Effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on the regulation of vascular endothelial cell function

REVIEW ARTICLE

Effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on the regulation of vascular endothelial cell function

Dominika Łacheta 1 , Wioletta Olejarz 2 , Marta Włodarczyk 1 , Grażyna Nowicka 1

1. Zakład Biochemii i Farmakogenomiki Warszawskiego Uniwersytetu Medycznego, Warszawa, Polska,
2. Zakład Biochemii i Farmakogenomiki Warszawskiego Uniwersytetu Medycznego,

Published: 2019-10-01
DOI: 10.5604/01.3001.0013.5064
GICID: 01.3001.0013.5064
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2019; 73 : 467-475

 

Abstract

Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) belong to polyunsaturated fatty acids from the group n-3 (n-3 PUFA), and their main source are marine fishes. Many epidemiological studies have shown that high intake of these kinds of fishes is strictly associated with a reduced risk of cardiovascular diseases. DHA and EPA inhibit the development of inflammation, change the function and regulation of molecules that are also vascular biomarkers. They are vasodilating and vasoconstriction factors by controlling the production of nitric oxide (NO) and endothelin 1 (ET-1) in endothelial cells. They also contribute to antiatherosclerotic protection by regulating the expression of the oxidized low density lipoprotein (oxLDL) receptor, plasminogen activator inhibitor-1 (PAI-1), thromboxane A2 (TXA2) receptor and adhesion molecules: intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion protein 1 (VCAM-1) as well as monocyte chemoattractant protein 1 (MCP-1). Studies indicate that DHA and EPA regulate toll-like receptor 4 (TLR4) activation and impair nuclear factor-κB (NF-κB) signaling pathway activation. They show anti-inflammatory effects by affecting free fatty acid receptor 4 (FFAR4). However, efficacy as well as the mechanisms of action of these acids in the prevention of cardiovascular disease are still not fully understood. Therefore, the aim of this study was to assess the effect of DHA and EPA on endothelial cells of blood vessels and to review the latest research on their potential in the prevention of cardiovascular diseases.

