Effects of Propofol on Oxidative Stress Parameters in Selected Parts of the Brain in a Rat Model of Parkinson Disease
Ewa Romuk 1 , Wioletta Szczurek 1 , Przemysław Nowak 2 , Marta Skowron 1 , Bernard Prudel 1 , Edyta Hudziec 1 , Ewa Chwalińska 1 , Ewa Birkner 1Abstract
Introduction: Propofol is an intravenous sedative-hypnotic agent that is commonly used to induce and maintain general anaesthesia. This drug has antioxidant properties, which are partly caused by a phenolic structure similar to α-tocopherol. The present study aimed to evaluate the effect of propofol on the level of oxidative stress biomarkers in the frontal cortex, striatum, thalamus, hippocampus and cerebellum in rats with experimental Parkinson’s disease (PD).Material/Methods: The experiment was performed on 24 male Wistar rats assigned to the following groups: 1 – control; 2 – PD; 3 – PD with propofol. The dopaminergic systems were damaged with 6-hydroxydopamine (6-OHDA) administered to each lateral ventricle (2×15 μg/5 μl). 60 mg/kg of propofol was later given to the 8-week-old rats intraperitoneally. The activities of superoxide dismutase (SOD) and its enzymes Cu/ZnSOD and MnSOD, together with the malondialdehyde (MDA) concentration, total oxidative status (TOS) and total antioxidant capacity (TAC), were measured.Results: In the 2nd group, a significant increase in MDA concentration in the striatum, hippocampus and thalamus, and an increase of TOS in the striatum, thalamus and cerebellum were noted, along with a TAC decrease in the cortex, striatum and thalamus. Propofol caused a significant decrease in MDA levels in the cortex, striatum, hippocampus and thalamus, and a decrease in TOS levels in the cortex, striatum and cerebellum, with increased TAC in all evaluated structures.Conclusions: A shortage of natural antioxidants is observed in PD, along with an increase in pro-oxidants in many brain areas. Propofol inhibits oxidative stress in the brain, which shows its neuroprotective properties against oxidative damage.
References
- 1. Ayala A., Muñoz M.F., Argüelles S.: Lipid peroxidation: production,metabolism, and signaling mechanisms of malondialdehydeand 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev., 2014;2014: 360438
Google Scholar - 2. Bozkus F., San I., Ulas T, Iynen I., Yesilova Y., Guler Y., AksoyN.: Evaluation of total oxidative stress parameters in patientswith nasal polyps. Acta Otorhinolaryngol. Ital., 2013; 33: 248-253
Google Scholar - 3. Buhmann C., Arlt S., Kontush A., Möller-Bertram T., SperberS., Oechsner M., Stuerenburg H.J., Beisiegel U.: Plasma and CSFmarkers of oxidative stress are increased in Parkinson’s diseaseand influenced by antiparkinsonian medication. Neurobiol. Dis.,2004; 15: 160-170
Google Scholar - 4. Erbas M., Demiraran Y., Yildirim H.A., Sezen G., Iskender A.,Karagoz I., Kandis H.: Comparison of effects on the oxidant/antioxidantsystem of sevoflurane, desflurane and propofol infusionduring general anesthesia. Rev. Braz. Anesthesiol., 2015; 65: 68-72
Google Scholar - 5. Erel O.: A new automated colorimetric method for measuringtotal oxidant status. Clin. Biochem., 2005; 38: 1103-1111
Google Scholar - 6. Erel O.: A novel automated direct measurement method fortotal antioxidant capacity using a new generation, more stableABTS radical cation. Clin. Biochem., 2004; 37: 277-285
Google Scholar - 7. Göttlich M., Münte T.F., Heldmann M., Kasten M., Hagenah J.,Krämer U.M.: Altered resting state brain networks in Parkinson’sdisease. PLoS One, 2013; 8: e77336
Google Scholar - 8. Halliwell B.: Oxidative stress and neurodegeneration: whereare we now? J. Neurochem., 2006; 97: 1634-1658
Google Scholar - 9. Heyne B., Brault D., Fontaine-Aupart M.P., Kohnen S., TfibelF., Mouithys-Mickalad A., Deby-Dupont G., Hans P., Hoebeke M.:Reactivity towards singlet oxygen of propofol inside liposomesand neuronal cells. Biochim. Biophys. Acta, 2005; 1724: 100-107
Google Scholar - 10. Holownia A., Mroz R.M., Wielgat P., Skiepko A., Sitko E., JakubowP., Kolodziejczyk A., Braszko J.: Propofol protects rat astroglialcells against tert-butyl hydroperoxide-induced cytotoxicity; theeffect on histone and cAMP-response-element-binding protein(CREB) signalling. J. Physiol. Pharmacol., 2009; 60: 63-69
Google Scholar - 11. Huang W.C., Juang S.W., Liu I.M., Chi T.C., Cheng J.T.: Changesof superoxide dismutase gene expression and activity in the brainof streptozotocin-induced diabetic rats. Neurosci. Lett., 1999;275: 25-28
