COMMENTARY ON THE LAW
Dysregulation of the mTOR signaling pathway in the pathogenesis of autism spectrum disorders
Bożena Gabryel 1 , Agata Kapałka 1 , Wojciech Sobczyk 1 , Krzysztof Łabuzek 2 , Agnieszka Gawęda 3 , Małgorzata Janas-Kozik 41. Zakład Farmakologii Katedry Farmakologii, Wydział Lekarski w Katowicach, Śląski Uniwersytet Medyczny
2. Klinika Chorób Wewnętrznych i Farmakologii Klinicznej Katedry Farmakologii, Wydział Lekarski w Katowicach, Śląski Uniwersytet Medyczny
3. Oddział Kliniczny Psychiatrii i Psychoterapii Wieku Rozwojowego, Śląski Uniwersytet Medyczny
4. Oddział Kliniczny Psychiatrii i Psychoterapii Wieku Rozwojowego, Śląski Uniwersytet Medyczny; Katedra Psychiatrii i Psychoterapii, Śląski Uniwersytet Medyczny
Published: 2014-04-10
DOI: 10.5604/17322693.1098143
GICID: 01.3001.0003.1214
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 375-383
Abstract
Mammalian target of rapamycin (mTor) plays multiple role in central nervous system and is involved in regulation of cell viability, differentiation, transcription, translation, protein degradation, actin cytoskeletal organization and autophagy. Recent experimental and clinical studies reveal that disturbances of mTOR signaling are involved in the pathogenesis of autism spectrum disorders (ASD). This article reviews current data on the alteration in the mTOR transduction cascade, which may contribute to common neurobehavioral disorders typical for ASD. Moreover, the results of the latest experimental studies on the potential of mTOR inhibitors for the treatment of ASD are reviewed.
References
- 1. American Psychiatric Association. Diagnostic and statistical manualof mental disorders, 4th ed., text revision. Washington, DC:American Psychiatric Association, 2000
Google Scholar - 2. Asano E., Chugani D.C., Muzik O., Behen M., Janisse J., RothermelR., Mangner T.J., Chakraborty P.K., Chugani H.T.: Autism in tuberoussclerosis complex is related to both cortical and subcortical dysfunction.Neurology, 2001; 57: 1269-1277
Google Scholar - 3. Asato M.R., Hardan A.Y.: Neuropsychiatric problems in tuberoussclerosis complex. J. Child Neurol., 2004; 19: 241-249
Google Scholar - 4. Avruch J., Lin Y., Long X., Murthy S., Ortiz-Vega S.: Recent advancesin the regulation of the TOR pathway by insulin and nutrients.Curr. Opin. Clin. Nutr. Metab. Care, 2005; 8: 67-72
Google Scholar - 5. Bailey A., Le Couteur A., Gottesman I., Bolton P., Simonoff E.,Yuzda E., Rutter M.: Autism as a strongly genetic disorder: evidencefrom a British twin study. Psychol. Med., 1995; 25: 63-77
Google Scholar - 6. Bassell G.J., Warren S.T.: Fragile X syndrome: loss of local mRNAregulation alters synaptic development and function. Neuron, 2008;60: 201-214
Google Scholar - 7. Bear M.F., Huber K.M., Warren S.T.: The mGluR theory of fragileX mental retardation. Trends Neurosci., 2004; 27: 370-377
Google Scholar - 8. Bolton P.F., Griffiths P.D.: Association of tuberous sclerosis oftemporal lobes with autism and atypical autism. Lancet, 1997; 349:392-395
Google Scholar - 9. Bryson S.E., Rogers S.J., Fombonne E.: Autism spectrum disorders:early detection, intervention, education, and psychopharmacologicalmanagement. Can. J. Psychiatry, 2003; 48: 506-516