References

  • 1. Abedi E., Sahari, M.A.: Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr., 2014; 2: 443–463
    Google Scholar
  • 2. Appleton K.M., Sallis H.M., Perry R., Ness A.R., Churchill R.: ω-3 Fatty acids for major depressive disorder in adults: An abridged Cochrane review. BMJ Open, 2016; 6: e010172
    Google Scholar
  • 3. Balakumar P., Taneja G.: Fish oil and vascular endothelial protection: bench to bedside. Free Radic. Biol. Med., 2012; 53: 271–279
    Google Scholar
  • 4. Bryk D., Olejarz W., Zapolska-Downar D.: Mitogen-activated protein kinases in atherosclerosis. Postępy Hig. Med. Dośw., 2014; 68: 10–22
    Google Scholar
  • 5. Calder P.C.: Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta, 2015; 1851: 469–484
    Google Scholar
  • 6. Calder P.C.: Mechanisms of action of (n-3) fatty acids. J. Nutr, 2012; 142: 592S–599S
    Google Scholar
  • 7. Calder P.C.: New evidence that omega-3 fatty acids have a role in primary prevention of coronary heart disease. J. Public Health Emergency, 2017. http://jphe.amegroups.com/article/view/3849/4642 (28.06.2019)
    Google Scholar
  • 8. Calder P.C.: The role of marine omega-3 (n-3) fatty acids in inflammatory processes, atherosclerosis and plaque stability. Mol. Nutr. Food Res., 2012; 56: 1073–1080
    Google Scholar
  • 9. Chang C.Y., Kuan Y.H., Li J.R., Chen W.Y., Ou Y.C., Pan H.C., Liao S.L., Raung S.L., Chang C.J., Chen C.J.: Docosahexaenoic acid reduces cellular inflammatory response following permanent focal cerebral ischemia in rats. J. Nutr. Biochem., 2013; 24: 2127–2137
    Google Scholar
  • 10. Chao C.Y., Lii C.K., Ye S.Y., Li C.C., Lu C.Y., Lin A.H., Liu K.L., Chen H.W.: Docosahexaenoic acid inhibits vascular endothelial growth factor (VEGF)-induced cell migration via the GPR120/PP2A/ERK1/2/eNOS signaling pathway in human umbilical vein endothelial cells. J. Agric Food Chem., 2014; 62: 4152–4158
    Google Scholar
  • 11. Chen H., Li D., Chen J., Roberts G.J., Saldeen T., Mehta J.L.: EPA and DHA attenuate ox-LDL-induced expression of adhesion molecules in human coronary artery endothelial cells via protein kinase B pathway. J. Mol. Cell. Cardiol., 2003; 35: 769–775
    Google Scholar
  • 12. Dasilva G., Pazos M., Garcia-Egido E., Gallardo J.M., Rodriguez I., Cela R., Medina I.: Healthy effect of different proportions of marine omega-3 PUFAs EPA and DHA supplementation in Wistar rats: Lipidomic biomarkers of oxidative stress and inflammation. J. Nutr. Biochem., 2015; 26: 1385–1392
    Google Scholar
  • 13. Davenport A.P., Alexander S.P., Sharman J.L., Pawson A.J., Benson H.E., Monaghan A.E., Liew W.C., Mpamhanga C.P., Bonner T.I., Neubig R.R., Pin J.P., Spedding M., Harmar A.J.: International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol Rev, 2013; 65: 967–986
    Google Scholar
  • 14. Davidson M.H., Benes L.B.: The future of n-3 polyunsaturated fatty acid therapy. Curr. Opin. Lipidol., 2016; 27: 570–578
    Google Scholar
  • 15. Davignon J., Ganz P.: Role of endothelial dysfunction in atherosclerosis. Circulation, 2004; 109 (Suppl. 1): III27–III32
    Google Scholar
  • 16. Fleming J.A., Kris-Etherton P.M.: The evidence for α-linolenic acid and cardiovascular disease benefits: Comparisons with eicosapentaenoic acid and docosahexaenoic acid. Adv. Nutr., 2014; 5: 863S–876S
    Google Scholar
  • 17. Gladine C., Newman J.W., Durand T., Pedersen T.L., Galano J.M., Demougeot C., Berdeaux O., Pujos-Guillot E., Mazur A., Comte B.: Lipid profiling following intake of the omega 3 fatty acid DHA identifies the peroxidized metabolites F4-neuroprostanes as the best predictors of atherosclerosis prevention. PLoS One, 2014; 9: e89393
    Google Scholar
  • 18. Honda K.L., Lamon-Fava S., Matthan N.R., Wu, D., Lichtenstein A.H.: Docosahexaenoic acid differentially affects TNFα and IL-6 expression in LPS-stimulated RAW 264.7 murine macrophages. Prostaglandins Leuk. Essent. Fatty Acids, 2015; 97: 27–34
