Effects of endogenous cardioprotective mechanisms on ischemia-reperfusion injury

COMMENTARY ON THE LAW

Effects of endogenous cardioprotective mechanisms on ischemia-reperfusion injury

Marcin Kunecki 1 , Wojciech Płazak 1 , Piotr Podolec 1 , Krzysztof S. Gołba 2

1. Oddział Chorób Serca i Naczyń, Krakowski Szpital Specjalistyczny im. Jana Pawła II
2. Oddział Elektrokardiologii i Niewydolności Serca, Górnośląskie Centrum Medyczne w Katowicach

Published: 2017-01-10
DOI: 10.5604/01.3001.0010.3786
GICID: 01.3001.0010.3786
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 20-31

 

Abstract

Ischemic heart disease have been remarked as a leading cause of morbidity and mortality in adults. Early restoration of cardiac perfusion is necessary to restore perfusion of ischemic heart muscle. Effective revascularization reduce mortality by limiting myocardial necrosis at the acute phase of the cardiac infarction. However, reperfusion may induce a cascade of pathophysiological reactions causing the increase of the infarct area of the myocardium This phenomenon known as ischemia-reperfusion injury is responsible for up to 50% of the final infarct size. Sequences of brief episodes of nonlethal ischemia and reperfusion applied before (preconditioning — IPC) or after (postconditioning — POC) the coronary occlusion are well documented to reduce the ischemiareperfusion injury. These phenomena improve cardiac function by mobilizing the molecular and cellular mechanisms limiting reperfusion injury. The mechanisms underlying IPC or POC are still not clarified, but strong experimental evidence suggests that opioids may be the part of the endogenous cardioprotective response to I/R injury. Stimulation of opioid receptors activates related to POC mechanisms affecting protection to the ischemic myocardium, while the use of non-selective opioid receptor antagonist – naloxone reduces this effect. There is no consensus that the subtype of opioid receptor is responsible for the protection of the human heart muscle.Morphine may reduce cardiac preload by peripheral vasodilatation. Numerous studies show a direct cardioprotective effect of the opioid pathway in ischemic conditions. Opioids act via membrane receptors: μ, δ, κ. The predominant subtype in the human cardiac cells are μ- and δ – opioid receptors. It has been hypothetized that opioid receptor activation exerts cardioprotection in human heart muscle pathway what may give insight into the explanation of the protective mechanisms in the acute myocardial infarction.