Google Scholar - 10. Butler M.G., Dasouki M.J., Zhou X.P., Talebizadeh Z., Brown M.,Takahashi T.N., Miles J.H., Wang C.H., Stratton R., Pilarski R., Eng C.:Subset of individuals with autism spectrum disorders and extrememacrocephaly associated with germline PTEN tumour suppressorgene mutations. J. Med. Genet., 2005; 42: 318-321
Google Scholar - 11. Chen J., Zheng X.F., Brown E.J., Schreiber S.L.: Identification ofan 11-kDa FKBP12-rapamycin-binding domain within the 289-kDaFKBP12-rapamycin-associated protein and characterization of a criticalserine residue. Proc. Natl. Acad. Sci. USA, 1995; 92: 4947-4951
Google Scholar - 12. Choo A.Y., Yoon S.O., Kim S.G., Roux P.P., Blenis J.: Rapamycindifferentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specificrepression of mRNA translation. Proc. Natl. Acad. Sci. USA, 2008;105: 17414-17419
Google Scholar - 13. Chu E.C., Tarnawski A.S.: PTEN regulatory functions in tumorsuppression and cell biology. Med. Sci. Monit., 2004; 10: RA235-RA241
Google Scholar - 14. Codogno P., Meijer A.J.: Autophagy and signaling: their rolein cell survival and cell death. Cell Death Differ., 2005; 12 (Suppl.2): 1509-1518
Google Scholar - 15. Costa R.M., Federov N.B., Kogan J.H., Murphy G.G., Stern J., Ohno M.,Kucherlapati R., Jacks T., Silva A.J.: Mechanism for the learning deficits ina mouse model of neurofibromatosis type 1. Nature, 2002; 415: 526-530
Google Scholar - 16. Crino P.B., Nathanson K.L., Henske E.P.: The tuberous sclerosiscomplex. N. Engl. J. Med., 2006; 355: 1345-1356
Google Scholar - 17. Dan H.C., Sun M., Yang L., Feldman R.I., Sui X.M., Ou C.C., NellistM., Yeung R.S., Halley D.J., Nicosia S.V., Pledger W.J., Cheng J.Q.: Phosphatidylinositol3-kinase/Akt pathway regulates tuberous sclerosistumor suppressor complex by phosphorylation of tuberin. J. Biol.Chem., 2002; 277: 35364-35370
Google Scholar - 18. de Vries P.J.: Targeted treatments for cognitive and neurodevelopmentaldisorders in tuberous sclerosis complex. Neurotherapeutics,2010; 7: 275-282
Google Scholar - 19. Ehninger D., Han S., Shilyansky C., Zhou Y., Li W., KwiatkowskiD.J., Ramesh V., Silva A.J.: Reversal of learning deficits in a Tsc2+/-mouse model of tuberous sclerosis. Nat. Med., 2008; 14: 843-848
Google Scholar - 20. Ehninger D., Silva A.J.: Rapamycin for treating tuberous sclerosisand autism spectrum disorders. Trends Mol. Med., 2011; 17: 78-87
Google Scholar - 21. Eng C.: Will the real Cowden syndrome please stand up: reviseddiagnostic criteria. J. Med. Genet., 2000; 37: 828-830
Google Scholar - 22. Fingar D.C., Blenis J.: Target of rapamycin (TOR): an integratorof nutrient and growth factor signals and coordinator of cell growthand cell cycle progression. Oncogene, 2004; 23: 3151–3171
Google Scholar - 23. Fombonne E.: The prevalence of autism. JAMA, 2003; 289: 87-89
Google Scholar - 24. Fombonne E.: Epidemiological surveys of autism and other pervasivedevelopmental disorders: an update. J. Autism Dev. Disord.,2003; 33: 365-382
Google Scholar - 25. Frias M.A., Thoreen C.C., Jaffe J.D., Schroder W., Sculley T., CarrS.A., Sabatini D.M.: mSin1 is necessary for Akt/PKB phosphorylation,and its isoforms define three distinct mTORC2s. Curr. Biol.,2006; 16: 1865-1870
Google Scholar - 26. Gawęda A., Janas Kozik M.: Autyzm w rozumieniu teorii umysłu.Neuroscience Fakty, 2012; 3: 40-47
Google Scholar - 27. Geschwind D.H., Levitt P.: Autism spectrum disorders: developmentaldisconnection syndromes. Curr. Opin. Neurobiol., 2007;17: 103-111