    Google Scholar
  • 19. Hong S.H., Belayev L., Khoutorova L., Obenaus A., Bazan N.G.: Docosahexaenoic acid confers enduring neuroprotection in experimental stroke. J. Neurol. Sci., 2014; 338: 135–141
    Google Scholar
  • 20. Huang C.Y., Sheu W.H., Chiang A.N.: Docosahexaenoic acid and eicosapentaenoic acid suppress adhesion molecule expression in human aortic endothelial cells via differential mechanisms. Mol. Nutr. Food Res., 2015; 59: 751–762
    Google Scholar
  • 21. Ibrahim A., Mbodji K., Hassan A., Aziz M., Boukhettala N., Coeffier M., Savoye G., Dechelotte P., Marion-Letellier R.: Anti-inflammatory and anti-angiogenic effect of long chain n-3 polyunsaturated fatty acids in intestinal microvascular endothelium. Clin. Nutr., 2011; 30: 678–687
    Google Scholar
  • 22. Im D.S.: Functions of omega-3 fatty acids and FFA4 (GPR120) in macrophages. Eur. J. Pharmacol., 2016; 785: 36–43
    Google Scholar
  • 23. Jiang J., Li K., Wang F., Yang B., Fu Y., Zheng J., Li D.: Effect of marine-derived n-3 polyunsaturated fatty acids on major eicosanoids: A systematic review and meta-analysis from 18 randomized controlled trials. PLoS One, 2016; 11: e0147351
    Google Scholar
  • 24. Kiage J.N., Sampson U.K., Lipworth L., Fazio S., Mensah G.A., Yu Q., Munro H., Akwo E.A., Dai Q., Blot W.J., Kabagambe E.K.: Intake of polyunsaturated fat in relation to mortality among statin users and non-users in the Southern Community Cohort Study. Nutr. Metab. Cardiovasc. Dis., 2015; 25: 1016–1024
    Google Scholar
  • 25. Liu H.Q., Qiu Y., Mu Y., Zhang X.J., Liu L., Hou X.H., Zhang L., XuX.N., Ji A.L., Cao R., Yang R.H., Wang F.: A high ratio of dietary n-3/n-6polyunsaturated fatty acids improves obesity-linked inflammationand insulin resistance through suppressing activation of TLR4 in SDrats. Nutr. Res., 2013; 33: 849–858
    Google Scholar
  • 26. Liu K.L., Yang Y.C., Yao H.T., Chia T.W., Lu C.Y., Li C.C., Tsai H.J.,Lii C.K., Chen H.W.: Docosahexaenoic acid inhibits inflammation viafree fatty acid receptor FFA4, disruption of TAB2 interaction withTAK1/TAB1 and downregulation of ERK-dependent Egr-1 expressionin EA.hy926 cells. Mol. Nutr. Food Res., 2016; 60: 430–443
    Google Scholar
  • 27. Marciniak-Łukasiak K.: Rola i znaczenie kwasów tłuszczowychomega-3. Żywność: Nauka – Technologia – Jakość, 2011; 18: 24–35
    Google Scholar
  • 28. Martin S.A., Brash A.R., Murphy R.C.: The discovery and earlystructural studies of arachidonic acid. J. Lipid Res. 2016; 57: 1126–1132
    Google Scholar
  • 29. Michel T., Vanhoutte P.M.: Cellular signaling and NO production.Pflugers Arch., 2010; 459: 807–816
    Google Scholar
  • 30. Minihane A.M., Armah C.K., Miles E.A., Madden J.M., Clark A.B.,Caslake M.J., Packard C.J., Kofler B.M., Lietz G., Curtis P.J., Mathers J.C.,Williams C.M., Calder P.C.: Consumption of fish oil providing amountsof eicosapentaenoic acid and docosahexaenoic acid that can be obtainedfrom the diet reduces blood pressure in adults with systolichypertension: A retrospective analysis. J. Nutr., 2016; 146: 516–523
    Google Scholar
  • 31. Moniri N.H.: Free-fatty acid receptor-4 (GPR120): Cellular andmolecular function and its role in metabolic disorders. Biochem.Pharmacol., 2016; 110-111: 1–15
    Google Scholar
  • 32. Mori T.A.: Dietary n-3 PUFA and CVD: a review of the evidence.Proc. Nutr. Soc., 2014; 73: 57–64
    Google Scholar
  • 33. Mozaffarian D., Wu J.H.: (n-3) fatty acids and cardiovascularhealth: are effects of EPA and DHA shared or complementary? J.Nutr., 2012; 142: 614S–625S
    Google Scholar
  • 34. Mundi S., Massaro M., Scoditti E., Carluccio M.A., van HinsberghV.W.M., Iruela-Arispe M.L., De Caterina R.: Endothelial permeability,LDL deposition, and cardiovascular risk factors-a review. Cardiovasc.Res., 2018; 114: 35–52