References

  • 1. Abdel-Wahab M., Khattab A.A., Liska B.: Diazepam versus fentanyl for premedication during percutaneous coronary intervention: results from the Myocardial Protection by Fentanyl during Coronary Intervention (PROFIT) Trial. J. Interv. Cardiol., 2008; 21: 232-238
    Google Scholar
  • 2. Araszkiewicz A., Grygier M., Pyda M., Rajewska J., Lesiak M., Grajek S.: Postconditioning attenuates early ventricular arrhythmias in patients with high-risk ST-segment elevation myocardial infarction. J. Cardiol., 2015; 65: 459-465
    Google Scholar
  • 3. Bell S., Sack M., Patel A., Opie L., Yellon D.M.: Delta opioid receptor stimulation mimics ischemic preconditioning in human heart muscle. J. Am. Coll. Cardiol., 2000; 36: 2296-2302
    Google Scholar
  • 4. Beręsewicz A.: Endogenne mechanizmy kardioprotekcyjne – co to takiego i jak to działa? Kardiologia Polska, 2011; 69 (supl. III): 59-66
    Google Scholar
  • 5. Bolli R., Li Q.H., Tang X.L., Guo Y., Xuan Y.T., Rokosh G., Dawn B.: The late phase of preconditioning and its natural clinical application – gene therapy. Heart Fail. Rev., 2007; 12: 189-199
    Google Scholar
  • 6. Chen Z., Li T., Zhang B.: Morphine post-conditioning protects against reperfusion injury in the isolated rat hearts. J. Surg. Res., 2008; 145: 287-294
    Google Scholar
  • 7. Das A., Xi L., Kukreja R.C.: Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J. Biol. Chem., 2005; 280: 12944-12955
    Google Scholar
  • 8. Deja M.A., Gołba K.S., Malinowski M., Widenka K., Biernat J., Szurlej D., Woś S.: Diazoxide provides maximal KATP channels independent protection if present throughout hypoxia. Ann. Thorac. Surg., 2006; 81:1408-1416
    Google Scholar
  • 9. Downey J.M., Davis A.M., Cohen M.V.: Signaling pathways in ischemic preconditioning. Heart Fail. Rev., 2007; 12: 181-188
    Google Scholar
  • 10. Duman A., Saide Sahin A., Esra Atalik K., Öztin Ögün C, Basri Ulusoy H, Durgut K, Ökesli S.: The in vitro effects of remifentanil and fentanyl on isolated human right atria and saphenous veins. J. Cardiothorac. Vasc. Anesth., 2003; 17: 465-469
    Google Scholar
  • 11. Ela C., Barg J., Vogel Z., Hasin Y., Eilam Y.: Distinct components of morphine effects on cardiac myocytes are mediated by the κ and δ opioid receptors. J. Moll. Cell. Cardiol., 1997; 29: 711-720
    Google Scholar
  • 12. Eldaif S.M., Deneve J.A., Wang N.P., Jiang R., Mosunjac M., Mutrie C.J., Guyton R.A., Zhao Z.Q., Vinten-Johansen J.: Attenuation of renal ischemia-reperfusion injury by postconditioning involves adenosine receptor and protein kinase C activation. Transpl. Int., 2010; 23: 217-226
    Google Scholar
  • 13. Frassdorf J., Weber N.C., Obal D., Toma O., Müllenheim J., Kojda G., Preckel B., Schlack W.: Morphine induces late cardioprotection in rat hearts in vivo: the involvement of opioid receptors and nuclear transcription factor kB. Anesth. Analg., 2005; 101: 934-941
    Google Scholar
  • 14. Gross E.R, Hsu A.K., Gross G.J.: Opioid induced cardioprotection occurs via glycogen synthase kinase β inhibition during reperfusion in intact rat hearts. Circ. Res., 2004; 94: 960-966
    Google Scholar
  • 15. Gross G.J., Hsu A., Nithipatikom K., Bobrova I., Bissessar E.: Eribis peptide 94 reduces infarct size in rat hearts via activation of centrally located μ opioid receptors. J. Cardiovasc. Pharmacol., 2012; 59: 194-197
    Google Scholar
  • 16. Gullapalli S., Ramarao P.: Role of L-type Ca(2+) channels in pertussis toxin induced antagonism of U50,488H analgesia and hypothermia. Brain. Res., 2002; 946: 191-197
    Google Scholar
  • 17. Gupta A., Mulder J., Gomes I., Rozenfeld R., Bushlin I., Ong E., Lim M., Maillet E., Junek M., Cahill C.M., Harkany T., Devi L.A.: Increased abundance of opioid receptor heteromers after chronic morphine administration. Sci. Signal., 2010; 3: ra54
    Google Scholar
