Effects of curcumin on lipid peroxidation and antioxidant enzymes in kidney, liver, brain and testis of mice bearing Ehrlich Solid Tumor

ORIGINAL ARTICLE

Effects of curcumin on lipid peroxidation and antioxidant enzymes in kidney, liver, brain and testis of mice bearing Ehrlich Solid Tumor

Mustafa Nisari 1 , Seher Yılmaz 2 , Tolga Tolga Ertekin 3 , Arzu Hanım Yay 4 , Dilek Ceylan 5 , Neriman İnanç 1 , Özge Al 6 , Harun Ülger 6

1. Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Nuh Naci Yazgan, Kayseri, Turkey,
2. Department of Anatomy, Bozok University School of Medicine, Yozgat, Turkey,
3. Department of Anatomy, Kocatepe University School of Medicine, Afyon, Turkey,
4. Department of Histology, Erciyes University School of Medicine, Kayseri, Turkey,
5. Genome and Stem Cell Center, University of Erciyes, Kayseri, Turkey,
6. Department of Anatomy, Erciyes University School of Medicine, Kayseri, Turkey,

Published: 2020-06-03
DOI: 10.5604/01.3001.0014.1684
GICID: 01.3001.0014.1684
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2020; 74 : 416-425

 

Abstract

Introduction: Cancer is the second most common cause of death in the world. Several natural products have been studied for anticancer activity and for prevention or repair of oxidative injury. Curcumin is one of the natural products of high medicinal interest. This study was performed to investigate effects of curcumin on lipid peroxidation and antioxidant enzymes in tissues of mice bearing Ehrlich solid tumor. Materials and Methods: Forty mice were distributed to four groups as healthy control and treatments that received 1×106 Ehrlich ascites tumor (EAT) cells and EAT cells plus 25 mg/kg/day or 50 mg/kg/day curcumin with a single subcutaneous injection. The liver, kidney, brain and testis tissues were collected for the MDA, SOD and CAT analyses. Results: Tumor development increased MDA levels in liver (p=0.001), kidney (p<0.001) and testis (p<0.01) and curcumin reduced liver MDA. Liver and kidney SOD activities were increased by both levels of curcumin (p=0.001) but 50 mg/kg/day curcumin increased brain SOD activity (p<0.001). The kidney CAT activity was increased by 50 mg/kg/day curcumin (p<0.001). Discussion: This study showed that curcumin suppresses tumor progression, and alleviates the lipid peroxidation and improves antioxidant status in the tissues of solid tumor-bearing mice.