    Google Scholar
  • 35. Nestel P., Clifton P., Colquhoun D., Noakes M., Mori T.A., SullivanD., Thomas B.: Indications for omega-3 long chain polyunsaturatedfatty acid in the prevention and treatment of cardiovascular disease.Heart Lung Circ., 2015; 24: 769–779
    Google Scholar
  • 36. Nichols P.D., Glencross B., Petrie J.R., Singh S.P.: Readily availablesources of long-chain omega-3 oils: is farmed Australian seafooda better source of the good oil than wild-caught seafood? Nutrients,2014; 6: 1063–1079
    Google Scholar
  • 37. Nowak J.Z.: Przeciwzapalne „prowygaszeniowe” pochodne wielonienasyconychkwasów tłuszczowych omega 3 i omega 6. PostępyHig. Med. Dośw., 2010; 64: 115–132
    Google Scholar
  • 38. O’Connell T.D., Block R.C., Huang S.P., Shearer G.C.: omega3-Polyunsaturated fatty acids for heart failure: Effects of dose on efficacyand novel signaling through free fatty acid receptor 4. J. Mol.Cell. Cardiol., 2017; 103: 74–92
    Google Scholar
  • 39. Oh D.Y., Walenta E., Akiyama T.E., Lagakos W.S., Lackey D., PessentheinerA.R., Sasik R., Hah N., Chi T.J., Cox J.M., Powels M.A., DiSalvo J., Sinz C., Watkins S.M., Armando A.M., i wsp.: A Gpr120-selectiveagonist improves insulin resistance and chronic inflammationin obese mice. Nat. Med., 2014; 20: 942–947
    Google Scholar
  • 40. Olejarz W., Bryk D., Zapolska-Downar D.: Significance of nuclearfactor κB in atherosclerosis: a potential therapeutic target for cardiovasculardisease. Czynniki Ryzyka, 2015; 78: 35–43
    Google Scholar
  • 41. Özogul Y., Özogul F., Alagoz S.: Fatty acid profiles and fat contentsof commercially important seawater and freshwater fish species ofTurkey: A comparative study. Food Chemistry, 2007; 103: 217–223
    Google Scholar
  • 42. Pan J.X.: LncRNA H19 promotes atherosclerosis by regulatingMAPK and NF-κB signaling pathway. Eur. Rev. Med. Pharmacol.Sci., 2017; 21: 322–328
    Google Scholar
  • 43. Pilkington S.M., Rhodes L.E., Al-Aasswad N.M., Massey K.A.,Nicolaou A.: Impact of EPA ingestion on COX- and LOX-mediatedeicosanoid synthesis in skin with and without a pro-inflammatoryUVR challenge – report of a randomised controlled study in humans.Mol. Nutr. Food Res., 2014; 58: 580–590
    Google Scholar
  • 44. Qi K., Fan C., Jiang J., Zhu H., Jiao H., Meng Q., Deckelbaum R.J.:Omega-3 fatty acid containing diets decrease plasma triglycerideconcentrations in mice by reducing endogenous triglyceride synthesisand enhancing the blood clearance of triglyceride-rich particles.Clin. Nutr., 2008; 27: 424–430
    Google Scholar
  • 45. Risk and Prevention Study Collaborative group, RoncaglioniM.C., Tombesi M., Avanzini F., Barlera S., Caimi V., Longoni P., MarzonaI., Milani V., Silletta M.G., Tognoni G., Marchioli R.: n-3 fattyacids in patients with multiple cardiovascular risk factors. N. Engl.J. Med., 2013; 368: 1800–1808
    Google Scholar
  • 46. Rizzi T.S., van der Sluis S., Derom C., Thiery E., van Kesteren R.E.,Jacobs N., Van Gestel S., Vlietinck R., Verhage M., Heutink P., PosthumaD.: FADS2 genetic variance in combination with fatty acid intake mightalter composition of the fatty acids in brain. PLoS One, 2013; 8: e68000
    Google Scholar
  • 47. Salem N.Jr., Eggersdorfer M.: Is the world supply of omega-3fatty acids adequate for optimal human nutrition? Curr.. Opin Clin.Nutr. Metab. Care, 2015; 18: 147–154
    Google Scholar
  • 48. Serasanambati M., Chilakapati S.R.: Function of nuclear factorkappa B (NF-κB) in human diseases-a review. South Indian J. Biol.Sci., 2016; 2: 368–387
    Google Scholar
  • 49. Sicińska P., Pytel E., Kurowska J., Koter-Michalak M.: Suplementacjakwasami omega w różnych chorobach. Postępy Hig. Med.Dośw., 2015; 69: 838–852
    Google Scholar
  • 50. Simopoulos A.P.: The importance of the omega-6/omega-3 fattyacid ratio in cardiovascular disease and other chronic diseases. Exp.Biol. Med., 2008; 233: 674–688