  • 18. Hahn J.Y., Yu C.W., Park H.S., Song Y.B., Kim E.K., Lee H.J., Bae J.W., Chung W.Y., Choi S.H., Choi J.H., Bae J.H., An K.J., Park J.S., Oh J.H., Kim S.W., Hwang J.Y., Ryu J.K., Lim D.S., Gwon H.C.: Long-term effects of ischemic postconditioning on clinical outcomes: 1-year follow-up of the POST randomized trial. Am. Heart J., 2015; 169: 639-646
    Google Scholar
  • 19. Hanouz J.L., Yvon A., Guesne G., Eustratiades C., Babatasi G., Rouet R., Ducouret P., Khayat A., Bricard H., Gérard J.L.: The in vitro effects of remifentanil, sufentanil, fentanyl, and alfentanil on isolated human right atria. Anesth. Analg., 2001; 93: 543-549
    Google Scholar
  • 20. Hausenloy D.J., Lecour S., Yellon D.M.: Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid. Redox Signal., 2011; 14: 893-907
    Google Scholar
  • 21. Hausenloy D.J., Candilio L., Evans R., Ariti C., Jenkins D.P., Kolvekar S., Knight R., Kunst G., Laing C., Nicholas J., Pepper J., Robertson S., Xenou M., Clayton T., Yellon D.M.; ERICCA Trial Investigators: Remote ischemic preconditioning and outcomes of cardiac surgery. N. Engl. J. Med., 2015; 373: 1408-1417
    Google Scholar
  • 22. Hausenloy D.J., Yellon D.M.: The second window of preconditioning (SWOP). Where are we now? Cardiovasc. Drugs Ther., 2010; 24: 235-254
    Google Scholar
  • 23. Headrick J.P., See Hoe L.E., Du Toit E.F., Peart J.N.: Opioid receptors and cardioprotection –‘opioidergic conditioning’ of the heart. Br. J. Pharm., 2015; 172: 2026-2050
    Google Scholar
  • 24. Huhn R., Heinen A., Weber N., Schlack W., Preckel B., Hollmann M.: Ischaemic and morphine-induced post-conditioning: impact of mKCa channels. Br. J. Anaesth., 2010; 105: 589-595
    Google Scholar
  • 25. Jancso G., Cserepes B., Gasz B., Benko L., Borsiczky B., Ferenc A., Kürthy M., Rácz B., Lantos J., Gál J., Arató E., Sínayc L., Wéber G., Róth E.: Expression and protective role of heme oxygenase-1 in delayed myocardial preconditioning. Ann. NY Acad. Sci., 2007; 1095: 251-261
    Google Scholar
  • 26. Jennings R.B., Sommers H.M., Smyth G.A., Flack H.A., Linn H.: Myocardial necrosis induced by temporary occlusion of coronary artery in the dog. Arch. Pathol., 1960; 70: 68-78
    Google Scholar
  • 27. Jiang X., Shi E., Nakajima Y., Sato S., Ohno K., Yue H.: Cyclooxygenase-1 mediates the final stage of morphine-induced delayed cardioprotection in concert with cyclooxygenase-2. J. Am. Coll. Cardiol., 2005; 45: 1707-1715
    Google Scholar
  • 28. Kato R., Ross S., Foex P.: Fentanyl protects the heart against ischaemic injury via opioid receptors, adenosine A1 receptors and KATP channel linked mechanisms in rats. Br. J. Anaesth., 2000; 84: 204-214
    Google Scholar
  • 29. Kunecki M., Roleder T., Biernat J., Płazak W., Podolec P., Deja M.A., Gołba K.S.: Ochronne działanie układu opioidowego na czynność niedotlenionego ludzkiego mięśnia sercowego w warunkach in vitro. Folia Med. Cracov, 2015; 55, suppl. 1: 48-49
    Google Scholar
  • 30. Lefer D.J.: A new gaseous signaling molecule emerges: cardioprotective role of hydrogen sulfide. Proc. Nat. Acad. Sci. USA, 2007; 104: 17907-17908
    Google Scholar
  • 31. Lemoine S., Zhu L., Massetti M., Gerard J.L., Hanouz J.L.: Continuous administration of remifentanil and sufentanil induces cardioprotection in human myocardium, in vitro. Acta Anaesthesiol. Scand., 2011; 55: 758-764
    Google Scholar
  • 32. Lim S.Y., Davidson S.M., Hausenloy D.J., Yellon D.M.: Preconditioning and postconditioning: the essential role of the mitochondrial permeability transition pore. Cardiovasc. Res., 2007; 75: 530-535
    Google Scholar
  • 33. Lu X.H., Ran K., Xiao Y.Y., Yang D.L., Chang Y.T., Duan K.M., Ou Y.W.: Protective effects of morphine preconditioning in delayed phase on myocardial ischemia-reperfusion injury in rabbits. Genet. Mol. Res., 2015; 14: 8947-8954
    Google Scholar
  • 34. Lucchinetti E., da Silva R., Pasch T., Schaub M.C., Zaugg M.: Anaesthetic preconditioning but not postconditioning prevents early activation of the deleterious cardiac remodeling programme: evidence of opposing genomic responses in cardioprotection by pre- and postconditioning. Br. J. Anaesth., 2005; 95: 140-152