Google Scholar - 12. Huang Y., Zitta K., Bein B., Scholz J., Steinfath M., Albrecht M.:Effect of propofol on hypoxia re-oxygenation induced neuronalcell damage in vitro. Anaesthesia, 2013; 68: 31-39
Google Scholar - 13. Johnson F., Giulivi C.: Superoxide dismutases and their impactupon human health. Mol. Aspects Med., 2005; 26: 340-352
Google Scholar - 14. Kostrzewa R.M., Kostrzewa J.P., Brus R., Kostrzewa R.A., NowakP.: Proposed animal model of severe Parkinson’s disease: neonatal6-hydroxydopamine lesion of dopaminergic innervation of striatum.J. Neural. Transm. Suppl., 2006; 70: 277-279
Google Scholar - 15. Kostrzewa R.M., Reader T.A., Descarries L.: Serotonin neuraladaptations to ontogenetic loss of dopamine neurons in rat brain.J. Neurochem., 1998; 70: 889-898
Google Scholar - 16. Kotani Y., Shimazawa M., Yoshimura S., Iwama T., Hara H.:The experimental and clinical pharmacology of propofol, anestheticagent with neuroprotective properties. CNS Neurosci. Ther.,2008; 14: 95-106
Google Scholar - 17. Krauss J.K., Akeyson E.W., Giam P., Jankovic J.: Propofol-induceddyskinesias in Parkinson’s disease. Anesth. Analg., 1996;83: 420-422
Google Scholar - 18. Ohkawa H., Ohishi N., Yagi K.: Assay for lipid peroxides inanimal tissues by thiobarbituric acid reaction. Anal. Biochem.,1979; 95: 351-358
Google Scholar - 19. Oyanagui Y.: Reevaluation of assay methods and establishmentof kit for superoxide dismutase activity. Anal. Biochem.,1984; 142: 290-296
Google Scholar - 20. Oztürk E., Demirbilek S., Köroğlu A., But A., Begeç Z.O., GülecM., Akyol O., Ersoy M.O.: Propofol and erythropoietin antioxidantproperties in rat brain injured tissue. Prog. Neuropsychopharmacol.Biol. Psychiatry, 2008; 32: 81-86
Google Scholar - 21. Pajouhesh H., Lenz G.R.: Medicinal chemical properties ofsuccessful central nervous system drugs. NeuroRx, 2005; 2: 541-553
Google Scholar - 22. Pamplona R.: Membrane phospholipids, lipoxidative damageand molecular integrity: a causal role in aging and longevity.Biochim. Biophys. Acta, 2008; 1777: 1249-1262
Google Scholar - 23. Ranjbar A., Sharifzadeh M., Karimi J., Tavilani H., Baeeri M.,Heidary Shayesteh T., Abdollahi M.: Propofol attenuates toxic oxidativestress by CCl4 in liver mitochondria and blood in rat. Iran.J. Pharm. Res., 2014; 13: 253-262
Google Scholar - 24. Romuk E., Szczurek W., Nowak P., Kwiecień I., Stolecka D.,Birkner E.: Influence of propofol on oxidative-antioxidative systemparameters in peripheral organs of rats with Parkinson disease.Postępy Hig. Med. Dośw., 2015; 69: 661-667
Google Scholar - 25. Rosenfeldt F., Wilson M., Lee G., Kure C., Ou R., Braun L., deHaan J.: Oxidative stress in surgery in an ageing population: pathophysiologyand therapy. Exp. Gerontol., 2013; 48: 45-54
Google Scholar - 26. Ruszkiewicz J., Albrecht J.: Changes in the mitochondrial antioxidantsystems in neurodegenerative diseases and acute braindisorders. Neurochem. Int., 2015; 88: 66-72
Google Scholar - 27. Seet R.C., Lee C.Y., Lim E.C., Tan J.J., Quek A.M., Chong W.L.,Looi W.F., Huang S.H., Wang H., Chan Y.H., Halliwell B.: Oxidativedamage in Parkinson disease: Measurement using accurate biomarkers.Free Radic. Biol. Med., 2010; 48: 560-566
Google Scholar - 28. Shaikh S.I., Verma H.: Parkinson’s disease and anaesthesia.Indian J. Anaesth., 2011; 55: 228-234
Google Scholar - 29. Taheri Moghadam G., Hosseini-Zijoud S.M., Heidary ShayestehT., Ghasemi H., Ranjbar A.: Attenuation of cisplathin-induced toxicoxidative stress by propofol. Anesth. Pain Med., 2014; 4: e14221
Google Scholar - 30. Trachootham D., Lu W., Ogasawara M.A., Nilsa R.D., Huang P.:Redox regulation of cell survival. Antioxid. Redox Signal., 2008;10: 1343-1374
Google Scholar - 31. Vasileiou I., Xanthos T., Koudouna E., Perrea D., Klonaris C., Katsargyris A., Papadimitriou L.: Propofol: a review of its non–anaesthetic effects. Eur. J. Pharmacol., 2009; 605: 1-8
Google Scholar - 32. Wong-Ekkabut J., Xu Z., Triampo W., Tang I.M., TielemanD.P., Monticelli L.: Effect of lipid peroxidation on the propertiesof lipid bilayers: a molecular dynamics study. Biophys. J., 2007;93: 4225-4236
Google Scholar - 33. Woźniak M., Czyż M.: Superoxide dismutase mimetics: possibleclinical applications. Postępy Hig. Med. Dośw., 2008; 62: 613-624
Google Scholar - 34. Zabłocka A., Janusz M.: The two faces of reactive oxygen species.Postępy Hig. Med. Dośw., 2008; 62: 118-124
Google Scholar