References

  • 1. Abarikwu S.O., Durojaiye M., Alabi A., Asonye B., Akiri O.: Curcumin protects against gallic acid-induced oxidative stress, suppression of glutathione antioxidant defenses, hepatic and renal damage in rats. Ren. Fail., 2016; 38(2): 321–329.
    Google Scholar
  • 2. Abou Zaid O.A.R., Badwi A.F.M., El Sayed N.A.E.: Ameliorative effect of novel nanocomposite: basic curcumin nanoparticles modified with basic nano black seeds (Nigella sativa) and calcium ascorbate on metabolic changes in experimentally induced tumour in female mice. B.E.N.H.A. Vet. Med. J., 2015; 29: 235–244.
    Google Scholar
  • 3. Aebi H.: Catalase. In: Burgmeyer H.U., editor. Methods of Enzymatic Analysis, New York: Academic Press Publisher 1983, 273 p.
    Google Scholar
  • 4. Alrawaiq N.S., Abdullah A.: A review of antioxidant polyphenol curcumin and its role in detoxification. Int. J. Pharm. Tech. Res., 2014; 6 (1): 280–289.
    Google Scholar
  • 5. Anand P., Sundaram C., Jhurani S., Kunnumakkara A.B., Aggarwal B.B.: Curcumin and Cancer: An “old age” disease with an “old age” solution. Cancer Lett., 2008; 267:133–164.
    Google Scholar
  • 6. Bansal S.S., Goel M., Aqil F., Vadhanam M.V., Gupta R.C.: Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prev., 2011; 4: 1158–1171.
    Google Scholar
  • 7. Belakavadi M., Salimath B.P.: Mechanism of inhibition of ascites tumour growth in mice by curcumin is mediated by NF-kB and caspase activated DNase. Mol. Cell. Biochem., 2005; 273: 57–67.
    Google Scholar
  • 8. Borra S.K., Gurumurthy P., Mahendra J., Jayamathi K.M., Cherian C.N., Chand R.: Antioxidant and free radical scavenging activity of curcumin determined by using different in vitro and ex vivo models. J. Med. Plant. Res., 2013; 7(36): 2680–2690.
    Google Scholar
  • 9. Cretu E., Trifan A., Vasincu A.I., Miron A.: Plant derived anticancer agents-curcumin in cancer prevention and treatment. Rev. Med. Chir. Soc. Med. Nat. Iaşi., 2012; 116(4): 1223–1229.
    Google Scholar
  • 10. Dhillon N., Aggarwal B.B., Newman R.A., Wolff R.A., Kunnumakkara A.B., Abbruzzese J.L., Ng, C.S., Badmaev V., Kurzrock, R.: Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin. Cancer. Res., 2008; 14(14): 4491–4499.
    Google Scholar
  • 11. Ertekin T., Bozkurt O., Eroz R., Nisari M., Bircan D., Nisari M., Unur E.: May argyrophilic nucleolar organizing region-associated protein synthesis be used for selecting the most reliable dose of drugs such as rhamnetin in cancer treatments? Bratislava Med. J., 2016; 117(11): 653–658.
    Google Scholar
  • 12. Gordon O.N., Luis P.B., Sintim H.O., Schneider C.: Unraveling curcumin degradation: Autoxidation proceeds through spiroepoxide and vinylether intermediates en route to the main bicyclopentadione. J. Biol. Chem., 2015; 290(8): 4817–4828.
    Google Scholar
  • 13. Gururaj A.E., Belakavadi M., Venkatesh D.A., Marme D., Salimath B.P.: Molecular mechanisms of anti-angiogenic effect of curcumin. Bioch. Biophys. Res. Commun., 2002; 934–942.
    Google Scholar
  • 14. Hodges D. M., DeLong J M., Forney C.F., Prange R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999; 207(4): 604–611.
    Google Scholar
  • 15. Jaganathan S.K., Mondhe D., Wani Z.A., Pal H.C., Mandal M.: Effect of honey and eugenol on Ehrlich ascites and solid carcinoma. J. Biomed. Biotechnol., 2010; doi:10.1155/2010/989163.
    Google Scholar
  • 16. Jagetia G.C., Rajanikant G.K.: Curcumin stimulates the antioxidant mechanism in mouse skin expose to fractionated γ-irradiation. Antioxidants., 2015; 4: 25–41.
    Google Scholar
  • 17. Kabel A.M.: Effects of combination between methotrexate and histone deacetylase inhibitors on transplantable tumour model. Am. J. Med. Stud., 2014; 2(1): 12–18.
    Google Scholar
  • 18. Kawamori T., Lubet R., Steele V.E., Kelloff G.J., Kaskey R.B., Rao C.V., Reddy B.S.: Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res., 1999; 59(3): 597–601.
    Google Scholar
  • 19. Kumar R.S., Rajkapoor B., Perumal P., Thangavel D., Jose M.A., Jothimanivannan, C.: Antitumour activity of Prosopis glandulosa Torr. on Ehrlich ascites carcinoma (EAC) tumour bearing mice. Iranian J. Pharmaceut. Res., 2011; 10 (3): 505–510.