    Google Scholar
  • 35. Marmor M., Penn A., Widmer K., Levin R.I., Maslansky R.: Coronary artery disease and opioid use. Am. J. Cardiol., 2004; 93: 12951297
    Google Scholar
  • 36. Matsumura K., Jeremy R.W., Schaper J., Becker L.C.: Progression of myocardial necrosis during reperfusion of ischemic myocardium. Circulation, 1998; 97: 795-804
    Google Scholar
  • 37. Meybohm P., Bein B., Brosteanu O., Cremer J., Gruenewald M., Stoppe C., Coburn M., Schaelte G., Böning A., Niemann B., Roesner J., Kletzin F., Strouhal U., Reyher C., Laufenberg-Feldmann R., et al.: RIPHeart Study Collaborators: A multicenter trial of remote ischemic preconditioning for heart surgery. N. Engl. J. Med., 2015; 373: 1397-1407
    Google Scholar
  • 38. Mudalagiri N.R., Mocanu M.M., Di Salvo C., Kolvekar S., Hayward M., Yap J., Keogh B., Yellon D.M.: Erythropoietin protects the human myocardium against hypoxia/reoxygenation injury via phosphatidylinositol-3 kinase and ERK1/2 activation. Br. J. Pharmacol., 2008; 153: 50-56
    Google Scholar
  • 39. Murphy G.S., Szokol J.W., Marymont J.H., Avram M.J., Vender J.S.: Opioids and cardioprotection: the impact of morphine and fentanyl on recovery of ventricular function after cardiopulmonary bypass. J. Cardiothorac. Vasc. Anesth., 2006; 20: 493-502
    Google Scholar
  • 40. Murry C.E., Jennings R.B., Reimer K.A.: Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 1986; 74: 1124-1136
    Google Scholar
  • 41. Na H.S., Kim Y.I., Yoon Y.W., Han H.C., Nahm S.H., Hong S.K.: Ventricular premature beat-driven intermittent restoration of coronary blood flow reduces the incidence of reperfusion-induced ventricular fibrillation in a cat model of regional ischaemia. Am. Heart J., 1996; 132: 78-83
    Google Scholar
  • 42. Noda T., Minatoguchi S., Fujii K., Hori M., Ito T., Kanmatsuse K., Matsuzaki M., Miura T., Nonogi H., Tada M., Tanaka M., Fujiwara H.: Evidence for the delayed effect in human ischemic preconditioning: prospective multicenter study for preconditioning in acute myocardial infarction. J. Am. Coll. Cardiol., 1999; 34: 1966-1974
    Google Scholar
  • 43. Obal D., Dettwiler S., Favoccia C., Scharbatke H., Preckel B., Schlack W.: The influence of mitochondrial KATP-channels in the cardioprotection of preconditioning and postconditioning by sevoflurane in the rat in vivo. Anest. Analg., 2005; 101: 1242-1260
    Google Scholar
  • 44. Okubo S., Tanabe Y., Takeda K., Kitayama M., Kanemitsu S., Kukreja R.C., Takekoshi N.: Ischemic preconditioning and morphine attenuate myocardial apoptosis and infarction after ischemia-reperfusion in rabbits: role of delta-opioid receptor. Am. J. Physiol. Heart Circ. Physiol., 2004; 287: H1786-H1791
    Google Scholar
  • 45. Ovize M., Baxter G., Di Lisa F., Ferdinandy P., Garcia-Dorado D., Hausenloy D.J., Heusch G., Vinten-Johansen J., Yellon D.M., Schulz R.; Working Group of Cellular Biology of Heart of European Society of Cardiology: Postconditioning and protection from reperfusion injury: where do we stand? Cardiovasc. Res., 2010; 87, 406-423
    Google Scholar
  • 46. Pagel P., Krolikowski J.G., Amour J., Warltier D., Weihrauch D.: Morphine reduces the threshold of helium preconditioning against myocardial infarction: the role of opioid receptors in rabbits. J. Cardiothorac. Vasc. Anesth., 2009; 23: 619-624
    Google Scholar
  • 47. Patel H.H., Hsu A.K., Gross G.J.: COX-2 and iNOS in opioid induced delayed cardioprotection in the intact rat. Life Sci., 2004; 75: 129-140
    Google Scholar
  • 48. Peart J.N., Gross E.R., Gross G.J.: Effect of exogenous κ-opioid receptor activation in rat model of myocardial infarction. J. Cardiovasc. Pharmacol., 2004; 43: 410-415
    Google Scholar
  • 49. Peart J.N., Gross E.R., Reichelt M.E., Hsu A., Headrick J.P., Gross G.J.: Activation of κ-opioid receptors at reperfusion affords cardioprotection in both rat and mouse hearts. Basic Res. Cardiol., 2008; 103: 454-463