Google Scholar - 28. Goorden S.M., van Woerden G.M., van der Weerd L., Cheadle J.P.,Elgersma Y.: Cognitive deficits in Tsc1+/- mice in the absence of cerebrallesions and seizures. Ann. Neurol., 2007; 62: 648-655
Google Scholar - 29. Gross C., Berry-Kravis E.M., Bassell G.J.: Therapeutic strategiesin fragile X syndrome: dysregulated mGluR signaling and beyond.Neuropsychopharmacology, 2012; 37: 178-195
Google Scholar - 30. Hagerman R.J., Hagerman P.J.: The fragile X premutation: intothe phenotypic fold. Curr. Opin. Genet. Dev., 2002; 12: 278-283
Google Scholar - 31. Hara K., Maruki Y., Long X., Yoshino K., Oshiro N., Hidayat S., TokunagaC., Avruch J., Yonezawa K.: Raptor, a binding partner of targetof rapamycin (TOR), mediates TOR action. Cell, 2002; 110: 177-189
Google Scholar - 32. Harris T.E., Lawrence J.C.Jr.: TOR signaling. Sci STKE, 2003; 2003:re15
Google Scholar - 33. Huang S., Bjornsti M.A., Houghton P.J.: Rapamycins: mechanismof action and cellular resistance. Cancer Biol. Ther., 2003; 2: 222-232
Google Scholar - 34. Hyman S.L., Shores A., North K.N.: The nature and frequency ofcognitive deficits in children with neurofibromatosis type 1. Neurology,2005; 65: 1037-1044
Google Scholar - 35. Jefferies H.B., Reinhard C., Kozma S.C., Thomas G.: Rapamycinselectively represses translation of the “polypyrimidine tract” mRNAfamily. Proc. Natl. Acad. Sci. USA, 1994; 91: 4441-4445
Google Scholar - 36. Jin P., Warren S.T.: New insights into fragile X syndrome: frommolecules to neurobehaviors. Trends Biochem. Sci., 2003; 28: 152-158
Google Scholar - 37. Johannessen C.M., Reczek E.E., James M.F., Brems H., Legius E.,Cichowski K.: The NF1 tumor suppressor critically regulates TSC2and mTOR. Proc. Natl. Acad. Sci. USA, 2005; 102: 8573-8578
Google Scholar - 38. Jóźwiak P, Lipińska A.: Rola transportera glukozy 1 (GLUT1)w diagnostyce i terapii nowotworów. Postępy Hig. Med. Dośw., 2012;66: 165-174
Google Scholar - 39. Kanner L.: Autistic disturbances of affective contact. Nerv. Child,1943; 2: 217-250
Google Scholar - 40. Keith C.T., Schreiber S.L.: PIK-related kinases: DNA repair, recombination,and cell cycle checkpoints. Science, 1995; 270: 50-51
Google Scholar - 41. Kim D.H., Sarbassov D.D., Ali S.M., King J.E., Latek R.R., Erdjument-BromageH., Tempst P., Sabatini D.M.: mTOR interacts withraptor to form a nutrient-sensitive complex that signals to the cellgrowth machinery. Cell, 2002; 110: 163-175
Google Scholar - 42. Kim D.H., Sarbassov D.D., Ali S.M., Latek R.R., Guntur K.V., Erdjument-BromageH., Tempst P., Sabatini D.M.: GβL, a positive regulatorof the rapamycin-sensitive pathway required for the nutrient-sensitiveinteraction between raptor and mTOR. Mol. Cell,2003; 11: 895-904
Google Scholar - 43. Kirchner G.I., Meier-Wiedenbach I., Manns M.P.: Clinical pharmacokineticsof everolimus. Clin. Pharmacokinet., 2004; 43: 83-95
Google Scholar - 44. Kost A., Kasprowska D., Labuzek K., Wiaderkiewicz R., GabryelB.: Autofagia w niedokrwieniu mózgu. Postępy Hig. Med. Dośw.,2011; 65: 524-533
Google Scholar - 45. Kumar R.A., Christian S.L.: Genetics of autism spectrum disorders.Curr. Neurol. Neurosci. Rep., 2009; 9: 188-197
Google Scholar - 46. Kumar V., Zhang M.X., Swank M.W., Kunz J., Wu G.Y.: Regulationof dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPKsignaling pathways. J. Neurosci., 2005; 25: 11288-11299