    Google Scholar
  • 51. Song T.J., Chang Y., Shin M.J., Heo J.H., Kim Y.J.: Low levels ofplasma omega 3-polyunsaturated fatty acids are associated with cerebralsmall vessel diseases in acute ischemic stroke patients. Nutr.Res., 2015; 35: 368–374
    Google Scholar
  • 52. Sprague M., Dick J.R., Tocher D.R.: Impact of sustainable feedson omega-3 long-chain fatty acid levels in farmed Atlantic salmon,2006-2015. Sci. Rep., 2016; 6: 21892
    Google Scholar
  • 53. Stebbins C.L., Stice J.P., Hart C.M., Mbai F.N., Knowlton A.A.: Effectsof dietary decosahexaenoic acid (DHA) on eNOS in human coronary arteryendothelial cells. J. Cardiovasc. Pharmacol. Ther., 2008; 13: 261–268
    Google Scholar
  • 54. Tousoulis D., Oikonomou E., Economou E.K., Crea F., Kaski J.C.:Inflammatory cytokines in atherosclerosis: current therapeutic approaches.Eur. Heart J., 2016; 37: 1723–1732
    Google Scholar
  • 55. Vanhoutte P.M., Shimokawa H., Feletou M., Tang E.H.: Endothelialdysfunction and vascular disease – a 30th anniversary update.Acta Physiol., 2017; 219: 22–96
    Google Scholar
  • 56. Wang T.M., Chen C.J., Lee T.S., Chao H.Y., Wu W.H., Hsieh S.C.,Sheu H.H., Chiang A.N.: Docosahexaenoic acid attenuates VCAM-1expression and NF-κB activation in TNF-α-treated human aorticendothelial cells. J. Nutr. Biochem., 2011; 22: 187–194
    Google Scholar
  • 57. Wang Z., Guo A., Ma L., Yu H., Zhang L., Meng H., Cui Y., Yu F.,Yang B.: Docosahexenoic acid treatment ameliorates cartilage degenerationvia a p38 MAPK-dependent mechanism. Int. J. Mol. Med.,2016; 37: 1542–1550
    Google Scholar
  • 58. Williams-Bey Y., Boularan C., Vural A., Huang N.N., Hwang I.Y.,Shan-Shi C., Kehrl J.H.: Omega-3 free fatty acids suppress macrophageinflammasome activation by inhibiting NF-κB activation andenhancing autophagy. PLoS One, 2014; 9: e97957
    Google Scholar
  • 59. Xun P., Qin B., Song Y., Nakamura Y., Kurth T., Yaemsiri S.,Djousse L., He K.: Fish consumption and risk of stroke and its subtypes:accumulative evidence from a meta-analysis of prospectivecohort studies. Eur. J. Clin. Nutr., 2012; 66: 1199–1207
    Google Scholar
  • 60. Yamagata K.: Docosahexaenoic acid regulates vascular endothelialcell function and prevents cardiovascular disease. Lipids HealthDis., 2017; 16: 118
    Google Scholar
  • 61. Yamagata K., Suzuki S., Tagami M.: Docosahexaenoic acid preventedtumor necrosis factor α-induced endothelial dysfunction andsenescence. Prostaglandins Leuk. Essent. Fatty Acids, 2016; 104: 11–18
    Google Scholar
  • 62. Yang Y.C., Lii C.K., Wei Y.L., Li C.C., Lu C.Y., Liu K.L., Chen H.W.:Docosahexaenoic acid inhibition of inflammation is partially viacross-talk between Nrf2/heme oxygenase 1 and IKK/NF-κB pathways.J. Nutr. Biochem., 2013; 24: 204–212
    Google Scholar
  • 63. Zamberletti E., Piscitelli F., De Castro V., Murru E., Gabaglio M.,Colucci P., Fanali C., Prini P., Bisogno T., Maccarrone M., CampolongoP., Banni S., Rubino T., Parolaro D.: Lifelong imbalanced LA/ALA intakeimpairs emotional and cognitive behavior via changes in brainendocannabinoid system. J. Lipid Res., 2017; 58: 301–316
    Google Scholar
  • 64. Zhang J.Y., Kothapalli K.S., Brenna J.T.: Desaturase and elongase-limiting endogenous long-chain polyunsaturated fatty acidbiosynthesis. Curr. Opin. Clin. Nutr. Metab. Care, 2016; 19: 103–110
    Google Scholar
  • 65. Zheng J., Huang T., Yu Y., Hu X., Yang B., Li D.: Fish consumptionand CHD mortality: an updated meta-analysis of seventeen cohortstudies. Public Health Nutr., 2012; 15: 725–737
    Google Scholar
  • 66. Zulyniak M.A., Perreault M., Gerling C., Spriet L.L., Mutch D.M.:Fish oil supplementation alters circulating eicosanoid concentrationsin young healthy men. Metabolism, 2013; 62: 1107–1113
    Google Scholar

Full text

Skip to content