    Google Scholar
  • 50. Peart J.N., Gross G.J.: Exogenous activation of δ- and κ-opioid receptors affords cardioprotection in isolated murine heart. Basic Res. Cardiol., 2004; 99: 29-37
    Google Scholar
  • 51. Peart J.N., Patel H.H., Gross G.J.: Δ-opioid receptor activation mimics ischemic preconditioning in the canine heart. J. Cardiovasc. Pharmacol., 2003; 42: 78-81
    Google Scholar
  • 52. Pleym H., Stenseth R., Wiseth R., Karevold A., Dale O.: Supplemental remifentanil during coronary artery bypass grafting is followed by a transient postoperative cardiac depression. Acta Anaesthesiol. Scand., 2004; 48: 1155-1162
    Google Scholar
  • 53. Przyklenk K., Bauer B., Ovize M., Kloner R., Whittaker P.: Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation, 1993; 87: 893-899
    Google Scholar
  • 54. Roleder T., Gołba K.S., Kunecki M., Malinowski M., Biernat J., Smolka G., Deja M.A.: The co-application of hypoxic preconditioning and postconditioning abolishes their own protective effect on systolic function in human myocardium. Cardiol. J., 2013; 20: 472-477
    Google Scholar
  • 55. Schultz J.J., Hsu A.K., Nagase H., Gross G.J.: TAN-67, a δ1-opioid receptor agonist, reduces infarct size via activation of Gi/o proteins and KATP channels. Am. J. Physiol. Heart Circ. Physiol., 1998; 274: H909-H914
    Google Scholar
  • 56. Shan J., Yu X.C., Fung M.L., Wong T.M.: Attenuated “cross talk” between κ-opioid receptors and β-adrenoceptors in the heart of chronically hypoxic rats. Pflugers Arch., 2002; 444: 126-132
    Google Scholar
  • 57. Smolka G., Gołba K.S., Malinowski M., Deja M., Biernat J., Reszka B., Dalecka A.M., Woś S.: Nowe oblicze modyfikowanej reperfuzji: postconditioning. Kardiol. Pol., 2005; 63; 4 (suppl. 2): 450-456
    Google Scholar
  • 58. Staat P., Rioufol G., Piot C., Cottin Y., Cung T.T., L’Huillier I., Aupetit J.F., Bonnefoy E., Finet G., André-Fouët X., Ovize M.: Postconditioning the human heart. Circulation, 2005; 112: 2143-2148
    Google Scholar
  • 59. Stein A., Bolli R., Dawn D., Sanganalmath S., Zhu Y., Wang O.L., Guo Y., Motterlini R., Xuan Y.T.: Carbon monoxide induces a late preconditioning-mimetic cardioprotective and antiapoptotic milieu in the myocardium. J. Mol. Cell. Cardiol., 2012; 52: 228-236
    Google Scholar
  • 60. Sun H.Y.,Wang N.P., Halkos M., Kerendi F., Kin H., Guyton R.A., Vinten-Johansen J., Zhao Z.Q.: Postconditioning attenuates cardiomyocyte apoptosis via inhibition of jnk and p38 mitogen-activated protein kinase signaling pathways. Apoptosis, 2006; 11: 1583-1593
    Google Scholar
  • 61. Takano H., Qiu Y., Guo Y., French B.A., Bolli R.: Nitric oxide donors induce late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidant-sensitive mechanism. Circ. Res., 1998; 83: 73-84
    Google Scholar
  • 62. The GUSTO investigators: An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N. Engl. J. Med., 1993; 329: 673-682
    Google Scholar
  • 63. Thibault H., Piot C., Staat P., Bontemps L., Sportouch C., Rioufol G., Cung T.T., Bonnefoy E., Angoulvant D., Aupetit J.F., Finet G., André-Fouët X., Macia J.C., Raczka F., Rossi R., Itti R., Kirkorian G., Derumeaux G., Ovize M.: Long-term benefit of postconditioning. Circulation, 2008; 117: 1037-1044
    Google Scholar
  • 64. Tomai F., Crea F., Gaspardone A., Versaci F., Ghini A.S., Ferri C., Desideri G., Chiariello L., Gioffré P.A.: Effects of naloxone on myocardial ischemic preconditioning in humans. J. Am. Coll. Cardiol., 1999; 33: 1863-1869
    Google Scholar
  • 65. Valtchanova-Matchouganska A., Ojewole J.A.: Mechanisms of opioid delta (δ) and kappa (κ) receptors’ cardioprotection in ischaemic preconditioning in a rat model of myocardial infarction. Cardiovasc J. S. Afr., 2003; 14: 73-80
    Google Scholar
  • 66. Villemagne P., Dannals R.F., Ravert H.T., Frost J.: PET imaging of human cardiac opioid receptors. Eur. J. Nucl. Med. Mol. Imaging, 2002; 29: 1385-1388