Google Scholar - 47. Kwon C.H., Luikart B.W., Powell C.M., Zhou J., Matheny S.A.,Zhang W., Li Y., Baker S.J., Parada L.F.: Pten regulates neuronal arborizationand social interaction in mice. Neuron, 2006; 50: 377-388
Google Scholar - 48. Lachlan K.L., Lucassen A.M., Bunyan D., Temple I.K.: Cowdensyndrome and Bannayan-Riley-Ruvalcaba syndrome represent onecondition with variable expression and age-related penetrance: resultsof a clinical study of PTEN mutation carriers. J. Med. Genet.,2007; 44: 579-585
Google Scholar - 49. Lainhart J.E., Bigler E.D., Bocian M., Coon H., Dinh E., Dawson G.,Deutsch C.K., Dunn M., Estes A., Tager-Flusberg H., Folstein S., HepburnS., Hyman S., McMahon W., Minshew N. i wsp.: Head circumferenceand height in autism: a study by the Collaborative Programof Excellence in Autism. Am. J. Med. Genet. A, 2006; 140: 2257-2274
Google Scholar - 50. Laycock-van Spyk S., Thomas N., Cooper D.N., Upadhyaya M.:Neurofibromatosis type 1-associated tumours: their somatic mutationalspectrum and pathogenesis. Hum. Genomics, 2011; 5: 623-690
Google Scholar - 51. Levitt P., Campbell D.B.: The genetic and neurobiologic compasspoints toward common signaling dysfunctions in autism spectrumdisorders. J. Clin. Invest., 2009; 119: 747-754
Google Scholar - 52. Li J., McCullough L.D.: Effects of AMP-activated protein kinasein cerebral ischemia. J. Cereb. Blood Flow Metab., 2010; 30: 480-492
Google Scholar - 53. Ma L., Chen Z., Erdjument-Bromage H., Tempst P., Pandolfi P.P.: Phosphorylationand functional inactivation of TSC2 by Erk implicationsfor tuberous sclerosis and cancer pathogenesis. Cell, 2005; 121: 179-193
Google Scholar - 54. Manning B.D., Cantley L.C.: AKT/PKB signaling: navigating downstream.Cell, 2007; 129: 1261-1274
Google Scholar - 55. Muhle R., Trentacoste S.V., Rapin I.: The genetics of autism. Pediatrics,2004; 113: e472-e486
Google Scholar - 56. O’Roak B.J., State M.W.: Autism genetics: strategies, challenges,and opportunities. Autism Res., 2008; 1: 4-17
Google Scholar - 57. Osborne J.P., Fryer A., Webb D.: Epidemiology of tuberous sclerosis.Ann. N.Y. Acad. Sci., 1991; 615: 125-127
Google Scholar - 58. Oshiro N., Yoshino K., Hidayat S., Tokunaga C., Hara K., EguchiS., Avruch J., Yonezawa K.: Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function.Genes Cells, 2004; 9: 359-366
Google Scholar - 59. Penagarikano O., Mulle J.G., Warren S.T.: The pathophysiologyof fragile x syndrome. Annu. Rev. Genomics Hum. Genet., 2007; 8:109-129
Google Scholar - 60. Perycz M., Świech Ł., Malik A., Jaworski J.: mTOR w fizjologiii patologii układu nerwowego. Postępy Biol. Kom., 2007; 34: 511-525
Google Scholar - 61. Reiling J.H., Sabatini D.M.: Stress and mTORture signaling. Oncogene,2006; 25: 6373-6383
Google Scholar - 62. Sancak Y., Thoreen C.C., Peterson T.R., Lindquist R.A., Kang S.A.,Spooner E., Carr S.A., Sabatini D.M.: PRAS40 is an insulin-regulatedinhibitor of the mTORC1 protein kinase. Mol. Cell, 2007; 25: 903-915
Google Scholar - 63. Sarbassov D.D., Ali S.M., Kim D.H., Guertin D.A., Latek R.R., Erdjument-BromageH., Tempst P., Sabatini D.M.: Rictor, a novel bindingpartner of mTOR, defines a rapamycin-insensitive and raptor–independent pathway that regulates the cytoskeleton. Curr. Biol.,2004; 14: 1296-1302
