 aswell as its growth and survival in the presence of various carbon, nitrogensources and disinfectants. Food Microbiol., 2013; 36: 142-148
    Google Scholar
  • 38. Loshon C.A., Genest P.C., Setlow B., Setlow P.: Formaldehydekills spores of Bacillus subtilis by DNA damage and small, acid-solublespore proteins of the α/β-type protect spores against this DNA damage.J. Appl. Microbiol., 1999; 87: 8-14
    Google Scholar
  • 39. Lucchini J.J., Corre J., Cremieux A.: Antibacterial activity of phenoliccompounds and aromatic alcohols. Res. Microbiol., 1990; 141:499-510
    Google Scholar
  • 40. Mah T.F., O›Toole G.A.: Mechanisms of biofilm resistance to antimicrobialagents. Trends Microbiol., 2001; 9: 34-39
    Google Scholar
  • 41. Maillard J.Y.: Bacterial target sites for biocide action. J. Appl.Microbiol., 2002; 92 (Suppl.): 16S-27S
    Google Scholar
  • 42. Martins M., Faleiro M.L., Barros R.J., Veríssimo A.R., BarreirosM.A., Costa M.C.: Characterization and activity studies of highlyheavy metal resistant sulphate-reducing bacteria to be used in acidmine drainage decontamination. J. Hazard. Mater., 2009; 166: 706-713
    Google Scholar
  • 43. Mastronicolis S.K., Arvanitis N., Karaliota A., Litos C., StavroulakisG., Moustaka H., Tsakirakis A., Heropoulos G.: Cold dependenceof fatty acid profile of different lipid structures of Listeria monocytogenes.Food Microbiol., 2005; 22: 213-219
    Google Scholar
  • 44. McDonnell G., Russell A.D.: Antiseptics and disinfectants: activity,action, and resistance. Clin. Microbiol. Rev., 1999; 12: 147-179
    Google Scholar
  • 45. Meyer B.: Does microbial resistance to biocides create a hazardto food hygiene? Int. J. Food Microbiol., 2006; 112: 275-279
    Google Scholar
  • 46. Recommendations of CDC and the Healthcare Infection ControlPractices Advisory Committee (HICPAC). Guidelines for EnvironmentalInfection Control in Health-Care Facilities. http://www.cdc.gov/hicpac/pdf/guidelines/eic_in_hcf_03.pdf (20.07.2014)
    Google Scholar
  • 47. Rozporządzenia Ministra Zdrowia z dnia 2 września 2003 r.w sprawie kryteriów i sposobów klasyfikacji substancji i preparatówchemicznych. Dziennik Ustaw 2003; nr 171: poz. 1666. http://isap.sejm.gov.pl/DetailsServlet?id=WDU20031711666 (20.07.2014)
    Google Scholar
  • 48. Russell A.D.: Mechanisms of bacterial resistance to biocides. Int.Biodeterior. Biodegradation, 1995; 36: 247-265
    Google Scholar
  • 49. Russell A.D.: Similarities and differences in the responses ofmicroorganisms to biocides. J. Antimicrob. Chemother., 2003; 52:750-763
    Google Scholar
  • 50. Russell A.D.: Biocide use and antibiotic resistance: the relevanceof laboratory findings to clinical and environmental situations. LancetInfect. Dis., 2003; 3: 794-803
    Google Scholar
  • 51. Scholar E.M, Pratt W.B.: The Antimicrobial Drugs. Oxford UniversityPress, Oxford 2000
    Google Scholar
  • 52. Stefańska J.: Substancje czynne środków dezynfekcyjnych –mechanizmy działania, oporność drobnoustrojów. MikrobiologiaMedycyna, 2000; 22: 17-24
    Google Scholar
  • 53. Stickler D.J.: Bacterial resistance. W: Russell, Hugo and Ayliffe’sPrinciples and Practice of Disinfection, Preservation and Sterilization,4th Edition, red. A.P. Fraise, P.A. Lambert, J.Y. Maillard. BlackwellPublishing, Oxford 2004: 154-168
    Google Scholar
  • 54. Stobińska H., Brycki B., Gutarowska B., Żakowska Z., KręgielD.: Mycie i dezynfekcja w przemyśle. W: Mikrobiologia techniczna.Mikroorganizmy w biotechnologii, ochronie środowiska i produkcjiżywności, t.2, red.: Libudzisz Z., Kowal K., Żakowska Z, WydawnictwoNaukowe PWN, Warszawa, 2009, 411-434
    Google Scholar
  • 55. Suller M.T., Russell A.D.: Antibiotic and biocide resistance inmethicillin-resistant Staphylococcus aureus and vancomycin-resistantenterococcus. J. Hosp. Infect., 1999; 43: 281-291
    Google Scholar
  • 56. Tattawasart U., Hann A.C., Maillard J.Y., Furr J.R., Russell A.D.:Cytological changes in chlorhexidine-resistant isolates of Pseudomonasstutzeri. J. Antimicrob. Chemother., 2000; 45: 145-152
    Google Scholar
  • 57. Ustawa z dnia 6 września 2001 r. Prawo Farmaceutyczne. Dziennik Ustaw 2001; nr 126 poz. 1381. http://isap.sejm.gov.pl/DetailsServlet?id=WDU20080450271(20.07.2014)
    Google Scholar
  • 58. Ustawa z dnia 13 września 2002 r. o produktach biobójczych.Dziennik Ustaw 2002; nr 175: poz. 1433. http://urpl.gov.pl/pb-akty-prawne(20.07.2014)
    Google Scholar
  • 59. Ustawa z dnia 25 sierpnia 2006 r. o bezpieczeństwie żywnościi żywienia. Ustawa Nr 171, poz. 1225. http://isap.sejm.gov.pl/DetailsServlet?id=WDU20061711225(20.07.2014)
    Google Scholar
  • 60. Vaara M.: Agents that increase the permeability of the outermembrane. Microbiol. Rev., 1992; 56: 395-411
    Google Scholar
  • 61. Widmer A. F., Wiestner A., Frei R., Zimmerli W.: Killing of nongrowingand adherent Escherichia coli determines drug efficacy indevice-related infections. Antimicrob. Agents Chemother., 1991;35: 741-746
    Google Scholar

Full text

Skip to content