    Google Scholar
  • 67. Vinten-Johansen J.: Postconditioning: a mechanical maneuver that triggers biological and molecular cardioprotective responses to reperfusion. Heart Fail. Rev., 2007; 12: 235-244
    Google Scholar
  • 68. Wagner R., Piler P., Bedanova H., Adamek P., Grodecka L., Freiberger T.: Myocardial injury is decreased by late remote ischaemic preconditioning and aggravated by tramadol in patients undergoing cardiac surgery: a randomised controlled trial. Interact. Cardiovasc. Thorac. Surg., 2010; 11: 758-762
    Google Scholar
  • 69. Wall T.M., Sheehy R., Hartman J.C.: Role of bradykinin in myocardial preconditioning. J. Pharmacol. Exp. Ther., 1994; 270: 681-689
    Google Scholar
  • 70. Wang G., Wu S., Pei J., Yu X., Wong T.: κ- but not δ-opioid receptors mediate effects of ischemic preconditioning on both infarct and arrhythmia in rats. Am. J. Physiol. Heart Circ. Physiol., 2001; 280: H384-H391
    Google Scholar
  • 71. Wittert G., Hope P., Pyle D.: Tissue distribution of opioid receptor gene expression in the rat. Biochem. Biophys. Res. Commun., 1996; 218: 877-881
    Google Scholar
  • 72. Wong G.T., Jiang L.L., Irwin M.G.: Activation of central opioid receptors induces cardioprotection against ischemia-reperfusion injury. Anesth. Analg., 2010; 111: 24-28
    Google Scholar
  • 73. Wong G.T., Huang Z., Ji S., Irwin M.G.: Remifentanil reduces the release of biochemical markers of myocardial damage after coronary artery bypass surgery: a randomized trial. J. Cardiothorac. Vasc. Anesth., 2010; 24: 790-796
    Google Scholar
  • 74. Wong T.M., Lee A.Y., Tai K.K.: Effects of drugs interacting with opioid receptors during normal perfusion or ischemia and reperfusion in the isolated rat heart – an attempt to identify cardiac opioid receptor subtype(s) involved in arrhythmogenesis. J. Mol. Cell. Cardiol., 1990; 22: 1167-1175
    Google Scholar
  • 75. Xi J., Tian W., Zhang L., Jin Y., Xu Z.: Morphine prevents the mitochondrial permeability transition pore opening through NO/ cGMP/PKG/Zn2+/GSK-3β signal pathway in cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol., 2010; 298: H601-H607
    Google Scholar
  • 76. Xu Z.D., Jin M., He W.X., Xia S.X., Zhao Y.F., He B., Cao D.X., Peng S.L., Li J., Cao M.H.: Remifentanil preconditioning lowers cardiac troponin I levels in patients undergoing off-pump coronary artery bypass graft surgery. Nan Fang Yi Ke Da Xue Bao, 2009; 29: 1554-1556
    Google Scholar
  • 77. Yao Z., Gross G.J.: Acetylcholine mimics ischemic preconditioning via a glibenclamide-sensitive mechanism in dogs. Am. J. Physiol., 1993; 264: H2221-H2225
    Google Scholar
  • 78. Yellon D.M., Alkhulaifi A.M., Pugsley W.B.: Preconditioning the human myocardium. Lancet, 1993; 342: 276-277
    Google Scholar
  • 79. Yellon D.M., Hausenloy D.J.: Myocardial reperfusion injury. N. Engl. J. Med., 2007; 357: 1121-1135
    Google Scholar
  • 80. Yu X.C., Li H.Y., Wang H.X., Wong T.M.: U50,488H inhibits effects of norepinephrine in rat cardiomyocytes-cross-talk between κ-opioid and β-adrenergic receptors. J. Mol. Cell. Cardiol., 1998; 30: 405-413
    Google Scholar
  • 81. Zatta A.J., Kin H., Lee G., Wang N., Jiang R., Lust R., Reeves J.G., Mykytenko J., Guyton R.A., Zhao Z.Q., Vinten-Johansen J.: Infarctsparing effect of myocardial postconditioning is dependent on protein kinase C signalling. Cardiovasc. Res., 2006; 70: 315-324
    Google Scholar
  • 82. Zhang Y., Chen Z.W., Irwin M.G., Wong T.M.: Remifentanil mimics cardioprotective effect of ischemic preconditioning via protein kinase C activation in open chest of rats. Acta Pharmacol. Sin., 2005; 26: 546-550
    Google Scholar
  • 83. Zhang Y., Irwin M.G., Lu Y., Mei B., Zuo Y.M., Chen Z.W., Wong T.M.: Intracerebroventricular administration of morphine confers remote cardioprotection – role of opioid receptors and calmodulin. Eur. J. Pharm., 2011; 656: 74-80
    Google Scholar

Full text

Skip to content