Google Scholar - 64. Sarbassov D.D., Ali S.M., Sengupta S., Sheen J.H., Hsu P.P., BagleyA.F., Markhard A.L., Sabatini D.M.: Prolonged rapamycin treatmentinhibits mTORC2 assembly and Akt/PKB. Mol. Cell, 2006; 22: 159-168
Google Scholar - 65. Sarbassov D.D., Guertin D.A., Ali S.M., Sabatini D.M.: Phosphorylationand regulation of Akt/PKB by the rictor-mTOR complex.Science, 2005; 307: 1098-1101
Google Scholar - 66. Shahbazian D., Roux P.P., Mieulet V., Cohen M.S., Raught B., TauntonJ., Hershey J.W., Blenis J., Pende M., Sonenberg N.: The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylationand activity. EMBO J., 2006; 25: 2781-2791
Google Scholar - 67. Sharma A., Hoeffer C.A., Takayasu Y., Miyawaki T., McBride S.M.,Klann E., Zukin R.S.: Dysregulation of mTOR signaling in fragile Xsyndrome. J. Neurosci., 2010; 30: 694-702
Google Scholar - 68. Swiech L., Perycz M., Malik A., Jaworski J.: Role of mTOR in physiologyand pathology of the nervous system. Biochim. Biophys.Acta, 2008; 1784: 116-132
Google Scholar - 69. Tavazoie S.F., Alvarez V.A., Ridenour D.A., Kwiatkowski D.J., SabatiniB.L.: Regulation of neuronal morphology and function by thetumor suppressors Tsc1 and Tsc2. Nat. Neurosci., 2005; 8: 1727-1734
Google Scholar - 70. Towler M.C., Hardie D.G.: AMP-activated protein kinase in metaboliccontrol and insulin signaling. Circ. Res., 2007; 100: 328-341
Google Scholar - 71. Uhlmann E.J., Wong M., Baldwin R.L., Bajenaru M.L., Onda H.,Kwiatkowski D.J., Yamada K., Gutmann D.H.: Astrocyte-specific TSC1conditional knockout mice exhibit abnormal neuronal organizationand seizures. Ann. Neurol., 2002; 52: 285-296
Google Scholar - 72. Valentinis B., Baserga R.: IGF-I receptor signalling in transformationand differentiation. Mol. Pathol., 2001; 54: 133-137
Google Scholar - 73. Weber A.M., Egelhoff J.C., McKellop J.M., Franz D.N.: Autism andthe cerebellum: evidence from tuberous sclerosis. J. Autism Dev. Disord.,2000; 30: 511-517
Google Scholar - 74. WHO. The ICD-10 classification of mental and behavioral disorders:diagnostic criteria for research. Geneva: World Health Organization,1993
Google Scholar - 75. Williams C.A., Dagli A., Battaglia A.: Genetic disorders associatedwith macrocephaly. Am. J. Med. Genet. A, 2008; 146A: 2023-2037
Google Scholar - 76. Wong M., Ess K.C., Uhlmann E.J., Jansen L.A., Li W., Crino P.B.,Mennerick S., Yamada K.A., Gutmann D.H.: Impaired glial glutamatetransport in a mouse tuberous sclerosis epilepsy model. Ann. Neurol.,2003; 54: 251-256
Google Scholar - 77. Wullschleger S., Loewith R., Hall M.N.: TOR signaling in growthand metabolism. Cell, 2006; 124: 471-484
Google Scholar - 78. Yakupoglu Y.K., Kahan B.D.: Sirolimus: a current perspective.Exp. Clin. Transplant., 2003; 1: 8-18
Google Scholar - 79. Zeng L.H., Xu L.,. Gutmann D.H., Wong M.: Rapamycin preventsepilepsy in a mouse model of tuberous sclerosis complex. Ann. Neurol.,2008; 63: 444-453
Google Scholar - 80. Zhou H., Luo Y., Huang S.: Updates of mTOR inhibitors. AnticancerAgents Med. Chem., 2010; 10: 571-581
Google Scholar - 81. Zhou J., Blundell J., Ogawa S., Kwon C.H., Zhang W., Sinton C.,Powell C.M., Parada L.F.: Pharmacological inhibition of mTORC1suppresses anatomical, cellular, and behavioral abnormalities inneural-specific Pten knock-out mice. J. Neurosci., 2009; 29: 1773-1783
Google Scholar