    Google Scholar
  • 20. Liu Z., Zhu Y.Y., Li Z.Y., Ning S.Q.: Evaluation of the efficacy of paclitaxel with curcumin combination in ovarian cancer cells. Oncology Lett., 2016; 12: 3944–3948.
    Google Scholar
  • 21. Lü J.M., Lin P.H., Yao Q., Chen C.: Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J. Cell Mol. Med., 2010; 14(4): 840–860.
    Google Scholar
  • 22. Masuda T., Hidaka K., Shinohara A., Maekawa T., Takeda Y., Yamaguchi H.: Chemical studies on antioxidant mechanism of curcuminoid: Analysis of radical reaction products from curcumin. J. Agric. Food Chem., 1999; 47: 71–77.
    Google Scholar
  • 23. Nisari M., Yılmaz S., Eroz R., Ertekin T., Bircan D., Ulger H.: The detection of curcumins’ antitumoural effects via argyrophilic nucleolar organizing region-associated protein synthesis in mice with Ehrlich’s Ascitic Carcinoma. Bratislava Med. J., 2017; 118(1): 61–65.
    Google Scholar
  • 24. Ohkawa H., Ohishi N., Yagi K.: Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem., 1979; 95(2): 351–358.
    Google Scholar
  • 25. Park W., Ruhul Amin A.R.M., Chen Z.G., Shin D.M.: New perspectives of curcumin in cancer prevention. Cancer Prev. Res., 2013; 6 (5): 387–400.
    Google Scholar
  • 26. Portakal O, ÖZKAYA Ö, Erden İnal M, Bozan B. Koşan M. Sayek I: Coenzyme Q10 Concentrations and Antioxidant Status in Tissues of Breast Cancer Patients. Clinical Biochem, 2000; 33 (4) 279–284.
    Google Scholar
  • 27. Sakr S.A., Badr O.M., Abd-Eltawab H.M.: Ameliorative effect of Saffron extract on mice bearing solid tumours. I.S.E.S.C.O. J. Sci. Technol., 2016; 12: 60–70.
    Google Scholar
  • 28. Samarghandian S., Azimi-Nezhad M., Farkhondeh T., Samini F.: Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney. Biomed. Pharmacother., 2017; 87: 223–229.
    Google Scholar
  • 29. Sandur S.K., Ichikawa H., Pandey M.K., Kunnumakkara A.B., Sung B., Sethi G., Aggarwal B.B.: Role of prooxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane). Free Radic. Biol. Med., 2007; 43(4): 568–580.
    Google Scholar
  • 30. Sener U., Uygur R., Kurt O., Caglar V., Gelincik I., Gurel A., Erdogan H.: Protective effects of curcumin against formaldehyde-induced renal toxicity in rats. West Indian Med. J., 2015; DOI: 10.7727/wimj.2015.385.
    Google Scholar
  • 31. Shanmugam M.K., Rane G., Kanchi M.M., Arfuso F., Chinnathambi A., Zayed M.E., Alharbi S.A., Tan B.K., Kumar A.P., Sethi G.: The multifaceted role of curcumin in cancer prevention and treatment. Molecules., 2015; 20: 2728–2769.
    Google Scholar
  • 32. Siegel R.L., Miller K.D., Jemal A.: Cancer Statistics. C.A. Cancer J. Clin., 2017; 67: 7–30.
    Google Scholar
  • 33. Sun Y., Oberley L.W., Elwell J.H., Sierra-Rivera E.: Antioxidant enzyme activities in normal and transformed mouse liver cells. Int. J. Cancer., 1989; 44: 1028–1033.
    Google Scholar
  • 34. Tokaç M., Taner G., Aydın S., Ozkardes A.B., Dundar H.Z., Taslipinar M.Y., Arikok A.T., Kilic M., Basaran A.A., Basaran N.: Protective effects of curcumin against oxidative stress parameters and DNA damage in the livers and kidneys of rats with biliary obstruction. Food Chem. Toxicol., 2013; 61: 28–35.
    Google Scholar
  • 35. Trujillo J., Chirino Y.I., Molina-Jijon E., Anderica-Romero A.C., Tapia E., Pedraza-Chaverri J.: Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biol., 2013; 17(1): 448–56.
    Google Scholar
  • 36. Turkiye Kanser Kontrol Programı. T.C. Sağlık Bakanlığı Yayın No: 1. Ankara 2015, Accessed 30.05.2017.
    Google Scholar
  • 37. Ugur S., Ulu R., Dugukan A., Gurel A., Yigit I.P., Gozel N., Aygen B., Ilhan N.: The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Ren. Fail., 2015; 37(2): 332–336.
    Google Scholar
  • 38. Yılmaz S., Ülger H., Ertekin T., Yay AH., Nisari M., Alpa Ş., Acer N.: Investigating the anti-tumoral effect of curcumin on the mice in which ehrlich ascites and solid tumor is created. Iran J. Basic Med. Sci., 2019; 22: 1–8.
    Google Scholar

Full text

Skip to content